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Personae Dramatis:

• Quadratic polynomials fc(z) = z2 + c;

• Basin of ∞: Bc(∞) = {z ∈ C : fn(z)→∞};

• Julia set Jc = ∂Bc(∞);

• Mandelbrot set M = {c ∈ C : Jc is connected};

• Riemann map for dynamic plane ϕc : Bc(∞) → {z ∈ C :
|z| > 1};

• Rc(ϑ) = ϕ−1
c ({re2πiϑ : r > 1}) is dynamic ray of angle ϑ;

• Riemann map for parameter plane ϕ : C \ M → {z ∈ C :
|z| > 1};

• R(ϑ) = ϕ−1({re2πiϑ : r > 1}) is parameter ray of angle ϑ.
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Figure 1. Left: the kneading sequence of an external angle ϑ (here
ϑ = 1/6) is defined as the itinerary of the orbit of ϑ under angle
doubling, where the itinerary is taken with respect to the partition
formed by the angles ϑ/2, and (ϑ+ 1)/2. Right: in the dynamics of a
polynomial for which the ϑ-ray lands at the critical value, an analogous
partition is formed by the dynamic rays at angles ϑ/2 and (ϑ + 1)/2,
which land together at the critical point.



4

Dendritic model for Julia sets

For every c ∈ M, there is a model (J, f) that is combinatorially
representing what happens on the true Julia set.

• J is a dendrite: compact, one-dimensional connected, lo-
cally connected space without loops.

• f : J → J is continuous and unicritical: there is a unique
critical point 0 such that f is locally homeomorphic away
from 0.

• Notation for critical orbit: ci = f i(0).

• 0 separates J into two components J1 3 c1 and J0, and
f : Je → J is onto for e ∈ {0, 1}.

• f : J → J is transitive (hence no superfluous arms).

• A point x ∈ J has valency n if J \ {x} has n components.

1 end point

biaccessible

{
2

≥ 3 branch point
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Symbolic dynamics:

• Using the partition J = J0∪J1∪{0} we can define symbolic
dynamics. The itinerary of z ∈ J is

e(z) = e0e1e2 . . . where ei =

 0 if f i(z) ∈ J0;
1 if f i(z) ∈ J1;
? if f i(z) = 0;

• The kneading sequence ν = ν1ν2ν3 . . . is the itinerary of
the critical point (neglecting the initial ?).

• The ρ-function is defined as

ρ = ρν : N→ N ∪ {∞},

ρν(n) = inf{k > n : νk 6= νk−n}.

• The internal address

1 = S0 → S1 → S2 → . . .

is the ρ-orbit of 1.

• More generally, for fixed itinerary x and kneading sequence
ν, define also

ρν,x(n) := min{k > n : xk 6= νk−n} .
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Biaccessibility:

• A point is biaccessible if at least two external rays land on
it.

• An angle ϑ is biaccessible if there is another angle ϑ′ so
that their external rays land at the same point.

• This definition holds both for dynamic and parameter
space.

• Modulo local connectivity,

c ∈ M is biaccessible if and only if c ∈ Jc is biacces-
sible.

Theorem 1. Let ν be the kneading sequence of a Julia set J and
z ∈ J have itinerary e(z) = x. Then the valency of J at z is equal
to the number of grand ρν,x-orbits.

Modulo local connectivity: the valency of c in M is equal to the
number of grand ρ-orbits.
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Figure 2. The Hubbard tree for 1 → 2 → 4 → 5 → 7 → 13 with
orb(p0) drawn in and pre-periodic branch point w ∈ [p0, c7]; it maps
to p1 in three iterates.

Hubbard trees:

The Hubbard tree (T, f) of a Julia set (or more easily, its den-
dritic model) is the connected hull of the critical orbit.

• f(T ) = T , but f : T → T is not globally 2-to-1 (except for
z 7→ z2 − 2).

• c1 is always an endpoint of T ; so 0 has at most two branches
in T .

• Every biaccessible point in J eventually maps into T .
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Admissibility:

For every ν = 1ν2ν3 ∈ {0, 1}N0, there is a dendritic model J and
Hubbard tree T such that its kneading sequence is ν.

However, not very such model belongs to a true Julia set of a
quadratic polynomial. This is not is much about local connectivity,
but rather about the existence of evil branch points, that is: m-
periodic branch points so that fm does fix one of its arms, and
permutes the others.
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Figure 3. The Hubbard tree for 1→ 2→ 4→ 5→ 6 contains an evil
orbit of period 3.

The Admissibility Condition
A kneading sequence ν ∈ {0, 1}N0 fails the admissibility condition
(for period m) if the following three conditions hold:

(1) the internal address of ν does not contain m;
(2) if k < m divides m, then ρ(k) ≤ m;
(3) ρ(m) <∞ and if r ∈ {1, . . . ,m} is congruent to ρ(m) modulo

m, then orbρ(r) contains m.

Theorem 2. The non-admissible kneading sequences are dense.
The admissible kneading sequences have positive (1

2 ,
1
2)-Bernoulli

measure.

Corollary 1. Restricting to admissible kneading sequences has no
“real effect” on Hausdorff dimension of biaccessible parameter an-
gles.
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Hausdorff estimate “near the antenna of M”

Let
N := 1 + min{i > 1 : νi = 1}

L1(N) :=


log(2bN/2c−1−1)

log 2bN/2c−1
if N ∈ {6, 7, 8, . . . }

1/2 if N = 5,
0 if N ∈ {3, 4}

U1(N) :=
log(2N − 1)

log 2N
,

and L1(N) = U1(N) = 1 if N =∞.

Theorem 3. (Julia set)
For every external parameter angle ϑ ∈ S1, the set of biaccessible
external dynamic angles ϕ ∈ S1 has Hausdorff dimension between
L1(N) and U1(N) for N = N(ϑ).

In particular, the set of biaccessible external dynamic angles has
Hausdorff dimension less than 1 unless ϑ = 1/2.

Theorem 4. (Mandelbrot set)
The set of external parameter angles ϑ for with N(ϑ) = N has
Hausdorff dimension in between L1(N) and U1(N).

In particular, the measure of biaccessible parameter angles (and
this includes the real spine of M) is zero.
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Hausdorff estimate “near the main cardioid of M”

Define

κ := sup{k ≥ 1 : Sj is a multiple of Sj−1 for all 1 ≤ j ≤ k},

L2(κ) :=
1

Sκ+1

U2(κ) := min

{
1,

√
7

2(Sκ + 1)

}
,

and if κ = ∞, then L2(κ) = U2(κ) = 0; if Sκ < Sκ+1 = ∞, then
0 = L2(κ) < U2(κ).

Theorem 5. (Julia set)
For every external parameter angle ϑ ∈ S1, the set of biaccessible
external dynamic angles ϕ ∈ S1 has Hausdorff dimension between
L2(κ) and U2(κ) for κ = κ(ϑ).

In particular, the set of biaccessible external dynamic angles of the
Feigenbaum map has Hausdorff dimension zero.

Theorem 6. (Mandelbrot set)
The set of external parameter angles ϑ for with κ(ϑ) = κ has Haus-
dorff dimension in between L2(κ) and U2(κ).

In particular, the Hausdorff dimension of angles of infinitely renor-
malizable maps is zero.
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Theorem 7. Let Bϑ be the set of combinatorially biaccessible dy-
namic external angles for parameter angle ϑ, and (Tϑ, f) is the
corresponding (abstract) Hubbard tree. Then

dimH(Bϑ) =
htop(f |Tϑ)

log 2
. (1)

Furthermore, these numbers depend Hölder continuously on ϑ ∈ S1,
with Hölder exponent equal to dimH(Bϑ).

Remarks: Monotonicity was proven in the Ph.D-theses of Chris
Penrose (1994) and Tao Li (2007). (Monotonicity of ϑ 7→ htop(f |Tϑ)
is in the sense that if ϑ and φ are biaccessible parameter angles such
that φ ∈ (ϑ, ϑ′), i.e., φ belongs to the wake, or shorter arc, of ϑ
and its companion angle ϑ′ with the same kneading sequence, then
htop(f |Tφ) ≥ htop(f |Tϑ).)

With Hölder exponent dimH(Bϑ) =
htop(f |Tϑ)

log 2 , Hölder continuity fails
at the zero-entropy locus.

For estimates of ϑ 7→ htop(fc(ϑ)|Tϑ) along the the real antenna (and
especially the Feigenbaum parameter), see also work by Carminati
and Tiozzo.

A similar question which we don’t solve here is the modulus of
continuity of c 7→ htop(fc|Tϑ) along the the real antenna.
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Steps in the proof:

I: dimH(Bϑ) = htop(f |Tϑ
)/ log 2 for finite trees:

By Variational Principle.

II. Argument is inconclusive for infinite trees:
The problem is potential non-compactness of infinite Hubbard trees.
taking the closure can increase entropy.

III. Continuity of ϑ 7→ dimH(Bϑ):
Exploit that for large N , up to a set of tiny Hausdorff dimension,
biaccessibility of itineraries can be determined by the first N en-
tries of ν.

IV. Monotonicity of ϑ 7→ htop(f |Tϑ
):

Itineraries of Hubbard tree of the smaller parameter angle are rep-
resented as Cantor set within the Hubbard tree of the parameter
larger.

V. The biaccessible Mandelbrot set:
Monotonicity + Continuity of Hausdorff dimension implies Conti-
nuity of Entropy as long as we have majorizing parameter angles.
No majorized angles at “tips” of the Mandelbrot set.

VI. Zero entropy tips:
No possibility of jumps here.

VII. Continuity of ϑ 7→ htop(f |Tϑ
) at tips:

Compare non-zero entropy tips with nearby Thurston-Misiurewicz
tips.
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