Hausdorff dimension of biaccessible angles of quadratic Julia sets and of the Mandelbrot set

Henk Bruin (University of Surrey) joint work with Dierk Schleicher (Jacobsuniversität Bremen)

Personae Dramatis:

- Quadratic polynomials $f_c(z) = z^2 + c;$
- Basin of ∞ : $B_c(\infty) = \{z \in \mathbb{C} : f^n(z) \to \infty\};$
- Julia set $\mathcal{J}_c = \partial B_c(\infty);$
- Mandelbrot set $\mathcal{M} = \{ c \in \mathbb{C} : \mathcal{J}_c \text{ is connected} \};$
- Riemann map for dynamic plane $\varphi_c : B_c(\infty) \to \{z \in \mathbb{C} : |z| > 1\};$
- $R_c(\vartheta) = \varphi_c^{-1}(\{re^{2\pi i\vartheta} : r > 1\})$ is dynamic ray of angle ϑ ;
- Riemann map for parameter plane $\varphi : \mathbb{C} \setminus \mathcal{M} \to \{z \in \mathbb{C} : |z| > 1\};$
- $R(\vartheta) = \varphi^{-1}(\{re^{2\pi i\vartheta} : r > 1\})$ is parameter ray of angle ϑ .

FIGURE 1. Left: the kneading sequence of an external angle ϑ (here $\vartheta = 1/6$) is defined as the itinerary of the orbit of ϑ under angle doubling, where the itinerary is taken with respect to the partition formed by the angles $\vartheta/2$, and $(\vartheta + 1)/2$. Right: in the dynamics of a polynomial for which the ϑ -ray lands at the critical value, an analogous partition is formed by the dynamic rays at angles $\vartheta/2$ and $(\vartheta + 1)/2$, which land together at the critical point.

Dendritic model for Julia sets

For every $c \in \mathcal{M}$, there is a model (J, f) that is combinatorially representing what happens on the true Julia set.

- J is a **dendrite**: compact, one-dimensional connected, locally connected space without loops.
- $f: J \to J$ is continuous and unicritical: there is a unique critical point 0 such that f is locally homeomorphic away from 0.
- Notation for critical orbit: $c_i = f^i(0)$.
- 0 separates J into two components $J_1 \ni c_1$ and J_0 , and $f: \overline{J_e} \to J$ is onto for $e \in \{0, 1\}$.
- $f: J \to J$ is transitive (hence no superfluous arms).
- A point $x \in J$ has valency n if $J \setminus \{x\}$ has n components.

 $\begin{array}{ccc}
1 & \text{end point} \\
\text{biaccessible} & \begin{cases} 2 \\ \geq 3 & \text{branch point} \end{cases}$

Symbolic dynamics:

• Using the partition $J = J_0 \cup J_1 \cup \{0\}$ we can define symbolic dynamics. The **itinerary** of $z \in J$ is

$$e(z) = e_0 e_1 e_2 \dots \text{ where } e_i = \begin{cases} 0 & \text{if } f^i(z) \in \mathcal{J}_0; \\ 1 & \text{if } f^i(z) \in \mathcal{J}_1; \\ \star & \text{if } f^i(z) = 0; \end{cases}$$

- The **kneading sequence** $\nu = \nu_1 \nu_2 \nu_3 \dots$ is the itinerary of the critical point (neglecting the initial \star).
- The ρ -function is defined as

$$\rho = \rho_{\nu} : \mathbb{N} \to \mathbb{N} \cup \{\infty\},$$

$$\rho_{\nu}(n) = \inf\{k > n : \nu_k \neq \nu_{k-n}\}.$$

• The internal address

$$1 = S_0 \to S_1 \to S_2 \to \dots$$

is the ρ -orbit of 1.

• More generally, for fixed it inerary x and kneading sequence $\nu,$ define also

$$\rho_{\nu,x}(n) := \min\{k > n : x_k \neq \nu_{k-n}\}.$$

Biaccessibility:

- A point is **biaccessible** if at least two external rays land on it.
- An angle ϑ is **biaccessible** if there is another angle ϑ' so that their external rays land at the same point.
- This definition holds both for **dynamic** and **parameter** space.
- Modulo local connectivity,

 $c \in \mathcal{M}$ is biaccessible if and only if $c \in \mathcal{J}_c$ is biaccessible.

Theorem 1. Let ν be the kneading sequence of a Julia set J and $z \in J$ have itinerary e(z) = x. Then the valency of J at z is equal to the number of grand $\rho_{\nu,x}$ -orbits.

Modulo local connectivity: the valency of c in \mathcal{M} is equal to the number of grand ρ -orbits.

FIGURE 2. The Hubbard tree for $1 \rightarrow 2 \rightarrow 4 \rightarrow 5 \rightarrow 7 \rightarrow 13$ with $\operatorname{orb}(p_0)$ drawn in and pre-periodic branch point $w \in [p_0, c_7]$; it maps to p_1 in three iterates.

Hubbard trees:

The **Hubbard tree** (T, f) of a Julia set (or more easily, its dendritic model) is the connected hull of the critical orbit.

- f(T) = T, but $f: T \to T$ is not globally 2-to-1 (except for $z \mapsto z^2 2$).
- c_1 is always an endpoint of T; so 0 has at most two branches in T.
- Every biaccessible point in J eventually maps into T.

Admissibility:

For every $\nu = 1\nu_2\nu_3 \in \{0, 1\}^{\mathbb{N}_0}$, there is a dendritic model J and Hubbard tree T such that its kneading sequence is ν .

However, not very such model belongs to a true Julia set of a quadratic polynomial. This is not is much about local connectivity, but rather about the existence of **evil branch points**, that is: m-periodic branch points so that f^m does fix one of its arms, and permutes the others.

FIGURE 3. The Hubbard tree for $1 \rightarrow 2 \rightarrow 4 \rightarrow 5 \rightarrow 6$ contains an evil orbit of period 3.

The Admissibility Condition

A kneading sequence $\nu \in \{0, 1\}^{\mathbb{N}_0}$ fails the admissibility condition (for period m) if the following three conditions hold:

- (1) the internal address of ν does not contain m;
- (2) if k < m divides m, then $\rho(k) \leq m$;
- (3) $\rho(m) < \infty$ and if $r \in \{1, \ldots, m\}$ is congruent to $\rho(m)$ modulo m, then $\operatorname{orb}_{\rho}(r)$ contains m.

Theorem 2. The non-admissible kneading sequences are dense. The admissible kneading sequences have positive $(\frac{1}{2}, \frac{1}{2})$ -Bernoulli measure.

Corollary 1. Restricting to admissible kneading sequences has no "real effect" on Hausdorff dimension of biaccessible parameter angles.

8

Hausdorff estimate "near the antenna of \mathcal{M} "

Let

$$N := 1 + \min\{i > 1 : \nu_i = 1\}$$

$$L_1(N) := \begin{cases} \frac{\log(2^{\lfloor N/2 \rfloor - 1} - 1)}{\log 2^{\lfloor N/2 \rfloor - 1}} & \text{if } N \in \{6, 7, 8, \dots\} \\ 1/2 & \text{if } N = 5, \\ 0 & \text{if } N \in \{3, 4\} \end{cases}$$

$$U_1(N) := \frac{\log(2^N - 1)}{\log 2^N},$$

and $L_1(N) = U_1(N) = 1$ if $N = \infty$.

Theorem 3. (Julia set)

For every external parameter angle $\vartheta \in \mathbb{S}^1$, the set of biaccessible external dynamic angles $\varphi \in \mathbb{S}^1$ has Hausdorff dimension between $L_1(N)$ and $U_1(N)$ for $N = N(\vartheta)$.

In particular, the set of biaccessible external dynamic angles has Hausdorff dimension less than 1 unless $\vartheta = 1/2$.

Theorem 4. (Mandelbrot set)

The set of external parameter angles ϑ for with $N(\vartheta) = N$ has Hausdorff dimension in between $L_1(N)$ and $U_1(N)$.

In particular, the measure of biaccessible parameter angles (and this includes the real spine of \mathcal{M}) is zero.

Hausdorff estimate "near the main cardioid of \mathcal{M} "

Define

 $\kappa := \sup\{k \ge 1 : S_j \text{ is a multiple of } S_{j-1} \text{ for all } 1 \le j \le k\},\$

$$L_2(\kappa) := \frac{1}{S_{\kappa+1}}$$

$$U_2(\kappa) := \min\left\{1, \sqrt{\frac{7}{2(S_{\kappa}+1)}}\right\} ,$$

and if $\kappa = \infty$, then $L_2(\kappa) = U_2(\kappa) = 0$; if $S_{\kappa} < S_{\kappa+1} = \infty$, then $0 = L_2(\kappa) < U_2(\kappa)$.

Theorem 5. (Julia set)

For every external parameter angle $\vartheta \in \mathbb{S}^1$, the set of biaccessible external dynamic angles $\varphi \in \mathbb{S}^1$ has Hausdorff dimension between $L_2(\kappa)$ and $U_2(\kappa)$ for $\kappa = \kappa(\vartheta)$.

In particular, the set of biaccessible external dynamic angles of the Feigenbaum map has Hausdorff dimension zero.

Theorem 6. (Mandelbrot set)

The set of external parameter angles ϑ for with $\kappa(\vartheta) = \kappa$ has Hausdorff dimension in between $L_2(\kappa)$ and $U_2(\kappa)$.

In particular, the Hausdorff dimension of angles of infinitely renormalizable maps is zero.

10

Theorem 7. Let B_{ϑ} be the set of combinatorially biaccessible dynamic external angles for parameter angle ϑ , and (T_{ϑ}, f) is the corresponding (abstract) Hubbard tree. Then

$$\dim_H(B_\vartheta) = \frac{h_{top}(f|_{T_\vartheta})}{\log 2}.$$
(1)

Furthermore, these numbers depend Hölder continuously on $\vartheta \in \mathbb{S}^1$, with Hölder exponent equal to $\dim_H(B_\vartheta)$.

Remarks: Monotonicity was proven in the Ph.D-theses of Chris Penrose (1994) and Tao Li (2007). (Monotonicity of $\vartheta \mapsto h_{top}(f|_{T_{\vartheta}})$ is in the sense that if ϑ and ϕ are biaccessible parameter angles such that $\phi \in (\vartheta, \vartheta')$, *i.e.*, ϕ belongs to the wake, or shorter arc, of ϑ and its companion angle ϑ' with the same kneading sequence, then $h_{top}(f|_{T_{\vartheta}}) \geq h_{top}(f|_{T_{\vartheta}})$.)

With Hölder exponent $\dim_H(B_{\vartheta}) = \frac{h_{top}(f|_{T_{\vartheta}})}{\log 2}$, Hölder continuity fails at the zero-entropy locus.

For estimates of $\vartheta \mapsto h_{top}(f_{c(\vartheta)}|_{T_{\vartheta}})$ along the real antenna (and especially the Feigenbaum parameter), see also work by Carminati and Tiozzo.

A similar question which we don't solve here is the modulus of continuity of $c \mapsto h_{top}(f_c|_{T_{\vartheta}})$ along the the real antenna.

Steps in the proof:

I: $\dim_H(B_{\vartheta}) = h_{top}(f|_{T_{\vartheta}}) / \log 2$ for finite trees: By Variational Principle.

II. Argument is inconclusive for infinite trees:

The problem is potential non-compactness of infinite Hubbard trees. taking the closure can increase entropy.

III. Continuity of $\vartheta \mapsto \dim_H(B_\vartheta)$:

Exploit that for large N, up to a set of tiny Hausdorff dimension, biaccessibility of itineraries can be determined by the first N entries of ν .

IV. Monotonicity of $\vartheta \mapsto h_{top}(f|_{T_{\vartheta}})$:

Itineraries of Hubbard tree of the smaller parameter angle are represented as Cantor set within the Hubbard tree of the parameter larger.

V. The biaccessible Mandelbrot set:

Monotonicity + Continuity of Hausdorff dimension implies Continuity of Entropy as long as we have majorizing parameter angles. No majorized angles at "tips" of the Mandelbrot set.

VI. Zero entropy tips:

No possibility of jumps here.

VII. Continuity of $\vartheta \mapsto h_{top}(f|_{T_{\vartheta}})$ at tips:

Compare non-zero entropy tips with nearby Thurston-Misiurewicz tips.

12

References

- [B] Arne Beurling, Ensembles exceptionnels, Acta Math. 72 (1940) 1–13.
- [BS1] Henk Bruin, Dierk Schleicher, Admissibility of kneading sequences and structure of Hubbard trees for quadratic polynomials, J. London. Math. Soc. 8 (2009), 502–522.
- [BS2] Henk Bruin, Dierk Schleicher, Combinatorial and topological biaccessibility of quadratic polynomials, in preparation.
- [BKS] Henk Bruin, Alexandra Kaffl, Dierk Schleicher, Existence of quadratic Hubbard trees, Fund. Math. 202 (2009), 251-279.
- [Ch] Kai Lai Chung, A course in probability theory, Harcourt, Brace & World, Inc., New York (1968).
- [CT] C. Carminati, G. Tiozzo, The bifurcation locus of numbers of bo9unded type, Preprint 2012.
- [DH1] Adrien Douady, John Hubbard, Études dynamique des polynômes complexes I & II, Publ. Math. Orsay. (1984-85) (The Orsay notes).
- [LS] Eike Lau, Dierk Schleicher, Internal addresses in the Mandelbrot set and irreducibility of polynomials, Stony Brook Preprint #19 (1994).
- [Mat] Pertti Mattila, Geometry of sets and measures in Euclidean spaces, Cambridge University Press, (1995).
- [Man] Anthony Manning, Logarithmic capacity and renormalizability for landing on the Mandelbrot set, Bull. London Math. Soc. 28 (1996), 521–526.
- [Mi1] John Milnor, *Dynamics in one complex variable. Introductory lectures*, Friedr. Vieweg & Sohn, Braunschweig (1999).
- [MS] Philipp Meerkamp, Dierk Schleicher Hausdorff dimension and biaccessibility for polynomial Julia sets, to appear in Proc. Amer. Math. Soc. arXiv:1101.4702v2 [math.DS]
- [Pen] Chris Penrose, On quotients of shifts associated with dendrite Julia sets of quadratic polynomials, Ph.D. Thesis, University of Coventry, (1994).
- [Re] Mary Rees, A partial description of the parameter space of rational maps of degree two: Part 1, Acta. Math. 168 (1992), 11-87 (See also: Realization of matings of polynomials as rational maps of degree two, preprint 1986).
- [Sch1] Dierk Schleicher, Internal Addresses in the Mandelbrot Set and Galois Groups of Polynomials. Preprint.
- [Sch2] Dierk Schleicher, On fibers and local connectivity of Mandelbrot and Multibrot sets. In: M. Lapidus, M. van Frankenhuysen (eds): Fractal Geometry and Applications: A Jubilee of Benoit Mandelbrot. Proceedings of Symposia in Pure Mathematics 72, American Mathematical Society (2004), 477–507.
- [SZ] Dierk Schleicher, Saeed Zakeri: On biaccessible points in the Julia set of a Cremer quadratic polynomial. Proc. Amer. Math. Soc 128 3 (1999), 933–937.
- [Shi] Mitsuhiro Shishikura, On a theorem of M. Rees for matings of polynomials, in: Tan Lei (ed.), The Mandelbrot set, theme and variations, Cambridge University Press **274** (2000), 289–305.
- [Sm] Stas Smirnov, On support of dynamical laminations and biaccessible points in Julia set, Colloq. Math. 87 (2001), 287–295
- [Ta1] Tan Lei, Similarity between the Mandelbrot set and Julia sets, Commun. Math. Phys. 134 (1990), 587–617.
- [Ta2] Tan Lei, Matings of quadratic polynomials, Ergod. Th. & Dynam. Sys. 12 (1992), 589-620
- [TL] Tao Li, A monotonicity conjecture for the entropy of Hubbard trees, PhD thesis, Stony Brook (2007).
- [Za] Saeed Zakeri, Biaccessibility in quadratic Julia sets, Ergod. Th. & Dynam. Sys. 20 (2000), 1859–1883.
- [Zd] Anna Zdunik, On biaccessible points in Julia sets of polynomials, Fund. Math. 163 (2000), 277–286.