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Times series

Measurement at a unknown/partially known system in form of a
times series:

X1,X2,X3,X4, . . .

Figure: Some times series.

For simplicity we take Xi ∈ R (i.e., real numbers).



Random variables

Treating (Xi )i≥1 as stochastic process: the Xi are i.i.d. random
variables.

I independent:

P(Xi ∈ A and Xj ∈ B) = P(Xi ∈ A) · P(Xj ∈ B) i 6= j .

I identically distributed: for each A ⊂ R

P(Xi ∈ A) is the same for all i ≥ 1.

We will assume that the first two moments exist, and then also the
mean µ =

∫
XidP and variance σ2 =

∫
(Xi − µ)2dP.

(By independence, µ and σ2 don’t depend on i .)



Stochastic Laws
Under these condition we have for Sn = X1 + · · ·+ Xn:

I Weak Law of Large Numbers

lim
n→∞

P(|1
n

Sn − µ| > ε) = 0 for every ε > 0.

I Strong Law of Large Numbers

P( lim
n→∞

1

n
Sn = µ) = 0.

I The Central Limit Theorem:

lim
n→∞

Sn − nµ

σ
√

n
= N (0, 1) in distribution.



Stochastic Laws

Further laws exist for Mn = max{X1, . . . ,Xn}:
I Extremal Value Laws:

lim
n→∞

P((Mn − an)/bn ≤ t) = G (t) ∼ e−αt
−1/α

as t →∞.

Depending on the tail of Mn, the parameter α varies. We have

G (t) =


Weibull’s Law light tail - Mn bounded

Gumbel’s Law exponential tail

Fréchet’s Law heavy tail



Dynamical systems

Let (Rd , f ) be a deterministic but chaotic dynamical system, given
by iteration: zn+1 = f (zn) discrete time

a flow: zt = f t(z0) continuous time

Chaos means here: sensitive dependence on initial conditions or
(stronger) existence of positive Lyapunov exponents.

Let v : Rd → R be an observable.

Due to the chaos, precise predictions of Xn := v ◦ f n are impossible.

If there is a “good” f -invariant measure µ, one can hope to prove
stochastic laws.
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Dynamical systems

The more expansion (hyperbolicity) in the system, the more chaos
(more sensitivity), but also the better stochastic laws tend to work.

The doubling map f (z) = 2z mod 1 is uniformly expanding.

The intermittent map

f (z) =

{
z(1 + (2z)α) z ∈ [0, 12 ];

2z − 1 z ∈ (12 , 1].
α > 0.

has a neutral fixed point, where orbits linger.
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Stochastic Laws

I Independence is replaced by asymptotic independence.
This is called mixing, i.e., the correlation coefficients

ρn(v ,w) =

∫
v · w ◦ f n dµ−

∫
v dµ

∫
w dµ

converge to zero. The speed of this convergence is called the
rate of mixing.

I The Birkhoff Ergodic Theorem replaces the Law of Large
Numbers

I Central Limit Theorem (CLT):∑n−1
j=0 (Xj − µ)

σ
√

n
⇒d N (0, 1)

provided E(|v |2) <∞ and E(|v |) <∞.

I Extremal Value Laws, many more....
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Stochastic Laws

Mixing with sufficiently good rate tends to imply other stochastic
laws.

Theorem
The doubling map preserves Lebesgue measure. We have
exponential mixing rates, and the Central Limit Theorem holds.

In fact, this applies to virtually every uniformly expanding
sufficiently smooth interval map.

Theorem
The intermittent map preserves a probability measure µ ∼
Lebesgue measure provided α < 1. In this case,

ρn(v ,w) ∼ 1

τ̄
n−1/α

∫
v dµ

∫
w dµ+ O(dn)

for some τ̄ and with known error terms O(dn).
If α < 1/2, then the Central Limit Theorem holds.
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Dynamical systems

The doubling map and intermittent map are toy models. The
results hold in greater generality.

I There are a lot of system between uniformly hyperbolic and
intermittent that are studied, frequently with success.

I Dimension higher than one is (when expanding) not an
intrinsic problem, but definitely more technical.

I Contracting directions pose a serious problem. Results in this
direction only from the last decade (or two decades in
idealised settings).

I Continuous time systems (flows) are much harder to deal
with. They have a neutral direction, which makes mixing rates
and even mixing itself hard to prove. Results only from last
half-decade.
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Dynamical systems

Note that, even if the dynamical system is defined on a
high-dimensional space, the important dynamics may take place
on an attractor of lower dimension.

Hénon attractor Lorenz attractor

H(x , y) = (1− ax2 + y , x)
ẋ = σ(x − y)
ẏ = rx − y − xz
ż = xy − bz
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Takens’ Reconstruction Theorem

Main question:

How to determine from a time series (Xn)n≥1 if it comes
from a stochastic process or a dynamical system?

Or
from a mixture?

One way (exploited by Takens’ Reconstruction Theorem) is by
plotting (Xn,Xn+1, . . . ,Xn+k−1) in Rk and see if a pattern
emerges.
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Takens’ Embedding Theorem



Takens’ Reconstruction Theorem

Theorem (Takens’ Reconstruction Theorem)

Let M be an m-dimensional manifold and k > 2m. Then for a
generic dynamical system f : M → M and observable v : M → R,
the map Rk : M → Rk defined by

x 7→ (v(x), v ◦ f (x), . . . , v ◦ f k−1(x))

is an embedding of M into Rk .

Generic means here that f and v can be taken out of an open and
dense settings in the space of all dynamical systems and read-off
fiction’s.

We omitted some conditions on the smoothness (and invertibility)
of the dynamical systems and observables.
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