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Topological Entropy

Let f be a continuous map on a compact metric space (X , d).

The topological entropy htop(f ) was introduced by Adler,
Konheim & McAndrew (1965).

A more tractable definition is due to Bowen (1971) and Dinaburg
(1971), and is based on n-ε-separated sets.

A yet more tractable definition for interval maps

X = [0, 1], f : [0, 1]→ [0, 1] continuous with finitely many laps

is due to Misiurewicz & Szlenk (1980)

htop(f ) = max{0, lim
n→∞

1

n
log #{x = f n(x)}} (1)

= lim
n→∞

1

n
log #{ laps of f n } (2)

= max{0, lim
n→∞

1

n
log(Var(f n))}. (3)
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Remarks on the Misiurewicz-Szlenk results

(1) Instead of x = f n(x) read: maximal intervals such that
f n : J

monotone−→ f n(J).

Period n or prime period n makes no difference.

(2) The lapnumber

`(f n) = #{ laps of f n}.

is submultiplicative: `(f m+n) ≤ `(f m) · `(f m). Therefore

lim
n→∞

1

n
log `(f n) = inf

n

1

n
log `(f n) exists.

(3) For maps Ts with constant slope ±s,

htop(Ts) = max{0, log s}.

(4) Analogous results hold for maps on finite trees.
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Computing topological entropy

There is a long list of papers on algorithms computing htop(f ) for
interval maps. Please, no need for any further algorithms. Try your
hand at higher dimensional maps.

If the orbits of all turning points are finite, then they determine an
invariant (Markov) partition for ([0, 1], f ).

Entropy can be computed as the the logarithm of the largest
(Perron-Frobenius) eigenvalue σ(A) of the corresponding transition
matrix A. Matrix A could be infinite.
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htop(fa) for quadratic family fa(x) = ax(1− x)
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a

exp(htop(fa))

For fa(x) = ax(1− x), the entropy map a 7→ htop(fa) is
• Continuous

- but what is the modulus of continuity?

• Monotone - but not strictly.
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htop(fa) for quadratic family fa(x) = ax(1− x) continued

• Entropy is constant on every interval of hyperbolicity (where
fa has a stable periodic orbit) and every successive interval of
period doubling cascade.

a

Figure: Bifurcation diagram for fa(x) = ax(1− x)

• Stronger than monotonicity: there are only period doublings,
no period halfings.
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• Proved by Douady, Hubbard & Sullivan (1984), Milnor &
Thurston (1988) and Tsujii (2000).

• Every known proof uses complex analysis is some way.

Question: Is there a real proof?

• Denseness of hyperbolicity is important ingredient Graczyk &
Świa̧tek (1996), Lyubich (1997) and in multimodal case
Kozlovski, Shen & van Strien (2007).

• However, the measure of non-hyperbolic parameters is
positive, see Jakobson (1981), Benedicks & Carleson (1984).
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Proof of monotonicity - Douady & Hubbard

Step 1: For polynomials fc(z) = z2 + c , the filled-in Julia set is

Kc = {z ∈ C : f nc (z) 6→ ∞} ⊂ dynamical space

The Mandelbrot set is

Mc = {c ∈ C̄ : Kc is connected} ⊂ parameter space

Let D be closed unit disk and consider the Riemann maps:

φ : C̄ \M → C̄ \ D, φ′(∞) = 1,

and for c ∈ ∂M:

φc : C̄ \ Kc → C̄ \ D, φ′c(∞) = 1,

The map φc conjugates fc on C̄ \ Kc to z 7→ z2 on C̄ \ D.
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Proof of monotonicity - continued

Figure: Riemann map φ and φc and external rays for angle 1
6 for the

filled-in Julia set and the Mandelbrot set.



Proof of monotonicity - continued

Step 2: For each θ ∈ S1 = R/Z, define parameter rays:

R(θ) = φ−1({re2πiθ : r > 1})

and provided R(θ) lands at c ∈ ∂M, define dynamic rays:

Rθ(γ) = φ−1
c ({re2πiγ : r > 1})

Key to Similarity Julia/Mandelbrot Set:

If c ∈ ∂M is preperiodic (Misiurewicz-Thurston parameter), then

• There is θ ∈ Q such that R(θ) lands at parameter c ;

• Rc(θ) lands at c as well, but here c = fc(0) is the critical
value!
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Proof of monotonicity - continued

Figure: External rays θ0 and θ1 and corresponding rays for the
Mandelbrot set and filled-in Julia sets.



Proof of monotonicity - continued

Step 3: Take 0 < θ0 < θ1 <
1
2 such that R(θ0) and R(θ1) land at

real Misiurewicz-Thurston parameters c0 and c1.

External rays cannot cross, so −2 < c1 < c0 < 0.

Let g : S1 → S1, γ 7→ 2γ (mod 1) be the angle doubling map.
For corresponding filled-in Julia sets Kci , i = 0, 1, the set Γi of
dynamical angles γ landing on the real core is

Γi = {γ 6= 0 : gn(γ) ∈ (−θi , θi ) for all n ≥ 0}

This is because fci on the real core is a 2-to-1 factor of g on Γi .
But θ0 < θ1, so Γ0 ⊂ Γ1 and

htop(g |Γ0) ≤ htop(g |Γ1)

Finite-to-one factor maps preserve entropy, so

htop(fc0 |real core) ≤ htop(fc1 |real core) 2
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Hubbard Trees

The Hubbard tree T of the filled-in Julia set is the equivalent of
the core interval [c, c2 + c] of a real unimodal map fc . It is (a
schematic version of) the connected hull of orbf (0) within the
filled-in Julia set Kc

It is a (sometimes infinite) tree, and forward invariant under fc .
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Whereas htop(fc |Kc) = log 2 for every c ∈ C, the core entropy
htop(fc |T ) can be strictly smaller than log 2. In fact,

htop(fc |T ) < log 2 unless c = −2.
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Monotonicity along antennae

Having the notion of Hubbard trees and core entropy, we can
extend the Douady-Hubbard proof to other parts of M:

Theorem

Core entropy is monotone along antennae ofM.

That is, let {θ, θ′} and {φ, φ′} be parameter ray-pairs with landing
points c and c ′ respectively. If (φ, φ′) ⊂ (θ, θ′), then

htop(f |Tφ) ≥ htop(f |Tθ).

Remarks: The Douady-Hubbard proof basically goes through.
Problem is: What is core entropy for infinite Hubbard trees?

Full proof given in the PhD thesis of Tao Li (2007).

Largely unnoticed, fully symbolic, proof in the PhD thesis of Chris
Penrose (1994).



Monotonicity along antennae

Having the notion of Hubbard trees and core entropy, we can
extend the Douady-Hubbard proof to other parts of M:

Theorem

Core entropy is monotone along antennae ofM.
That is, let {θ, θ′} and {φ, φ′} be parameter ray-pairs with landing
points c and c ′ respectively. If (φ, φ′) ⊂ (θ, θ′), then

htop(f |Tφ) ≥ htop(f |Tθ).

Remarks: The Douady-Hubbard proof basically goes through.
Problem is: What is core entropy for infinite Hubbard trees?

Full proof given in the PhD thesis of Tao Li (2007).

Largely unnoticed, fully symbolic, proof in the PhD thesis of Chris
Penrose (1994).



Monotonicity along antennae

Having the notion of Hubbard trees and core entropy, we can
extend the Douady-Hubbard proof to other parts of M:

Theorem

Core entropy is monotone along antennae ofM.
That is, let {θ, θ′} and {φ, φ′} be parameter ray-pairs with landing
points c and c ′ respectively. If (φ, φ′) ⊂ (θ, θ′), then

htop(f |Tφ) ≥ htop(f |Tθ).

Remarks: The Douady-Hubbard proof basically goes through.
Problem is: What is core entropy for infinite Hubbard trees?

Full proof given in the PhD thesis of Tao Li (2007).

Largely unnoticed, fully symbolic, proof in the PhD thesis of Chris
Penrose (1994).



Monotonicity along antennae

Having the notion of Hubbard trees and core entropy, we can
extend the Douady-Hubbard proof to other parts of M:

Theorem

Core entropy is monotone along antennae ofM.
That is, let {θ, θ′} and {φ, φ′} be parameter ray-pairs with landing
points c and c ′ respectively. If (φ, φ′) ⊂ (θ, θ′), then

htop(f |Tφ) ≥ htop(f |Tθ).

Remarks: The Douady-Hubbard proof basically goes through.
Problem is: What is core entropy for infinite Hubbard trees?

Full proof given in the PhD thesis of Tao Li (2007).

Largely unnoticed, fully symbolic, proof in the PhD thesis of Chris
Penrose (1994).



Rules for Hubbard trees

1: f : T → T is continuous and surjective;

2: f is a local homeomorphism onto its image at every point
z ∈ T , except at a unique critical point 0, where it is 2-to-1.

3: The set of marked points is

V = {endpoints} ∪ {branchpoints} ∪ {ck = f k(0) : k ≥ 0}
For each v 6= w ∈ V there is n such that 0 ∈ f n(arc[v ,w ]).

From this we can derive:

A
A
A
A
A
A
A
rc2 = c4

�
��
rc1

�
��rc3

r0
• The critical value c1 is always an

endpoint of T . So, 0 has at most
two arms in T , and we can construct
symbolic dynamics on two symbols.

• The symbolic itinerary ν of c1 is called
the kneading invariant.
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Symbolic Dynamics for the Angle Doubling and Julia Sets

1

0

1

0

Figure: Left: the kneading sequence of an external angle θ (here
θ = 1/6) is defined as the itinerary of the orbit of θ under angle doubling,
where the itinerary is taken with respect to the partition formed by the
angles θ/2, and (θ + 1)/2. Right: in the dynamics of a polynomial for
which the θ-ray lands at the critical value, an analogous partition is
formed by the dynamic rays at angles θ/2 and (θ + 1)/2, which land
together at the critical point.



Biaccessible points

• For z ∈ Kc ,

valency = #{ arms of z in Kc} = #{ rays landing at z}

Points of valency ≥ 2 are called biaccessible.

If z ∈ Kc is biaccessible, then there is n ≥ 0 such that f n(z) ∈ T .

Hence, if

A = {biacc. points in T} B = {biacc. points in Kc}

then
B = ∪nf −n(A) and dimH(A) = dimH(B).

Here dimH stands for Hausdorff dimension.
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The ρ-function

There is an algorithm, based on itineraries only, to compute the
valency of z . It depends on the ρe-function.

For the itinerary
e(z) = e1e2e3 · · · ∈ {0, 1}N of z , define ρe : N→ N as

ρe(k) = min{j > k : ej(x) 6= νj−k}.

Proposition: Let ν be the kneading sequence of c ∈M.

Dynamical space:: The valency of z ∈ Kc equals the number of
disjoint ρe-orbits in N.

Parameter space: The valency of c ∈M equals the number of
disjoint ρν-orbits in N.



The ρ-function

There is an algorithm, based on itineraries only, to compute the
valency of z . It depends on the ρe-function. For the itinerary
e(z) = e1e2e3 · · · ∈ {0, 1}N of z , define ρe : N→ N as

ρe(k) = min{j > k : ej(x) 6= νj−k}.

Proposition: Let ν be the kneading sequence of c ∈M.

Dynamical space:: The valency of z ∈ Kc equals the number of
disjoint ρe-orbits in N.

Parameter space: The valency of c ∈M equals the number of
disjoint ρν-orbits in N.



The ρ-function

There is an algorithm, based on itineraries only, to compute the
valency of z . It depends on the ρe-function. For the itinerary
e(z) = e1e2e3 · · · ∈ {0, 1}N of z , define ρe : N→ N as

ρe(k) = min{j > k : ej(x) 6= νj−k}.

Proposition: Let ν be the kneading sequence of c ∈M.

Dynamical space:: The valency of z ∈ Kc equals the number of
disjoint ρe-orbits in N.

Parameter space: The valency of c ∈M equals the number of
disjoint ρν-orbits in N.



The ρ-function

There is an algorithm, based on itineraries only, to compute the
valency of z . It depends on the ρe-function. For the itinerary
e(z) = e1e2e3 · · · ∈ {0, 1}N of z , define ρe : N→ N as

ρe(k) = min{j > k : ej(x) 6= νj−k}.

Proposition: Let ν be the kneading sequence of c ∈M.

Dynamical space:: The valency of z ∈ Kc equals the number of
disjoint ρe-orbits in N.

Parameter space: The valency of c ∈M equals the number of
disjoint ρν-orbits in N.



The ρ-function

There is an algorithm, based on itineraries only, to compute the
valency of z . It depends on the ρe-function. For the itinerary
e(z) = e1e2e3 · · · ∈ {0, 1}N of z , define ρe : N→ N as

ρe(k) = min{j > k : ej(x) 6= νj−k}.

Proposition: Let ν be the kneading sequence of c ∈M.

Dynamical space:: The valency of z ∈ Kc equals the number of
disjoint ρe-orbits in N.

Parameter space: The valency of c ∈M equals the number of
disjoint ρν-orbits in N.



Dimension Estimates

Using this characterization, one can estimate the Hausdorff
dimension of biaccessible itineraries (dynamical space) or kneading
sequences (parameter space) in {0, 1}N.

Technical Lemma: (From symbolics to external angles)

Dynamical space: The map γ 7→ e(γ) preserves Hausdorff
dimension (fairly easy).

Parameter space: The map θ 7→ ν(θ) preserves Hausdorff
dimension (trickier to prove).
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Dimension Estimates continued

Estimates (abridged):

Dynamical space: The biaccessible angles of Kc for c ∈ ∂M has
Hausdorff dimension

< 1 iff c 6= −2;

= 0 iff c is (infinitely) renormalizable via
direct bifurcations from the Mandelbrot set.

Parameter space: Except near c = −2, t The biaccessible angles
of M have Hausdorff dimension

< 1 iff not in a neighborhood of θ = 1
2 ;

= 0 iff c is (infinitely) renormalizable via direct bifurcations
from the Mandelbrot set.
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Biaccessible Dimension and Core Entropy

Recall htop(fc |Jc) = log 2 ≥ htop(fc |Tc) = core entropy

Theorem

Let Aθ = {biacc. dynamical angles landing on Tθ} ⊂ S1.
Then the core entropy is

htop(f |Tθ) = (log 2) · dimH(Aθ).

Proof: If Tθ is compact, use the Variational Principle which leads
to the dimension formula for the angle doubling map g :

dimH(Aθ) =
entropy

Lyapunov exponent
=

htop(g |Aθ)

g ′

It is trickier if Tθ is non-compact, as you need to estimate σ(A)
for infinite transition matrices. 2
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Hölder Monotonicity of Core Entropy

Theorem

The map
θ 7→ htop(f |Tθ)

is Hölder continuous with exponent α(θ) = dimH(Aθ).

Remark: Hence, this is no longer Hölder at the boundary of the
zero-entropy locus in the Mandelbrot set. For those parameters,
the modulus of continuity seems to be

|htop(f |Tθ)− htop(f |Tθ′)| ≤
C

− log max{α(θ), α(θ′)}

Question: What is the modulus of continuity of

∂M3 c 7→ htop(fc |Tc)?
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htop(fa) for quadratic family fa(x) = ax(1− x)

This brings us back to an earlier picture. How smooth is this curve?
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a

exp(htop(fa))

Known: Not absolutely continuous, and not Hölder at the
Feigenbaum parameter (the last zero of the graph).
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Multimodal Maps

What about entropy for multimodal maps,
i.e., maps with several critical points?
Especially for the families of cubic, quartic,
quintic, ... polynomials.

In their seminal paper 1977 preprint

On iterated maps of the interval: I,II.

Milnor and Thurston proved for C 2 families with a constant
number of critical points, that

f 7→ htop(f ) is continuous

What about monotonicity?

Note that for families of degree d + 1 polynomials, parameter
space is d-dimensional, and monotonicity means:

Isentropes, i.e., level sets of entropy, are connected.
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Entropy in the cubic family
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The cubic family
x 7→ x3 − ax + b.

Isentropes in blue colour:

The general cubic family

x 7→ x3 − ax + b.

One can also parametrize the family by the
height of the two critical values, see top right.

Level sets of the entropy (isentropes) are complicated.
Entropy is not monotone as function of single critical values.



Non-monotonicity of entropy in single critical value for cubics.

We can prove in the case d ≥ 3 that the entropy is not monotone
on slices in parameter space. Below, the second critical value in
the cubic map x 7→ x3 − ax + b is fixed, the first, i.e., b, varies.
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The break-through for the cubic case is the result:

Theorem (Milnor & Tresser (2000))

Isentropes are connected in the cubic family.

Ingredients in the proof are:

• Denseness of hyperbolicity.

• Bones, i.e., set in parameter space where one critical point is
periodic.

• Planar geometry (so fails for degree ≥ 4).

• The space of stunted saw-tooth maps as parameter space.
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Denseness of Hyperbolicity

• Denseness of hyperbolicity means that an arbitrary small
perturbation of the map can send all critical orbits to
attracting periodic orbits.

• Denseness of hyperbolicity was proven for quadratic maps by
Graczyk & Świa̧tek (1996), Lyubich (1997),

• and for multimodal polynomials by Kozlovski, Shen & van
Strien (2007).

• An important by-product is that every hyperbolic cell
(= equivalence class of “partially hyperbolic” conjugacy) is a
connected set (and in fact topological ball).

All these proofs use complex analysis!
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Bones: Milnor & Tresser’s analysis of cubic parameter space

Milnor and Tresser
analyse bifurcation curves,
see figures on the right.
They use planar topology
to show ‘bones’ are connected.

164 J. Milnor, C. Tresser

Fig. 13. Bones of period 3 and 4 for the stunted sawtooth family of shape (− + −) above and for the cubic
family of shape (− + −) below. Periods are indicated near the primary intersection points

a
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Stunted Saw-Tooth Maps

Start with a piecewise linear saw-tooth map S : [0, 1]→ R of
d + 1 laps. The critical values lie outside the interval!

S
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Two stunted sawtooth maps,
with different third plateaus.

“Stunt” them at the preferred heights within [0, 1].

The result is a stunted saw-tooth map, with plateaus instead
of critical points.

Let Sd be this space of stunted sawtooth maps. It will be used as
parameter space.



Stunted Saw-Tooth Maps

Start with a piecewise linear saw-tooth map S : [0, 1]→ R of
d + 1 laps. The critical values lie outside the interval!

S

�
�
�
�
�
�
�
�
��D
D
D
D
D
D
D
D
D
D
D�
�
�
�
�
�
�
�
�
�
�

D
D
D
D
D
D
D
D
DD

�
�
�
�
�
�
�
��

The saw-tooth map S

�
�
�
�
�
�
�� D
D
D
D
D
DD �
�
�
�� D

D
D
D
DD

Two stunted sawtooth maps,
with different third plateaus.

“Stunt” them at the preferred heights within [0, 1].

The result is a stunted saw-tooth map, with plateaus instead
of critical points.

Let Sd be this space of stunted sawtooth maps. It will be used as
parameter space.



Stunted Saw-Tooth Maps

Start with a piecewise linear saw-tooth map S : [0, 1]→ R of
d + 1 laps. The critical values lie outside the interval!

S

�
�
�
�
�
�
�
�
��D
D
D
D
D
D
D
D
D
D
D�
�
�
�
�
�
�
�
�
�
�

D
D
D
D
D
D
D
D
DD

�
�
�
�
�
�
�
��

The saw-tooth map S

�
�
�
�
�
�
�� D
D
D
D
D
DD �
�
�
�� D

D
D
D
DD

Two stunted sawtooth maps,
with different third plateaus.

“Stunt” them at the preferred heights within [0, 1].

The result is a stunted saw-tooth map, with plateaus instead
of critical points.

Let Sd be this space of stunted sawtooth maps. It will be used as
parameter space.



What is good about the space Sd?

The saw-tooth map contains all itineraries in {0, . . . , d}N,
hence Sd contains a map for every d-tuple of kneading
sequences.
(Kneading sequence νi is the itinerary of i-th critical value.)

Let ζi describing the height of the i-th plateau of T as in the
figure.

�
�
�
�
�
�
�D
D
D
D
D
D
D
D�
�
�
�
�
�
�
�

D
D
D
D
D
D
D

ζ2
ζ1

ζ3

�
�
�
�
�� D
D
D
DD �
�
� D
D
D
D�

�
�
�
�
�

T 7→ htop(T ) is monotone increasing in each parameter ζi .

Using this, it is easy to show that isentropes are connected
(and even contractible) for Sd .
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The Main Theorem for Multimodal Polynomials

Let Pd be the space of degree d + 1 polynomials f : [0, 1]→ [0, 1]
such that

f has d distinct critical points, all lying in [0, 1].

f (0) = 0 and f (1) ∈ {0, 1}.

Theorem

All isentropes Ls of Pd are connected.

This doesn’t mean that isentropes are simple sets. We know that:

For many value of entropy s, Ls is not locally connected.

Contrary to stunted sawtooths, entropy is not a monotone
function of each single critical values.

Question (Milnor): Are the isentropes contractible?

Question (Thurston): Is there a dense set of s ∈ [0, log d ] such
that hyperbolic maps are dense in Ls?
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What is bad about the space Sd?

To every f ∈ Pd , assign a stunted sawtooth map Ψ(f ) ∈ S,
by taking the one with the same kneading invariants as f .

Ψ : Pd → S is well-defined and preserves entropy

Pd
-Ψ Sd

If Ψ were homeo, then
connected sets K ⊂ Sd
pull back to connected
sets Ψ−1(K ) ⊂ Pd

h dHHΨ
−1(K)

h dHHK

However,

Ψ is not continuous.

Ψ is not injective.

Ψ is not surjective.

Ψ is really not surjective!
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“Cells” in higher dimensional parameter space.

Part of the lack of continuity/injectivity/surjectivity is caused
by “cells” in parameter space where f has a periodic
attractor. These work different in Pd and Sd .

We say that f , g ∈ Pd are partially conjugate if (roughly)
1 they are conjugate away from the basins of periodic attractors;
2 have the same number of critical points in same components

of the basins.

The cell (partial hyperbolic deformation space) of f ∈ Pd

are all maps partially conjugate to it.

These cells are indeed topological cells of the
same dimension as number of critical points
attracted to periodic attractors.

When complexified, they are the higher-
dimensional analog of hyperbolic compo-
nents in the Mandelbrot set.
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Cells in Pd are glued together via the following generic bifurcations

sn saddle-node (creation of one-sided attractor, which then
becomes becomes an attracting + repelling pair)

pf pitchfork or reverse pitchfork (a two-sided attractor, which
becomes repelling and spins off a pair of attracting orbits)

pd period-doubling or period halving (multiplier -1)
hc homoclinic bifurcation with critical value moving into the

basin of a periodic attractor)

In Sd , a cell is any set of T ∈ Sd for which

{x ∈ [0, 1] : ∃n ≥ 0, T n(x) ∈ (∪Zi )
◦}

remains unchanged.

Their bifurcations follow the same pattern. q
1

q
2

q3q4

q5q6

-
ζ1

6ζ2

sn

sn

hc

hc

pd

pd

pd

pd

pd
pd

We overcome the continuity/injectivity/surjectivity problem by
(in a way) quotienting out over the cells.
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Serious non-surjectivity of Ψ due to wandering pairs

An interval J ⊂ [0, 1] is wandering if f n|J is monotone for all
n ≥ 0, but J is not attracted to a periodic orbit.

Polynomial maps have no wandering intervals.

But stunted
saw-tooth maps can have them!

�� @
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�
- never to hit a

periodic plateau

Z1 Z2

︷ ︸︸ ︷
T n

Z3

A pair of adjacent intervals Z1 and Z2 is wandering if the
above picture applies. The interval [Z1,Z2] is eventually
mapped to a point, but becomes never periodic. Hence, such
a pair takes the role of a wandering interval.

This is a serious obstacle for Ψ to be (even almost) surjective.

Note that wandering pairs require at least three plateaus:
d ≥ 3. Milnor & Tresser didn’t have to deal with this.
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The space Sd∗

As we cannot allow wandering intervals, let us define

Sd∗ = {T ∈ Sd :6 ∃ degenerate pair of plateaus}

The space Sd∗ is messier than Sd , but still has the (by now
very non-trivial property) property that:

Theorem

The isentropes in Sd∗ are connected and even contractible.
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Ψ is almost injective, almost surjective and almost continuous

Proposition (Surjectivity)

For each T ∈ Sd∗ there exists f ∈ Pd so that T ∈ cell(Ψ(f )).

Proposition (Injectivity)

If f1, f2 ∈ Pd and cell(Ψ(f1)) ∩ cell(Ψ(f2)) 6= ∅ then
cell(f1) ∩ cell(f2) 6= ∅.

Proposition (Continuity)

Suppose fn ∈ Pd converges to f ∈ Pd . Then any limit of Ψ(fn) is
contained in cell(Ψ(f )).
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The upshot

Theorem

If K is closed and connected then

Ψ−1(K ) = {f ; cell(Ψ(f )) ∩ K 6= ∅} is connected in Sd∗

Since f and any map in cell(Ψ(f )) have the same topological
entropy we get in particular:

Corollary

Isentropes in Pd are connected.

Question (Milnor): Are isentropes contractible?

Probably yes, but this is work in progress.
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