Henk Bruin (Surrey/Vienna)

That monotonous thing called entropy

Mankato, July 2012

The results on complex dynamics are joint with Dierk Schleicher (Jacobsuniversität, Bremen).

The results on multimodal maps are joint with Sebastian van Strien (Imperial College, London).

Topological Entropy

Let f be a continuous map on a compact metric space (X, d). The topological entropy $h_{\text {top }}(f)$ was introduced by Adler, Konheim \& McAndrew (1965).

Let f be a continuous map on a compact metric space (X, d). The topological entropy $h_{\text {top }}(f)$ was introduced by Adler, Konheim \& McAndrew (1965).
A more tractable definition is due to Bowen (1971) and Dinaburg (1971), and is based on n - ε-separated sets.

Let f be a continuous map on a compact metric space (X, d). The topological entropy $h_{\text {top }}(f)$ was introduced by Adler, Konheim \& McAndrew (1965).
A more tractable definition is due to Bowen (1971) and Dinaburg (1971), and is based on n - ε-separated sets.

A yet more tractable definition for interval maps
$X=[0,1], \quad f:[0,1] \rightarrow[0,1]$ continuous with finitely many laps is due to Misiurewicz \& Szlenk (1980)

$$
\begin{align*}
h_{\text {top }}(f) & =\max \left\{0, \lim _{n \rightarrow \infty} \frac{1}{n} \log \#\left\{x=f^{n}(x)\right\}\right\} \tag{1}\\
& =\lim _{n \rightarrow \infty} \frac{1}{n} \log \#\left\{\operatorname{laps} \text { of } f^{n}\right\} \tag{2}\\
& =\max \left\{0, \lim _{n \rightarrow \infty} \frac{1}{n} \log \left(\operatorname{Var}\left(f^{n}\right)\right)\right\} . \tag{3}
\end{align*}
$$

Remarks on the Misiurewicz-Szlenk results

(1) Instead of $x=f^{n}(x)$ read: maximal intervals such that $f^{n}: J \xrightarrow{\text { monotone }} f^{n}(J)$.

Remarks on the Misiurewicz-Szlenk results

(1) Instead of $x=f^{n}(x)$ read: maximal intervals such that $f^{n}: J \xrightarrow{\text { monotone }} f^{n}(J)$.
Period n or prime period n makes no difference.
(1) Instead of $x=f^{n}(x)$ read: maximal intervals such that $f^{n}: J \xrightarrow{\text { monotone }} f^{n}(J)$.
Period n or prime period n makes no difference.
(2) The lapnumber

$$
\ell\left(f^{n}\right)=\#\left\{\text { laps of } f^{n}\right\}
$$

is submultiplicative: $\ell\left(f^{m+n}\right) \leq \ell\left(f^{m}\right) \cdot \ell\left(f^{m}\right)$.
(1) Instead of $x=f^{n}(x)$ read: maximal intervals such that $f^{n}: J \xrightarrow{\text { monotone }} f^{n}(J)$.
Period n or prime period n makes no difference.
(2) The lapnumber

$$
\ell\left(f^{n}\right)=\#\left\{\text { laps of } f^{n}\right\}
$$

is submultiplicative: $\ell\left(f^{m+n}\right) \leq \ell\left(f^{m}\right) \cdot \ell\left(f^{m}\right)$. Therefore

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \log \ell\left(f^{n}\right)=\inf _{n} \frac{1}{n} \log \ell\left(f^{n}\right) \quad \text { exists. }
$$

(1) Instead of $x=f^{n}(x)$ read: maximal intervals such that $f^{n}: J \xrightarrow{\text { monotone }} f^{n}(J)$.
Period n or prime period n makes no difference.
(2) The lapnumber

$$
\ell\left(f^{n}\right)=\#\left\{\text { laps of } f^{n}\right\}
$$

is submultiplicative: $\ell\left(f^{m+n}\right) \leq \ell\left(f^{m}\right) \cdot \ell\left(f^{m}\right)$. Therefore

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \log \ell\left(f^{n}\right)=\inf _{n} \frac{1}{n} \log \ell\left(f^{n}\right) \quad \text { exists. }
$$

(3) For maps T_{s} with constant slope $\pm s$,

$$
h_{\text {top }}\left(T_{s}\right)=\max \{0, \log s\}
$$

(1) Instead of $x=f^{n}(x)$ read: maximal intervals such that $f^{n}: J \xrightarrow{\text { monotone }} f^{n}(J)$.
Period n or prime period n makes no difference.
(2) The lapnumber

$$
\ell\left(f^{n}\right)=\#\left\{\text { laps of } f^{n}\right\}
$$

is submultiplicative: $\ell\left(f^{m+n}\right) \leq \ell\left(f^{m}\right) \cdot \ell\left(f^{m}\right)$. Therefore

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \log \ell\left(f^{n}\right)=\inf _{n} \frac{1}{n} \log \ell\left(f^{n}\right) \quad \text { exists. }
$$

(3) For maps T_{s} with constant slope $\pm s$,

$$
h_{t o p}\left(T_{s}\right)=\max \{0, \log s\}
$$

(4) Analogous results hold for maps on finite trees.

Computing topological entropy

There is a long list of papers on algorithms computing $h_{\text {top }}(f)$ for interval maps. Please, no need for any further algorithms. Try your hand at higher dimensional maps.

There is a long list of papers on algorithms computing $h_{\text {top }}(f)$ for interval maps. Please, no need for any further algorithms. Try your hand at higher dimensional maps.

If the orbits of all turning points are finite, then they determine an invariant (Markov) partition for ($[0,1], f$).

There is a long list of papers on algorithms computing $h_{\text {top }}(f)$ for interval maps. Please, no need for any further algorithms. Try your hand at higher dimensional maps.

If the orbits of all turning points are finite, then they determine an invariant (Markov) partition for ($[0,1], f$).

Entropy can be computed as the the logarithm of the largest (Perron-Frobenius) eigenvalue $\sigma(A)$ of the corresponding transition matrix A. Matrix A could be infinite.

$$
\begin{array}{ll}
I_{2} \circlearrowleft & A=\left(\begin{array}{ll}
0 & 1 \\
1 & 1
\end{array}\right) \\
\uparrow \downarrow & \\
I_{1} & \sigma(A)=\log \frac{1+\sqrt{5}}{2}
\end{array}
$$

$h_{\text {top }}\left(f_{a}\right)$ for quadratic family $f_{a}(x)=a x(1-x)$

For $f_{a}(x)=a x(1-x)$, the entropy map $a \mapsto h_{\text {top }}\left(f_{a}\right)$ is

- Continuous

$h_{\text {top }}\left(f_{a}\right)$ for quadratic family $f_{a}(x)=a x(1-x)$

For $f_{a}(x)=a x(1-x)$, the entropy map $a \mapsto h_{\text {top }}\left(f_{a}\right)$ is

- Continuous - but what is the modulus of continuity?

$h_{\text {top }}\left(f_{a}\right)$ for quadratic family $f_{a}(x)=a x(1-x)$

$\exp \left(h_{\text {top }}\left(f_{a}\right)\right)$

For $f_{a}(x)=a x(1-x)$, the entropy map $a \mapsto h_{\text {top }}\left(f_{a}\right)$ is

- Continuous - but what is the modulus of continuity?
- Monotone

$h_{\text {top }}\left(f_{a}\right)$ for quadratic family $f_{a}(x)=a x(1-x)$

$\exp \left(h_{\text {top }}\left(f_{a}\right)\right)$

For $f_{a}(x)=a x(1-x)$, the entropy map $a \mapsto h_{\text {top }}\left(f_{a}\right)$ is

- Continuous - but what is the modulus of continuity?
- Monotone - but not strictly.
- Entropy is constant on every interval of hyperbolicity (where f_{a} has a stable periodic orbit) and every successive interval of period doubling cascade.

Figure: Bifurcation diagram for $f_{a}(x)=a x(1-x)$

- Entropy is constant on every interval of hyperbolicity (where f_{a} has a stable periodic orbit) and every successive interval of period doubling cascade.

Figure: Bifurcation diagram for $f_{a}(x)=a x(1-x)$

- Stronger than monotonicity: there are only period doublings, no period halfings.
- Proved by Douady, Hubbard \& Sullivan (1984), Milnor \& Thurston (1988) and Tsujii (2000).
- Every known proof uses complex analysis is some way.

Question: Is there a real proof?

- Proved by Douady, Hubbard \& Sullivan (1984), Milnor \& Thurston (1988) and Tsujii (2000).
- Every known proof uses complex analysis is some way.

Question: Is there a real proof?

- Denseness of hyperbolicity is important ingredient Graczyk \& Świątek (1996), Lyubich (1997) and in multimodal case Kozlovski, Shen \& van Strien (2007).
- Proved by Douady, Hubbard \& Sullivan (1984), Milnor \& Thurston (1988) and Tsujii (2000).
- Every known proof uses complex analysis is some way.

Question: Is there a real proof?

- Denseness of hyperbolicity is important ingredient Graczyk \& Świątek (1996), Lyubich (1997) and in multimodal case Kozlovski, Shen \& van Strien (2007).
- However, the measure of non-hyperbolic parameters is positive, see Jakobson (1981), Benedicks \& Carleson (1984).

Step 1: For polynomials $f_{c}(z)=z^{2}+c$, the filled-in Julia set is

$$
\mathcal{K}_{c}=\left\{z \in \mathbb{C}: f_{c}^{n}(z) \nrightarrow \infty\right\} \subset \text { dynamical space }
$$

Step 1: For polynomials $f_{c}(z)=z^{2}+c$, the filled-in Julia set is

$$
\mathcal{K}_{c}=\left\{z \in \mathbb{C}: f_{c}^{n}(z) \nrightarrow \infty\right\} \subset \text { dynamical space }
$$

The Mandelbrot set is

$$
\mathcal{M}_{c}=\left\{c \in \overline{\mathbb{C}}: \mathcal{K}_{c} \text { is connected }\right\} \subset \text { parameter space }
$$

Step 1: For polynomials $f_{c}(z)=z^{2}+c$, the filled-in Julia set is

$$
\mathcal{K}_{c}=\left\{z \in \mathbb{C}: f_{c}^{n}(z) \nrightarrow \infty\right\} \subset \text { dynamical space }
$$

The Mandelbrot set is

$$
\mathcal{M}_{c}=\left\{c \in \overline{\mathbb{C}}: \mathcal{K}_{c} \text { is connected }\right\} \subset \text { parameter space }
$$

Let \mathbb{D} be closed unit disk and consider the Riemann maps:

$$
\phi: \overline{\mathbb{C}} \backslash \mathcal{M} \rightarrow \overline{\mathbb{C}} \backslash \mathbb{D}, \quad \phi^{\prime}(\infty)=1
$$

and for $c \in \partial \mathcal{M}$:

$$
\phi_{c}: \overline{\mathbb{C}} \backslash \mathcal{K}_{c} \rightarrow \overline{\mathbb{C}} \backslash \mathbb{D}, \quad \phi_{c}^{\prime}(\infty)=1
$$

Step 1: For polynomials $f_{c}(z)=z^{2}+c$, the filled-in Julia set is

$$
\mathcal{K}_{c}=\left\{z \in \mathbb{C}: f_{c}^{n}(z) \nrightarrow \infty\right\} \subset \text { dynamical space }
$$

The Mandelbrot set is

$$
\mathcal{M}_{c}=\left\{c \in \overline{\mathbb{C}}: \mathcal{K}_{c} \text { is connected }\right\} \subset \text { parameter space }
$$

Let \mathbb{D} be closed unit disk and consider the Riemann maps:

$$
\phi: \overline{\mathbb{C}} \backslash \mathcal{M} \rightarrow \overline{\mathbb{C}} \backslash \mathbb{D}, \quad \phi^{\prime}(\infty)=1
$$

and for $c \in \partial \mathcal{M}$:

$$
\phi_{c}: \overline{\mathbb{C}} \backslash \mathcal{K}_{c} \rightarrow \overline{\mathbb{C}} \backslash \mathbb{D}, \quad \phi_{c}^{\prime}(\infty)=1
$$

The map ϕ_{c} conjugates f_{c} on $\overline{\mathbb{C}} \backslash \mathcal{K}_{c}$ to $z \mapsto z^{2}$ on $\overline{\mathbb{C}} \downarrow \mathbb{D}$.

Figure: Riemann map ϕ and ϕ_{c} and external rays for angle $\frac{1}{6}$ for the filled-in Julia set and the Mandelbrot set.

Proof of monotonicity - continued

Step 2: For each $\theta \in \mathbb{S}^{1}=\mathbb{R} / \mathbb{Z}$, define parameter rays:

$$
R(\theta)=\phi^{-1}\left(\left\{r e^{2 \pi i \theta}: r>1\right\}\right)
$$

Step 2: For each $\theta \in \mathbb{S}^{1}=\mathbb{R} / \mathbb{Z}$, define parameter rays:

$$
R(\theta)=\phi^{-1}\left(\left\{r e^{2 \pi i \theta}: r>1\right\}\right)
$$

and provided $R(\theta)$ lands at $c \in \partial \mathcal{M}$, define dynamic rays:

$$
R_{\theta}(\gamma)=\phi_{c}^{-1}\left(\left\{r e^{2 \pi i \gamma}: r>1\right\}\right)
$$

Step 2: For each $\theta \in \mathbb{S}^{1}=\mathbb{R} / \mathbb{Z}$, define parameter rays:

$$
R(\theta)=\phi^{-1}\left(\left\{r e^{2 \pi i \theta}: r>1\right\}\right)
$$

and provided $R(\theta)$ lands at $c \in \partial \mathcal{M}$, define dynamic rays:

$$
R_{\theta}(\gamma)=\phi_{c}^{-1}\left(\left\{r e^{2 \pi i \gamma}: r>1\right\}\right)
$$

Key to Similarity Julia/Mandelbrot Set:
If $c \in \partial \mathcal{M}$ is preperiodic (Misiurewicz-Thurston parameter), then

- There is $\theta \in \mathbb{Q}$ such that $R(\theta)$ lands at parameter c;

Step 2: For each $\theta \in \mathbb{S}^{1}=\mathbb{R} / \mathbb{Z}$, define parameter rays:

$$
R(\theta)=\phi^{-1}\left(\left\{r e^{2 \pi i \theta}: r>1\right\}\right)
$$

and provided $R(\theta)$ lands at $c \in \partial \mathcal{M}$, define dynamic rays:

$$
R_{\theta}(\gamma)=\phi_{c}^{-1}\left(\left\{r e^{2 \pi i \gamma}: r>1\right\}\right)
$$

Key to Similarity Julia/Mandelbrot Set:
If $c \in \partial \mathcal{M}$ is preperiodic (Misiurewicz-Thurston parameter), then

- There is $\theta \in \mathbb{Q}$ such that $R(\theta)$ lands at parameter c;
- $R_{c}(\theta)$ lands at c as well, but here $c=f_{c}(0)$ is the critical value!

Proof of monotonicity - continued

Figure: External rays θ_{0} and θ_{1} and corresponding rays for the Mandelbrot set and filled-in Julia sets.

Step 3: Take $0<\theta_{0}<\theta_{1}<\frac{1}{2}$ such that $R\left(\theta_{0}\right)$ and $R\left(\theta_{1}\right)$ land at real Misiurewicz-Thurston parameters c_{0} and c_{1}.

Step 3: Take $0<\theta_{0}<\theta_{1}<\frac{1}{2}$ such that $R\left(\theta_{0}\right)$ and $R\left(\theta_{1}\right)$ land at real Misiurewicz-Thurston parameters c_{0} and c_{1}.

External rays cannot cross, so $-2<c_{1}<c_{0}<0$.

Step 3: Take $0<\theta_{0}<\theta_{1}<\frac{1}{2}$ such that $R\left(\theta_{0}\right)$ and $R\left(\theta_{1}\right)$ land at real Misiurewicz-Thurston parameters c_{0} and c_{1}.

External rays cannot cross, so $-2<c_{1}<c_{0}<0$.

Let $g: \mathbb{S}^{1} \rightarrow \mathbb{S}^{1}, \gamma \mapsto 2 \gamma(\bmod 1)$ be the angle doubling map. For corresponding filled-in Julia sets $\mathcal{K}_{c_{i}}, i=0,1$, the set Γ_{i} of dynamical angles γ landing on the real core is

$$
\Gamma_{i}=\left\{\gamma \neq 0: g^{n}(\gamma) \in\left(-\theta_{i}, \theta_{i}\right) \text { for all } n \geq 0\right\}
$$

This is because $f_{c_{i}}$ on the real core is a 2-to-1 factor of g on Γ_{i}.

Step 3: Take $0<\theta_{0}<\theta_{1}<\frac{1}{2}$ such that $R\left(\theta_{0}\right)$ and $R\left(\theta_{1}\right)$ land at real Misiurewicz-Thurston parameters c_{0} and c_{1}.

External rays cannot cross, so $-2<c_{1}<c_{0}<0$.

Let $g: \mathbb{S}^{1} \rightarrow \mathbb{S}^{1}, \gamma \mapsto 2 \gamma(\bmod 1)$ be the angle doubling map. For corresponding filled-in Julia sets $\mathcal{K}_{c_{i}}, i=0,1$, the set Γ_{i} of dynamical angles γ landing on the real core is

$$
\Gamma_{i}=\left\{\gamma \neq 0: g^{n}(\gamma) \in\left(-\theta_{i}, \theta_{i}\right) \text { for all } n \geq 0\right\}
$$

This is because $f_{c_{i}}$ on the real core is a 2-to-1 factor of g on Γ_{i}. But $\theta_{0}<\theta_{1}$, so $\Gamma_{0} \subset \Gamma_{1}$ and

$$
h_{\text {top }}\left(g \mid \Gamma_{0}\right) \leq h_{\text {top }}\left(g \mid \Gamma_{1}\right)
$$

Finite-to-one factor maps preserve entropy, so

$$
h_{\text {top }}\left(f_{c_{0}} \mid \text { real core }\right) \leq h_{\text {top }}\left(f_{c_{1}} \mid \text { real core }\right)
$$

The Hubbard tree T of the filled-in Julia set is the equivalent of the core interval $\left[c, c^{2}+c\right.$] of a real unimodal map f_{c}. It is (a schematic version of) the connected hull of orb $_{f}(0)$ within the filled-in Julia set \mathcal{K}_{c}

The Hubbard tree T of the filled-in Julia set is the equivalent of the core interval $\left[c, c^{2}+c\right]$ of a real unimodal map f_{c}. It is (a schematic version of) the connected hull of $\operatorname{orb}_{f}(0)$ within the filled-in Julia set \mathcal{K}_{c}
It is a (sometimes infinite) tree, and forward invariant under f_{c}.

The Hubbard tree T of the filled-in Julia set is the equivalent of the core interval $\left[c, c^{2}+c\right]$ of a real unimodal map f_{c}. It is (a schematic version of) the connected hull of $\operatorname{orb}_{f}(0)$ within the filled-in Julia set \mathcal{K}_{c}
It is a (sometimes infinite) tree, and forward invariant under f_{c}.

Whereas $h_{\text {top }}\left(f_{c} \mid \mathcal{K}_{c}\right)=\log 2$ for every $c \in \mathbb{C}$, the core entropy $h_{\text {top }}\left(f_{c} \mid T\right)$ can be strictly smaller than $\log 2$. In fact,

$$
h_{\text {top }}\left(f_{c} \mid T\right)<\log 2 \quad \text { unless } c=-2
$$

Monotonicity along antennae

Having the notion of Hubbard trees and core entropy，we can extend the Douady－Hubbard proof to other parts of \mathcal{M} ：

Theorem

Core entropy is monotone along antennae of \mathcal{M} ．

Monotonicity along antennae

Having the notion of Hubbard trees and core entropy, we can extend the Douady-Hubbard proof to other parts of \mathcal{M} :

Theorem

Core entropy is monotone along antennae of \mathcal{M}.
That is, let $\left\{\theta, \theta^{\prime}\right\}$ and $\left\{\phi, \phi^{\prime}\right\}$ be parameter ray-pairs with landing points c and c^{\prime} respectively. If $\left(\phi, \phi^{\prime}\right) \subset\left(\theta, \theta^{\prime}\right)$, then

$$
h_{\text {top }}\left(f \mid T_{\phi}\right) \geq h_{\text {top }}\left(f \mid T_{\theta}\right)
$$

Monotonicity along antennae

Having the notion of Hubbard trees and core entropy, we can extend the Douady-Hubbard proof to other parts of \mathcal{M} :

Theorem

Core entropy is monotone along antennae of \mathcal{M}.
That is, let $\left\{\theta, \theta^{\prime}\right\}$ and $\left\{\phi, \phi^{\prime}\right\}$ be parameter ray-pairs with landing points c and c^{\prime} respectively. If $\left(\phi, \phi^{\prime}\right) \subset\left(\theta, \theta^{\prime}\right)$, then

$$
h_{\text {top }}\left(f \mid T_{\phi}\right) \geq h_{\text {top }}\left(f \mid T_{\theta}\right) .
$$

Remarks: The Douady-Hubbard proof basically goes through.
Problem is: What is core entropy for infinite Hubbard trees?

Monotonicity along antennae

Having the notion of Hubbard trees and core entropy, we can extend the Douady-Hubbard proof to other parts of \mathcal{M} :

Theorem

Core entropy is monotone along antennae of \mathcal{M}.
That is, let $\left\{\theta, \theta^{\prime}\right\}$ and $\left\{\phi, \phi^{\prime}\right\}$ be parameter ray-pairs with landing points c and c^{\prime} respectively. If $\left(\phi, \phi^{\prime}\right) \subset\left(\theta, \theta^{\prime}\right)$, then

$$
h_{\text {top }}\left(f \mid T_{\phi}\right) \geq h_{\text {top }}\left(f \mid T_{\theta}\right) .
$$

Remarks: The Douady-Hubbard proof basically goes through.
Problem is: What is core entropy for infinite Hubbard trees?
Full proof given in the PhD thesis of Tao Li (2007).
Largely unnoticed, fully symbolic, proof in the PhD thesis of Chris Penrose (1994).

1: $f: T \rightarrow T$ is continuous and surjective;
2: f is a local homeomorphism onto its image at every point $z \in T$, except at a unique critical point 0 , where it is 2 -to- 1 .

3: The set of marked points is

$$
V=\{\text { endpoints }\} \cup\{\text { branchpoints }\} \cup\left\{c_{k}=f^{k}(0): k \geq 0\right\}
$$

For each $v \neq w \in V$ there is n such that $0 \in f^{n}(\operatorname{arc}[v, w])$.

1: $f: T \rightarrow T$ is continuous and surjective;
2: f is a local homeomorphism onto its image at every point $z \in T$, except at a unique critical point 0 , where it is 2 -to- 1 .

3: The set of marked points is

$$
V=\{\text { endpoints }\} \cup\{\text { branchpoints }\} \cup\left\{c_{k}=f^{k}(0): k \geq 0\right\}
$$

For each $v \neq w \in V$ there is n such that $0 \in f^{n}(\operatorname{arc}[v, w])$.
From this we can derive:

1: $f: T \rightarrow T$ is continuous and surjective;
2: f is a local homeomorphism onto its image at every point $z \in T$, except at a unique critical point 0 , where it is 2 -to- 1 .

3: The set of marked points is

$$
V=\{\text { endpoints }\} \cup\{\text { branchpoints }\} \cup\left\{c_{k}=f^{k}(0): k \geq 0\right\}
$$

For each $v \neq w \in V$ there is n such that $0 \in f^{n}(\operatorname{arc}[v, w])$.

From this we can derive:

- The critical value c_{1} is always an endpoint of T. So, 0 has at most two arms in T, and we can construct symbolic dynamics on two symbols.

1: $f: T \rightarrow T$ is continuous and surjective;
2: f is a local homeomorphism onto its image at every point $z \in T$, except at a unique critical point 0 , where it is 2 -to- 1 .

3: The set of marked points is

$$
V=\{\text { endpoints }\} \cup\{\text { branchpoints }\} \cup\left\{c_{k}=f^{k}(0): k \geq 0\right\}
$$

For each $v \neq w \in V$ there is n such that $0 \in f^{n}(\operatorname{arc}[v, w])$.

From this we can derive:

- The critical value c_{1} is always an endpoint of T. So, 0 has at most two arms in T, and we can construct symbolic dynamics on two symbols.
- The symbolic itinerary ν of c_{1} is called the kneading invariant.

Symbolic Dynamics for the Angle Doubling and Julia Sets

Biaccessible points

- For $z \in \mathcal{K}_{c}$,
valency $=\#\left\{\right.$ arms of z in $\left.\mathcal{K}_{c}\right\}=\#\{$ rays landing at $z\}$
Points of valency ≥ 2 are called biaccessible.

Biaccessible points

- For $z \in \mathcal{K}_{c}$,

$$
\text { valency }=\#\left\{\text { arms of } z \text { in } \mathcal{K}_{c}\right\}=\#\{\text { rays landing at } z\}
$$

Points of valency ≥ 2 are called biaccessible.
If $z \in \mathcal{K}_{c}$ is biaccessible, then there is $n \geq 0$ such that $f^{n}(z) \in T$.

Biaccessible points

- For $z \in \mathcal{K}_{c}$,

$$
\text { valency }=\#\left\{\text { arms of } z \text { in } \mathcal{K}_{c}\right\}=\#\{\text { rays landing at } z\}
$$

Points of valency ≥ 2 are called biaccessible.
If $z \in \mathcal{K}_{c}$ is biaccessible, then there is $n \geq 0$ such that $f^{n}(z) \in T$.
Hence, if

$$
A=\{\text { biacc. points in } T\} \quad B=\left\{\text { biacc. points in } \mathcal{K}_{c}\right\}
$$

then

$$
B=\cup_{n} f^{-n}(A) \quad \text { and } \quad \operatorname{dim}_{H}(A)=\operatorname{dim}_{H}(B) .
$$

Here dim_{H} stands for Hausdorff dimension.

There is an algorithm, based on itineraries only, to compute the valency of z. It depends on the ρ_{e}-function.

There is an algorithm, based on itineraries only, to compute the valency of z. It depends on the ρ_{e}-function. For the itinerary $e(z)=e_{1} e_{2} e_{3} \cdots \in\{0,1\}^{\mathbb{N}}$ of z, define $\rho_{e}: \mathbb{N} \rightarrow \mathbb{N}$ as

$$
\rho_{e}(k)=\min \left\{j>k: e_{j}(x) \neq \nu_{j-k}\right\} .
$$

There is an algorithm, based on itineraries only, to compute the valency of z. It depends on the ρ_{e}-function. For the itinerary $e(z)=e_{1} e_{2} e_{3} \cdots \in\{0,1\}^{\mathbb{N}}$ of z, define $\rho_{e}: \mathbb{N} \rightarrow \mathbb{N}$ as

$$
\rho_{e}(k)=\min \left\{j>k: e_{j}(x) \neq \nu_{j-k}\right\} .
$$

Proposition: Let ν be the kneading sequence of $c \in \mathcal{M}$.

There is an algorithm, based on itineraries only, to compute the valency of z. It depends on the ρ_{e}-function. For the itinerary $e(z)=e_{1} e_{2} e_{3} \cdots \in\{0,1\}^{\mathbb{N}}$ of z, define $\rho_{e}: \mathbb{N} \rightarrow \mathbb{N}$ as

$$
\rho_{e}(k)=\min \left\{j>k: e_{j}(x) \neq \nu_{j-k}\right\} .
$$

Proposition: Let ν be the kneading sequence of $c \in \mathcal{M}$.
Dynamical space:: The valency of $z \in \mathcal{K}_{c}$ equals the number of disjoint ρ_{e}-orbits in \mathbb{N}.

There is an algorithm, based on itineraries only, to compute the valency of z. It depends on the ρ_{e}-function. For the itinerary $e(z)=e_{1} e_{2} e_{3} \cdots \in\{0,1\}^{\mathbb{N}}$ of z, define $\rho_{e}: \mathbb{N} \rightarrow \mathbb{N}$ as

$$
\rho_{e}(k)=\min \left\{j>k: e_{j}(x) \neq \nu_{j-k}\right\} .
$$

Proposition: Let ν be the kneading sequence of $c \in \mathcal{M}$.
Dynamical space:: The valency of $z \in \mathcal{K}_{c}$ equals the number of disjoint ρ_{e}-orbits in \mathbb{N}.

Parameter space: The valency of $c \in \mathcal{M}$ equals the number of disjoint ρ_{ν}-orbits in \mathbb{N}.

Using this characterization, one can estimate the Hausdorff dimension of biaccessible itineraries (dynamical space) or kneading sequences (parameter space) in $\{0,1\}^{\mathbb{N}}$.

Using this characterization, one can estimate the Hausdorff dimension of biaccessible itineraries (dynamical space) or kneading sequences (parameter space) in $\{0,1\}^{\mathbb{N}}$.

Technical Lemma: (From symbolics to external angles)
Dynamical space: The map $\gamma \mapsto e(\gamma)$ preserves Hausdorff dimension (fairly easy).
Parameter space: The map $\theta \mapsto \nu(\theta)$ preserves Hausdorff dimension (trickier to prove).

Estimates (abridged):

Dynamical space: The biaccessible angles of \mathcal{K}_{c} for $c \in \partial \mathcal{M}$ has Hausdorff dimension

- <1 iff $c \neq-2$;
- $=0$ iff c is (infinitely) renormalizable via direct bifurcations from the Mandelbrot set.

Estimates (abridged):

Dynamical space: The biaccessible angles of \mathcal{K}_{c} for $c \in \partial \mathcal{M}$ has Hausdorff dimension

- <1 iff $c \neq-2$;
- $=0$ iff c is (infinitely) renormalizable via direct bifurcations from the Mandelbrot set.

Parameter space: Except near $c=-2, \mathrm{t}$ The biaccessible angles of \mathcal{M} have Hausdorff dimension

- < 1 iff not in a neighborhood of $\theta=\frac{1}{2}$;
- $=0$ iff c is (infinitely) renormalizable via direct bifurcations from the Mandelbrot set.

Biaccessible Dimension and Core Entropy

Recall $h_{\text {top }}\left(f_{c} \mid J_{c}\right)=\log 2 \geq h_{\text {top }}\left(f_{c} \mid T_{c}\right)=$ core entropy

Theorem

Let $A_{\theta}=\left\{\right.$ biacc. dynamical angles landing on $\left.T_{\theta}\right\} \subset \mathbb{S}^{1}$.
Then the core entropy is

$$
h_{t o p}\left(f \mid T_{\theta}\right)=(\log 2) \cdot \operatorname{dim}_{H}\left(A_{\theta}\right) .
$$

Recall $h_{\text {top }}\left(f_{c} \mid J_{c}\right)=\log 2 \geq h_{\text {top }}\left(f_{c} \mid T_{c}\right)=$ core entropy

Theorem

Let $A_{\theta}=\left\{\right.$ biacc. dynamical angles landing on $\left.T_{\theta}\right\} \subset \mathbb{S}^{1}$.
Then the core entropy is

$$
h_{\text {top }}\left(f \mid T_{\theta}\right)=(\log 2) \cdot \operatorname{dim}_{H}\left(A_{\theta}\right)
$$

Proof: If T_{θ} is compact, use the Variational Principle which leads to the dimension formula for the angle doubling map g :

$$
\operatorname{dim}_{H}\left(A_{\theta}\right)=\frac{\text { entropy }}{\text { Lyapunov exponent }}=\frac{h_{\text {top }}\left(g \mid A_{\theta}\right)}{g^{\prime}}
$$

It is trickier if T_{θ} is non-compact, as you need to estimate $\sigma(A)$ for infinite transition matrices.

Theorem

The map

$$
\theta \mapsto h_{\text {top }}\left(f \mid T_{\theta}\right)
$$

is Hölder continuous with exponent $\alpha(\theta)=\operatorname{dim}_{H}\left(A_{\theta}\right)$.

Theorem

The map

$$
\theta \mapsto h_{\text {top }}\left(f \mid T_{\theta}\right)
$$

is Hölder continuous with exponent $\alpha(\theta)=\operatorname{dim}_{H}\left(A_{\theta}\right)$.

Remark: Hence, this is no longer Hölder at the boundary of the zero-entropy locus in the Mandelbrot set. For those parameters, the modulus of continuity seems to be

$$
\left|h_{t o p}\left(f \mid T_{\theta}\right)-h_{\text {top }}\left(f \mid T_{\theta^{\prime}}\right)\right| \leq \frac{C}{-\log \max \left\{\alpha(\theta), \alpha\left(\theta^{\prime}\right)\right\}}
$$

Theorem

The map

$$
\theta \mapsto h_{t o p}\left(f \mid T_{\theta}\right)
$$

is Hölder continuous with exponent $\alpha(\theta)=\operatorname{dim}_{H}\left(A_{\theta}\right)$.

Remark: Hence, this is no longer Hölder at the boundary of the zero-entropy locus in the Mandelbrot set. For those parameters, the modulus of continuity seems to be

$$
\left|h_{\text {top }}\left(f \mid T_{\theta}\right)-h_{\text {top }}\left(f \mid T_{\theta^{\prime}}\right)\right| \leq \frac{C}{-\log \max \left\{\alpha(\theta), \alpha\left(\theta^{\prime}\right)\right\}}
$$

Question: What is the modulus of continuity of

$$
\partial \mathcal{M} \ni c \mapsto h_{\text {top }}\left(f_{c} \mid T_{c}\right) ?
$$

$h_{\text {top }}\left(f_{a}\right)$ for quadratic family $f_{a}(x)=a x(1-x)$

This brings us back to an earlier picture. How smooth is this curve?
$\exp \left(h_{\text {top }}\left(f_{a}\right)\right)$

a

This brings us back to an earlier picture. How smooth is this curve?

$\exp \left(h_{\text {top }}\left(f_{a}\right)\right)$

Known: Not absolutely continuous, and not Hölder at the Feigenbaum parameter (the last zero of the graph).

Multimodal Maps

What about entropy for multimodal maps, i.e., maps with several critical points?

Especially for the families of cubic, quartic, quintic, ... polynomials.

What about entropy for multimodal maps, i.e., maps with several critical points?

Especially for the families of cubic, quartic, quintic, ... polynomials.

In their seminal paper 1977 preprint

On iterated maps of the interval: I,II.
Milnor and Thurston proved for C^{2} families with a constant number of critical points, that

$$
f \mapsto h_{\text {top }}(f) \text { is continuous }
$$

What about entropy for multimodal maps, i.e., maps with several critical points?

Especially for the families of cubic, quartic, quintic, ... polynomials.

In their seminal paper 1977 preprint

On iterated maps of the interval: I,II.
Milnor and Thurston proved for C^{2} families with a constant number of critical points, that

$$
f \mapsto h_{\text {top }}(f) \text { is continuous }
$$

What about monotonicity?

What about entropy for multimodal maps, i.e., maps with several critical points?

Especially for the families of cubic, quartic, quintic, ... polynomials.

In their seminal paper 1977 preprint

On iterated maps of the interval: I,II.
Milnor and Thurston proved for C^{2} families with a constant number of critical points, that

$$
f \mapsto h_{\text {top }}(f) \text { is continuous }
$$

What about monotonicity?
Note that for families of degree $d+1$ polynomials, parameter space is d-dimensional, and monotonicity means:

Isentropes, i.e., level sets of entropy, are connected.

The general cubic family

$$
x \mapsto x^{3}-a x+b
$$

One can also parametrize the family by the height of the two critical values, see top right.

Level sets of the entropy (isentropes) are complicated.
Entropy is not monotone as function of single critical values.

The cubic family

$$
x \mapsto x^{3}-a x+b
$$

Isentropes in blue colour:

We can prove in the case $d \geq 3$ that the entropy is not monotone on slices in parameter space. Below, the second critical value in the cubic map $x \mapsto x^{3}-a x+b$ is fixed, the first, i.e., b, varies.

The break-through for the cubic case is the result:

Theorem (Milnor \& Tresser (2000))
 Isentropes are connected in the cubic family.

The break-through for the cubic case is the result:

Theorem (Milnor \& Tresser (2000))
 Isentropes are connected in the cubic family.

Ingredients in the proof are:

- Denseness of hyperbolicity.
- Bones, i.e., set in parameter space where one critical point is periodic.
- Planar geometry (so fails for degree ≥ 4).
- The space of stunted saw-tooth maps as parameter space.

Denseness of Hyperbolicity

- Denseness of hyperbolicity means that an arbitrary small perturbation of the map can send all critical orbits to attracting periodic orbits.
- Denseness of hyperbolicity means that an arbitrary small perturbation of the map can send all critical orbits to attracting periodic orbits.
- Denseness of hyperbolicity was proven for quadratic maps by Graczyk \& Świạtek (1996), Lyubich (1997),
- and for multimodal polynomials by Kozlovski, Shen \& van Strien (2007).
- Denseness of hyperbolicity means that an arbitrary small perturbation of the map can send all critical orbits to attracting periodic orbits.
- Denseness of hyperbolicity was proven for quadratic maps by Graczyk \& Świạtek (1996), Lyubich (1997),
- and for multimodal polynomials by Kozlovski, Shen \& van Strien (2007).
- An important by-product is that every hyperbolic cell (= equivalence class of "partially hyperbolic" conjugacy) is a connected set (and in fact topological ball).
- Denseness of hyperbolicity means that an arbitrary small perturbation of the map can send all critical orbits to attracting periodic orbits.
- Denseness of hyperbolicity was proven for quadratic maps by Graczyk \& Świạtek (1996), Lyubich (1997),
- and for multimodal polynomials by Kozlovski, Shen \& van Strien (2007).
- An important by-product is that every hyperbolic cell (= equivalence class of "partially hyperbolic" conjugacy) is a connected set (and in fact topological ball).

All these proofs use complex analysis!

Milnor and Tresser analyse bifurcation curves, see figures on the right. They use planar topology to show 'bones' are connected.

Milnor and Tresser analyse bifurcation curves, see figures on the right. They use planar topology to show 'bones' are connected.

Stunted Saw-Tooth Maps

- Start with a piecewise linear saw-tooth map $S:[0,1] \rightarrow \mathbb{R}$ of $d+1$ laps. The critical values lie outside the interval!

The saw-tooth map S

- Start with a piecewise linear saw-tooth map $S:[0,1] \rightarrow \mathbb{R}$ of $d+1$ laps. The critical values lie outside the interval!

The saw-tooth map S

Two stunted sawtooth maps, with different third plateaus.

- "Stunt" them at the preferred heights within $[0,1]$.
- Start with a piecewise linear saw-tooth map $S:[0,1] \rightarrow \mathbb{R}$ of $d+1$ laps. The critical values lie outside the interval!

The saw-tooth map S
Two stunted sawtooth maps, with different third plateaus.

- "Stunt" them at the preferred heights within $[0,1]$.
- The result is a stunted saw-tooth map, with plateaus instead of critical points.

Let \mathcal{S}^{d} be this space of stunted sawtooth maps. It will be used as parameter space.

- The saw-tooth map contains all itineraries in $\{0, \ldots, d\}^{\mathbb{N}}$, hence \mathcal{S}^{d} contains a map for every d-tuple of kneading sequences.
(Kneading sequence ν_{i} is the itinerary of i-th critical value.)
- The saw-tooth map contains all itineraries in $\{0, \ldots, d\}^{\mathbb{N}}$, hence \mathcal{S}^{d} contains a map for every d-tuple of kneading sequences.
(Kneading sequence ν_{i} is the itinerary of i-th critical value.)
- Let ζ_{i} describing the height of the i-th plateau of T as in the figure.

- The saw-tooth map contains all itineraries in $\{0, \ldots, d\}^{\mathbb{N}}$, hence \mathcal{S}^{d} contains a map for every d-tuple of kneading sequences.
(Kneading sequence ν_{i} is the itinerary of i-th critical value.)
- Let ζ_{i} describing the height of the i-th plateau of T as in the figure.

- $T \mapsto h_{\text {top }}(T)$ is monotone increasing in each parameter ζ_{i}.
- The saw-tooth map contains all itineraries in $\{0, \ldots, d\}^{\mathbb{N}}$, hence \mathcal{S}^{d} contains a map for every d-tuple of kneading sequences.
(Kneading sequence ν_{i} is the itinerary of i-th critical value.)
- Let ζ_{i} describing the height of the i-th plateau of T as in the figure.

- $T \mapsto h_{\text {top }}(T)$ is monotone increasing in each parameter ζ_{i}.
- Using this, it is easy to show that isentropes are connected (and even contractible) for \mathcal{S}^{d}.

Let P^{d} be the space of degree $d+1$ polynomials $f:[0,1] \rightarrow[0,1]$ such that

- f has d distinct critical points, all lying in $[0,1]$.
- $f(0)=0$ and $f(1) \in\{0,1\}$.

Let P^{d} be the space of degree $d+1$ polynomials $f:[0,1] \rightarrow[0,1]$ such that

- f has d distinct critical points, all lying in $[0,1]$.
- $f(0)=0$ and $f(1) \in\{0,1\}$.

Theorem

All isentropes L_{s} of P^{d} are connected.
This doesn't mean that isentropes are simple sets. We know that:

- For many value of entropy s, L_{s} is not locally connected.
- Contrary to stunted sawtooths, entropy is not a monotone function of each single critical values.

Let P^{d} be the space of degree $d+1$ polynomials $f:[0,1] \rightarrow[0,1]$ such that

- f has d distinct critical points, all lying in $[0,1]$.
- $f(0)=0$ and $f(1) \in\{0,1\}$.

Theorem

All isentropes L_{s} of P^{d} are connected.
This doesn't mean that isentropes are simple sets. We know that:

- For many value of entropy s, L_{s} is not locally connected.
- Contrary to stunted sawtooths, entropy is not a monotone function of each single critical values.

Question (Milnor): Are the isentropes contractible?
Question (Thurston): Is there a dense set of $s \in[0, \log d]$ such that hyperbolic maps are dense in L_{s} ?

To every $f \in P^{d}$, assign a stunted sawtooth map $\Psi(f) \in \mathcal{S}$, by taking the one with the same kneading invariants as f.

$$
\Psi: P^{d} \rightarrow \mathcal{S} \text { is well-defined and preserves entropy }
$$

To every $f \in P^{d}$, assign a stunted sawtooth map $\Psi(f) \in \mathcal{S}$, by taking the one with the same kneading invariants as f.

$$
\Psi: P^{d} \rightarrow \mathcal{S} \text { is well-defined and preserves entropy }
$$

To every $f \in P^{d}$, assign a stunted sawtooth map $\psi(f) \in \mathcal{S}$, by taking the one with the same kneading invariants as f.

$$
\Psi: P^{d} \rightarrow \mathcal{S} \text { is well-defined and preserves entropy }
$$

If Ψ were homeo, then connected sets $K \subset \mathcal{S}^{d}$ pull back to connected

However,

$$
\text { sets } \Psi^{-1}(K) \subset P^{d}
$$

To every $f \in P^{d}$, assign a stunted sawtooth map $\psi(f) \in \mathcal{S}$, by taking the one with the same kneading invariants as f.

$$
\Psi: P^{d} \rightarrow \mathcal{S} \text { is well-defined and preserves entropy }
$$

If Ψ were homeo, then connected sets $K \subset \mathcal{S}^{d}$ pull back to connected

However,

$$
\text { sets } \Psi^{-1}(K) \subset P^{d}
$$

- Ψ is not continuous.
- Ψ is not injective.
- Ψ is not surjective.

To every $f \in P^{d}$, assign a stunted sawtooth map $\Psi(f) \in \mathcal{S}$, by taking the one with the same kneading invariants as f.

$$
\Psi: P^{d} \rightarrow \mathcal{S} \text { is well-defined and preserves entropy }
$$

If Ψ were homeo, then connected sets $K \subset \mathcal{S}^{d}$ pull back to connected

However,

$$
\text { sets } \Psi^{-1}(K) \subset P^{d}
$$

- Ψ is not continuous.
- Ψ is not injective.
- Ψ is not surjective.
- Ψ is really not surjective!
- Part of the lack of continuity/injectivity/surjectivity is caused by "cells" in parameter space where f has a periodic attractor. These work different in P^{d} and \mathcal{S}^{d}.
- Part of the lack of continuity/injectivity/surjectivity is caused by "cells" in parameter space where f has a periodic attractor. These work different in P^{d} and \mathcal{S}^{d}.
- We say that $f, g \in P^{d}$ are partially conjugate if (roughly)
(1) they are conjugate away from the basins of periodic attractors;
(2) have the same number of critical points in same components of the basins.
The cell (partial hyperbolic deformation space) of $f \in P^{d}$ are all maps partially conjugate to it.
- Part of the lack of continuity/injectivity/surjectivity is caused by "cells" in parameter space where f has a periodic attractor. These work different in P^{d} and \mathcal{S}^{d}.
- We say that $f, g \in P^{d}$ are partially conjugate if (roughly)
(1) they are conjugate away from the basins of periodic attractors;
(2) have the same number of critical points in same components of the basins.
The cell (partial hyperbolic deformation space) of $f \in P^{d}$ are all maps partially conjugate to it.
- These cells are indeed topological cells of the same dimension as number of critical points attracted to periodic attractors.
- When complexified, they are the higherdimensional analog of hyperbolic compo-
 nents in the Mandelbrot set.

Cells in P^{d} are glued together via the following generic bifurcations
sn saddle-node (creation of one-sided attractor, which then becomes becomes an attracting + repelling pair)
pf pitchfork or reverse pitchfork (a two-sided attractor, which becomes repelling and spins off a pair of attracting orbits)
pd period-doubling or period halving (multiplier -1)
hc homoclinic bifurcation with critical value moving into the basin of a periodic attractor)

Cells in P^{d} are glued together via the following generic bifurcations
sn saddle-node (creation of one-sided attractor, which then becomes becomes an attracting + repelling pair)
pf pitchfork or reverse pitchfork (a two-sided attractor, which becomes repelling and spins off a pair of attracting orbits)
pd period-doubling or period halving (multiplier -1)
hc homoclinic bifurcation with critical value moving into the basin of a periodic attractor)

In \mathcal{S}^{d}, a cell is any set of $T \in \mathcal{S}^{d}$ for which

$$
\left\{x \in[0,1]: \exists n \geq 0, T^{n}(x) \in\left(\cup Z_{i}\right)^{\circ}\right\}
$$

remains unchanged.
Their bifurcations follow the same pattern.

Cells in P^{d} are glued together via the following generic bifurcations
sn saddle-node (creation of one-sided attractor, which then becomes becomes an attracting + repelling pair)
pf pitchfork or reverse pitchfork (a two-sided attractor, which becomes repelling and spins off a pair of attracting orbits)
pd period-doubling or period halving (multiplier -1)
hc homoclinic bifurcation with critical value moving into the basin of a periodic attractor)

In \mathcal{S}^{d}, a cell is any set of $T \in \mathcal{S}^{d}$ for which

$$
\left\{x \in[0,1]: \exists n \geq 0, T^{n}(x) \in\left(\cup Z_{i}\right)^{\circ}\right\}
$$

remains unchanged.
Their bifurcations follow the same pattern.

We overcome the continuity/injectivity/surjectivity problem by (in a way) quotienting out over the cells.

- An interval $J \subset[0,1]$ is wandering if $f^{n} \mid J$ is monotone for all $n \geq 0$, but J is not attracted to a periodic orbit.
- Polynomial maps have no wandering intervals.
- An interval $J \subset[0,1]$ is wandering if $f^{n} \mid J$ is monotone for all $n \geq 0$, but J is not attracted to a periodic orbit.
- Polynomial maps have no wandering intervals. But stunted saw-tooth maps can have them!

- An interval $J \subset[0,1]$ is wandering if $f^{n} \mid J$ is monotone for all $n \geq 0$, but J is not attracted to a periodic orbit.
- Polynomial maps have no wandering intervals. But stunted saw-tooth maps can have them!

- A pair of adjacent intervals Z_{1} and Z_{2} is wandering if the above picture applies. The interval $\left[Z_{1}, Z_{2}\right]$ is eventually mapped to a point, but becomes never periodic. Hence, such a pair takes the role of a wandering interval.
- An interval $J \subset[0,1]$ is wandering if $f^{n} \mid J$ is monotone for all $n \geq 0$, but J is not attracted to a periodic orbit.
- Polynomial maps have no wandering intervals. But stunted saw-tooth maps can have them!

- A pair of adjacent intervals Z_{1} and Z_{2} is wandering if the above picture applies. The interval $\left[Z_{1}, Z_{2}\right]$ is eventually mapped to a point, but becomes never periodic. Hence, such a pair takes the role of a wandering interval.
- This is a serious obstacle for Ψ to be (even almost) surjective.
- Note that wandering pairs require at least three plateaus: $d \geq 3$. Milnor \& Tresser didn't have to deal with this.
- As we cannot allow wandering intervals, let us define

$$
\mathcal{S}_{*}^{d}=\left\{T \in \mathcal{S}^{d}: \nexists \text { degenerate pair of plateaus }\right\}
$$

- The space \mathcal{S}_{*}^{d} is messier than \mathcal{S}^{d}, but still has the (by now very non-trivial property) property that:
- As we cannot allow wandering intervals, let us define

$$
\mathcal{S}_{*}^{d}=\left\{T \in \mathcal{S}^{d}: \nexists \text { degenerate pair of plateaus }\right\}
$$

- The space \mathcal{S}_{*}^{d} is messier than \mathcal{S}^{d}, but still has the (by now very non-trivial property) property that:

Theorem

The isentropes in \mathcal{S}_{*}^{d} are connected and even contractible.

Proposition (Surjectivity)

For each $T \in \mathcal{S}_{*}^{d}$ there exists $f \in P^{d}$ so that $T \in \operatorname{cell}(\Psi(f))$.

Proposition (Surjectivity)

For each $T \in \mathcal{S}_{*}^{d}$ there exists $f \in P^{d}$ so that $T \in \operatorname{cell}(\Psi(f))$.

Proposition (Injectivity)

If $f_{1}, f_{2} \in P^{d}$ and $\operatorname{cell}\left(\Psi\left(f_{1}\right)\right) \cap \operatorname{cell}\left(\Psi\left(f_{2}\right)\right) \neq \emptyset$ then $\overline{\operatorname{cell}\left(f_{1}\right)} \cap \overline{\operatorname{cell}\left(f_{2}\right)} \neq \emptyset$.

Proposition (Surjectivity)

For each $T \in \mathcal{S}_{*}^{d}$ there exists $f \in P^{d}$ so that $T \in \operatorname{cell}(\Psi(f))$.

Proposition (Injectivity)

If $f_{1}, f_{2} \in P^{d}$ and $\operatorname{cell}\left(\Psi\left(f_{1}\right)\right) \cap \operatorname{cell}\left(\Psi\left(f_{2}\right)\right) \neq \emptyset$ then $\overline{\operatorname{cell}\left(f_{1}\right)} \cap \overline{\operatorname{cell}\left(f_{2}\right)} \neq \emptyset$.

Proposition (Continuity)

Suppose $f_{n} \in P^{d}$ converges to $f \in P^{d}$. Then any limit of $\Psi\left(f_{n}\right)$ is contained in cell($(\Psi(f))$.

The upshot

Theorem

If K is closed and connected then

$$
\Psi^{-1}(K)=\{f ; \text { cell }(\Psi(f)) \cap K \neq \emptyset\} \text { is connected in } \mathcal{S}_{*}^{d}
$$

Theorem

If K is closed and connected then

$$
\Psi^{-1}(K)=\{f ; \operatorname{cell}(\Psi(f)) \cap K \neq \emptyset\} \text { is connected in } \mathcal{S}_{*}^{d}
$$

Since f and any map in cell $(\Psi(f))$ have the same topological entropy we get in particular:

The upshot

Theorem

If K is closed and connected then

$$
\Psi^{-1}(K)=\{f ; \text { cell }(\Psi(f)) \cap K \neq \emptyset\} \text { is connected in } \mathcal{S}_{*}^{d}
$$

Since f and any map in cell $(\Psi(f))$ have the same topological entropy we get in particular:

Corollary

Isentropes in P^{d} are connected.

The upshot

Theorem

If K is closed and connected then

$$
\Psi^{-1}(K)=\{f ; \operatorname{cell}(\Psi(f)) \cap K \neq \emptyset\} \text { is connected in } \mathcal{S}_{*}^{d}
$$

Since f and any map in cell $(\Psi(f))$ have the same topological entropy we get in particular:

Corollary

Isentropes in P^{d} are connected.

Question (Milnor): Are isentropes contractible?
Probably yes, but this is work in progress.

