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Basic thermodynamic formalism

Let f : X → X be continuous, and φt : X → R be a parametrised
families of potentials.

The (variational) pressure is defined as

P (t) = sup
µ

hµ(f)︸ ︷︷ ︸
entropy

+

∫
φt dµ︸ ︷︷ ︸

energy

 ,

where the sup is taken over all f -invariant probability measures µ.

An equilibrium state µt is a measure that assume the pressure.

Usually φt = t ·φ. Then at t = 0, we are maximising entropy, while
for t → ∞, we are minimising potential energy.

Values of t where P (t) is not real analytic are called phase tran-
sitions. They indicate a qualitative (and abrupt) change in equi-
librium state.
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”Geometric” potential φt = −t log |f ′|

For interval maps, an important class of potentials to choose is
φt = −t log |f ′|, which ties thermodynamic formalism to Lebesgue
measure.

• Energy becomes the Lyapunov exponent:

λ(µ) =

∫
log |f ′| dµ.

• A result by Ledrappier [Le] says that:

if hµ(f) > 0, then
µ is equilibrium state for t = 1 if and only if µ is
absolutely continuuous w.r.t. Lebesgue.

Together with the Ruelle inequality hµ 6 λ(µ), this implies
that P (t) = 0 for t = 1.
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Lebesgue ergodic properties

Recall that

• f is Lebesgue ergodic if f−1(B) = B implies Leb(B) ∈
{0, 1}.

• f is Lebesgue conservative if Leb(B) > 0 implies that
fn(B) ∩B 6= ∅ for some n > 0.

• f is Lebesgue dissipative if not conservative.
• f is Lebesgue totally dissipative if there is no invariant
set of positive measure on which it is conservative.

• If smooth unimodal map f is totally dissipative, then it has
an attractor A, i.e.,
– f(A) ⊂ A
– The basin {x ∈ [0, 1] : ω(x) = A} has positive Lebesgue
measure.

– There is no smaller set with these two properties.
Moreover, A = ω(c) and Leb(A) = 0. It can be one of the
following:
– a stable periodic orbit.
– a solenoidal attractor, namely if f is infinitely renor-
malizable. (E.g. the Feigenbaum-Coullet-Tresser map).

– a wild attractor: in this case, the basin has full mea-
sure, but is of first Baire category.
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Interval dynamics - Fibonacci maps

Let f be a smooth unimodal map. For our purposes, it suffices to
look at the family:

f = fa,` : [0, 1] → [0, 1], x 7→ a(1− |2x− 1|`).

with critical point c = 1
2 and critical order ` > 0.

The iterate n is a cutting time if the image of the central branch
of fn contains c. We denote cutting times by the strictly increasing
sequence

1 = S0 < S1 < S2 < . . .

We call f a Fibonacci map if its cutting times are the Fibonacci
numbers.

For each ` > 0, there is at least one (and if ` = 2k unique)

a = a(`) such that fa,` is Fibonacci.

From now on let f` = fa(`),` be a family of Fibonacci maps parametrised
by its critical order.
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Ergodic properties for smooth Fibonacci maps

The following properties are known for f`:



` 6 2 f` has an acip which is super-polynomially
mixing, [LM, BLS],

2 < ` < 2 + ε f` has an acip which is polynomially mixing with
exponent tending to infinity as ` → 2, [KN, RS],

`0 < ` < `1 f` has a conservative σ-finite acim,

`1 < ` f` has a wild attractor [BKNS], with dissipative
σ-finite acim, [Ma].
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Linear versions of the induced map:

A linearised version of the induced map will be called Fλ, where λ
denoted th exponential rate at which the distances |zk−c| decrease.

It is a two-to-one cover of a countably piecewise interval map Tλ :
(0, 1] → (0, 1] defined in Stratmann & Vogt [SV] as follows:

For n > 1, let Vn := (λn, λn−1] and define

Tλ(x) :=

{
x−λ
1−λ if x ∈ V1,

x−λn

λ(1−λ) if x ∈ Vn, n > 2.
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Figure 1. The maps Tλ : [0, 1] → [0, 1] and Fλ : [z0, ẑ0] → [z0, ẑ0].
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Theorem A. For each λ ∈ (0, 1), there is a countably piecewise

linear unimodal map fλ (with |Wk| = |Ŵk| = 1−λ
2 ·λk) such that the

induced map Fλ is has affine branches.

Moreover:

a) The critical order ` = 3 + 2 log(1−λ)
log λ .

b) If λ ∈ (12 , 1), i.e., ` > 5, then fλ has a wild attractor.

c) If λ ∈
[

2
3+

√
5
, 12

]
, i.e., 4 6 ` 6 5, then fλ has no wild attractor,

but an infinite σ-finite acim.

d) If λ ∈ (0, 2
3+

√
5
), i.e., ` ∈ (3, 4), then fλ has an acip.
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Theorem B. The countably piecewise linear Fibonacci map fλ,
λ ∈ (0, 1), with potential φt has the following thermodynamical
properties.

a) The conformal and variation pressure coincide:

PConf(φt) = P (φt);

b) For t < t1, there exists a unique equilibrium state νt for
(I, fλ, φt); this is absolutely continuous w.r.t. the appropriate
conformal measure nt.

c) For t > t1, the unique equilibrium state for (I, fλ, φt) is νω,
the measure supported on the critical omega-limit set ω(c). For
t = t1, νω is an equilibrium state, and if λ ∈ (0, 2

3+
√
5
) then so

is the acip, denoted νt1;

d) The map t 7→ P (φt) is real analytic on (−∞, t1). Furthermore
P (φt) > 0 for t < t1 and P (φt) ≡ 0 for t > t1, so there is a
phase transition at t = t1.
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Theorem C. The pressure function P (φt) of the countably piece-
wise linear Fibonacci map fλ, λ ∈ (0, 1), with potential φt has the
following shape:

a) On a left neighbourhood of t1, there exist τ0 = τ0(λ), τ
′
0 =

τ ′0(λ) > 0 such that

P (φt) >

τ0e
−π Γ√

t1−t if t < t1 6 1 and λ > 1
2 ;

τ ′0(1− t)
log γ+
logR if t < 1 and 2

3+
√
5
6 λ < 1

2 ,

where R =

(
1+
√

1−4λt(1−λ)t
)2

4λt(1−λ)t and limt→1 logR ∼ 2(1− 2λ) for

λ ∼ 1
2.

b) On a left neighbourhood of t1, there exist τ1 = τ1(λ), τ
′
1 =

τ ′1(λ) > 0 such that

P (φt) <

τ1e
− 5

6
Γ√
t1−t if t < t1 6 1 and λ > 1

2 ;

τ ′1(1− t)
λ log γ+
2t(1−2λ) if t < 1 and 2

3+
√
5
6 λ < 1

2 .

c) If λ ∈ (0, 2
3+

√
5
), then lims↑t1

d
dsP (φs) < 0; otherwise (i.e., if

λ ∈ [ 2
3+

√
5
, 1)), lims↑t1 P (φs) = 0.
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Dimension results:

Let
Basλ = {x ∈ I : fn

λ (x) → ω(c) as n → ∞}

be the basin of ω(c). The hyperbolic dimension is the supre-
mum of Hausdorff dimensions of hyperbolic sets Λ, i.e., Λ is fλ-
invariant, compact but bounded away from c.

Theorem D.

dimhyp(fλ) = dimH(Bas1−λ) =

{
1 if λ 6 1

2 ;

− log 4
log[λ(1−λ)] if λ > 1

2 ,

is the first zero of the pressure function.
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Conformal measure and pressure:

Definition 1. A measure m on [0, 1] is called φ-conformal if for
any measurable set A ⊂ [0, 1] on which f : A → g(A) is a bijection,

m(f(A)) =

∫
A

e−φ dm.

For φ = −t log |f ′|, this reduces to

m(f(A)) =

∫
A

|f ′|t dm.

Definition 2. For a dynamical system g : X → X and a potential
φ : X → [−∞,∞], the conformal pressure for (X, g, φ) is

PConf(φ) := inf {p ∈ R : ∃ a (φ− p)-conformal measure} .
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Inducing and potential shifts:

If F = f τ is an induced map, the potential φt induces to

Φt(x) =

τ(x)−1∑
j=0

φt ◦ f j(x).

For φt = −t log |f ′|, the chain rule gives Φt = −t log |F ′|.

Note that a potential shift of p for f induces to a non-constant
potential shift for F :

Φt = −t log |F ′| − τp.
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Finding conformal measures:

To find a p-conformal measure for Tλ (CONSTANT potential
shift), we need to solve (with wt

k = mt(Vk))∑
k

wt
k = 1 subject to wt

k > 0 for all k,

where the wt
k satisfy

wt
1 = (1− λ)te−p

wt
2 = λt(1− λ)te−p

wt
3 = λt(1− λ)te−p(1− wt

1)
...

...
...

wt
j = λt(1− λ)te−p

1−
∑
k<j−1

wt
k

 .

To find a p-conformal measure for Tλ (NON-CONSTANT po-
tential shift), we need to solve (with w̃t

k = mt(Vk))∑
k

wt
k = 1 subject to wt

k > 0 for all k,

where the w̃t
k satisfy

w̃t
1 = (1− λ)te−pS0

w̃t
2 = λt(1− λ)te−pS1

w̃t
3 = λt(1− λ)te−pS2(1− w̃t

1)
...

...
...

w̃t
j = λt(1− λ)te−pSj−1

1−
∑
k<j−1

w̃t
k

 .
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[MU] R. Mauldin, M. Urbański, Dimensions and measures in infinite iterated function systems,
Proc. London Math. Soc. (3) 73 (1996) 105–154.

[NS] T. Nowicki, S. van Strien, Invariant measures exist under a summability condition for uni-
modal maps, Invent. Math. 105 (1991) 123–136.

[PS] Y. Pesin, S. Senti, Equilibrium measures for maps with inducing schemes, J. Mod. Dyn. 2
(2008) 1–31.

[PFK] T. Prellberg, J. Fiala, P. Kleban, Cluster approximations for the Farey fraction spin chain,
Journ. Stat. Phys. 123 (2006), 455–471.

[RS] J. Rivera-Letelier, W. Shen, Personal communications and Statistical properties
of one-dimensional maps under weak hyperbolicity assumptions, Preprint 2011,
http://arxiv.org/abs/1004.0230 (document)

[S1] O. Sarig, Thermodynamic formalism for null recurrent potentials, Israel J. Math. 121 (2001)
285–311.

[S2] O. Sarig, Thermodynamic formalism for countable Markov shifts, Ergodic Theory Dynam.
Systems 19 (1999) 1565–1593.

[S3] O. Sarig, Lecture Notes on Thermodynamic Formalism for Topological Markov Shifts,
(http://www.wisdom.weizmann.ac.il/∼sarigo/TDFnotes.pdf).

[SV] B. Stratmann, R. Vogt, Fractal dimension of dissipative sets, Nonlinearity 10 (1997) 565–577.
(document)

[Z] R. Zweimüller, S-unimodal Misiurewicz maps with flat critical points, Fund. Math. 181 (2004)
1–25.


