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Basic thermodynamic formalism

Let f: X — X be continuous, and ¢, : X — R be a parametrised
families of potentials.

The (variational) pressure is defined as

P(t)—SUP h /cbtdu :

entropy energy

where the sup is taken over all f-invariant probability measures p.
An equilibrium state p; is a measure that assume the pressure.

Usually ¢ = t-¢. Then at t = 0, we are maximising entropy, while
for ¢t — oo, we are minimising potential energy.

Values of ¢ where P(t) is not real analytic are called phase tran-
sitions. They indicate a qualitative (and abrupt) change in equi-
librium state.



”Geometric” potential ¢, = —tlog|f’|

For interval maps, an important class of potentials to choose is
¢ = —tlog|f’|, which ties thermodynamic formalism to Lebesgue
measure.

e Energy becomes the Lyapunov exponent:
Ao = | 1og] '] du
e A result by Ledrappier [Ld] says that:

if h,(f) > 0, then
i is equilibrium state for ¢ = 1 if and only if p is
absolutely continuuous w.r.t. Lebesgue.

Together with the Ruelle inequality h, < A(x), this implies
that P(t) =0 for t = 1.



Lebesgue ergodic properties

Recall that

e f is Lebesgue ergodic if f~}(B) = B implies Leb(B) €
{0,1}.

e [ is Lebesgue conservative if Leb(B) > 0 implies that
f"(B) N B # () for some n > 0.

e f is Lebesgue dissipative if not conservative.

e [ is Lebesgue totally dissipative if there is no invariant
set of positive measure on which it is conservative.

e If smooth unimodal map f is totally dissipative, then it has
an attractor A, i.e.,

- f(A)C A

— The basin {z € [0,1] : w(x) = A} has positive Lebesgue

measure.

— There is no smaller set with these two properties.
Moreover, A = w(c) and Leb(A) = 0. It can be one of the
following:

— a stable periodic orbit.

— a solenoidal attractor, namely if f is infinitely renor-

malizable. (E.g. the Feigenbaum-Coullet-Tresser map).

— a wild attractor: in this case, the basin has full mea-

sure, but is of first Baire category.



Interval dynamics - Fibonacci maps

Let f be a smooth unimodal map. For our purposes, it suffices to
look at the family:

f= far:[0,1] = [0,1], z— a(l — 2z —1]9).

with critical point ¢ = % and critical order ¢ > 0.

The iterate n is a cutting time if the image of the central branch
of f™ contains c. We denote cutting times by the strictly increasing

sequence
1:S0<Sl<82<...

We call f a Fibonacci map if its cutting times are the Fibonacci
numbers.

For each ¢ > 0, there is at least one (and if ¢ = 2k unique)

a = a({) such that f,, is Fibonacci.

From now on let f; = fq) ¢ be a family of Fibonacci maps parametrised

by its critical order.



Ergodic properties for smooth Fibonacci maps
The following properties are known for f:

(<2 fe has an acip which is super-polynomially
mixing, [CM, BLS],

2 <l <24¢e f;has an acip which is polynomially mixing with

) exponent tending to infinity as ¢ — 2, [KN, BS],
by < U < ¥ f¢ has a conservative o-finite acim,
</ fr has a wild attractor [BKNS], with dissipative

o-finite acim, [Ma].



Linear versions of the induced map:

A linearised version of the induced map will be called F), where A
denoted th exponential rate at which the distances |zj, —c| decrease.

It is a two-to-one cover of a countably piecewise interval map T :
(0,1] — (0,1] defined in Stratmann & Vogt [8M] as follows:

For n > 1, let V,, :== (A", \»"!] and define

o if z € W,
Ta(x) =9 . .
m if x € Vn, n 2 2.
/
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FIGURE 1. The maps T) : [0,1] — [0,1] and F} : [20, Z20] — [20, Z0]-
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Theorem A. For each A € (0,1), there is a countably piecewise
linear unimodal map fx (with |Wi| = [Wy| = 152 - X¥) such that the
induced map F\ is has affine branches.

Moreover:

a) The critical order £ = 3 + %ﬁl{/\).

b) If \ € (%, 1), i.e., £ > 5, then f\ has a wild attractor.

c) If X € [ﬁg’ %}, ie,4 <0 <5, then f\ has no wild attractor,
but an infinite o-finite acim.

d) If X € (0, ﬁg), e, € (3,4), then f\ has an acip.
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Theorem B. The countably piecewise linear Fibonacci map fy,
A € (0,1), with potential ¢y has the following thermodynamical
properties.

a) The conformal and variation pressure coincide:

Pcm((ﬁt) = P(¢t);

b) For t < ty, there ezists a unique equilibrium state v for
(I, fx, d¢); this is absolutely continuous w.r.t. the appropriate
conformal measure n;.

c) For t > t1, the unique equilibrium state for (I, f, ¢¢) is v,
the measure supported on the critical omega-limit set w(c). For
t =t1, v, is an equilibrium state, and if A € (0, ﬁg) then so
is the acip, denoted vy, ;

d) The map t — P(¢y) is real analytic on (—oo, t1). Furthermore
P(¢1) > 0 fort < t; and P(¢;) = 0 fort > t1, so there is a
phase transition at t = t;.
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Theorem C. The pressure function P(¢;) of the countably piece-
wise linear Fibonacci map fyr, A € (0,1), with potential ¢; has the
following shape:

a) On a left neighbourhood of t1, there exist 19 = 19(\),7) =
To(A) > 0 such that

T

e Vi ift<ti; <1land \ >
P(Cbt) > T(,) log 74 / e
To(1 —t)Tosr zft<1and3f )\<
(1+ 1—4At(1—A)t)2 _
where R = T and limy_,1 log R ~ 2(1 — 2\) for
A~ L
2

b) On a left neighbourhood of ti, there exist 11 = 1 (\), 7] =
71(\) > 0 such that

5 I
S N ift <t 1and/\>l
P(¢r) < ! Alog v / LS 5
7_1/(1 . t)m @ft <1 and f >\ %

¢) If A € (0,37 f) then limgy, £ P(¢s) < 0; otherwise (ie.,
Ac [3+\/gv 1)), limgy, P(¢s) = 0.
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Dimension results:

Let
Basy ={zx €1: f{(x) = w(c) as n — oo}

be the basin of w(c¢). The hyperbolic dimension is the supre-
mum of Hausdorff dimensions of hyperbolic sets A, i.e., A is f)-
invariant, compact but bounded away from c.

Theorem D.

1 if A< L
dimp,,(f\) = dimg(Bas;_)) = { log 4 ) 2
yp( ) ( 1 ) _m Zf)\ > %7

18 the first zero of the pressure function.
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Conformal measure and pressure:

Definition 1. A measure m on [0,1] is called ¢-conformal if for
any measurable set A C [0, 1] on which f : A — g(A) is a bijection,

m(s() = [ e am

A
For ¢ = —tlog|f’|, this reduces to

m(f(A)) = /A £ dm.

Definition 2. For a dynamical system g : X — X and a potential
¢ X — [—00,00], the conformal pressure for (X, g, ¢) is

Peowi(¢p) :=1inf {p € R: 3 a (¢ — p)-conformal measure} .
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Inducing and potential shifts:

If FF= f7 is an induced map, the potential ¢; induces to

7(x)—1
Oi(z) = Y diof(a).
=0

For ¢, = —tlog|f'|, the chain rule gives ®; = —tlog|F"|.

Note that a potential shift of p for f induces to a non-constant
potential shift for F"

¢, = —tlog |F'| — 7p.
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Finding conformal measures:

To find a p-conformal measure for 7, (CONSTANT potential
shift), we need to solve (with w} = m(V}))

Zwk =1 subject to w} > 0 for all k,

where the w} satisfy
wh = (1—M\)'e™®
wh = N(1—\)le™
wh = A1 —=Ne (1 —wh)

w§ = N1 -XNe?|[1- Z w},

k<j—1

To find a p-conformal measure for T) (NON CONSTANT po-
tential shift), we need to solve (with @ = m;(V}))

Zwk =1 subject to w}, > 0 for all k,

where the @} satisfy
Wt = (1 —N\)le P
Wy = N(1—\)fe P
@y = AN(1—NeP2(1—ah)

B = N1 =Ne P [ 1- )

k<j—1
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