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Renormalization of Interval Translation Maps

ITM introduced by Bruin & Troubetzkoy in 2003

Tα,β(x) =


x + α, x ∈ [0,1− α),

x + β, x ∈ [1− α,1− β),

x − 1 + β, x ∈ [1− β,1]

on the parameter space U = {(α, β) : 0 < β ≤ α ≤ 1}.
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Renormalization transforms
Tα,β into Tα′,β′ with:

(α′, β′) = G(α, β) =
(
β
α ,

β−1
α +
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Renormalization

L
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Types of parameters
I Finite Type: Gn(α, η) /∈ U◦ for some n ≥ 1. Then Tα,β reduces

to an interval exchange transformation.
I Infinite Type: Gn(α, η) ∈ U for all n ≥ 1. Then

Ω :=
⋂

n≥0 T n
α,β([0,1]) is a Cantor set with Tα,β a minimal

endomorphism.
The set of parameters (α, β) with Tα,β is of infinite type has Lebesgue
measure zero but positive Hausdorff dimension.
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S-adic Subshift
1 2 3

1
23

Symbolically, one renormalization step is given by the substitution

χk :


1→ 2
2→ 31k

3→ 31k−1

for k =
⌊1
α

⌋
∈ N

with unimodular incidence matrix

Ak =

0 k k − 1
1 0 0
0 1 1

 and det(Ak ) = −1.



We define a S-adic subshift based on a sequence of substitutions χki ,
ki ∈ N. The itinerary of the point 1 is

ρ = lim
i→∞

χk1 ◦ χk2 ◦ χk3 ◦ · · · ◦ χki (3).

Subshift X is the closure of {σn(ρ)}n∈N where σ is the left-shift.

Every ITM of infinite type in this family is uniquely characterised by a
sequence (ki )i∈N ⊂ N such that

k2i > 1 for infinitely many i ∈ N and k2j−1 > 1 for infinitely many j ∈ N.
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Ergodic Properties

Proposition

The S-adic subshift (X , σ), based on substitutions (χki )i∈N from an
ITM of infinite type, is
I minimal;

I uniquely ergodic if lim inf i ki <∞;
I not uniquely ergodic if lim inf i ki+1/ki > 1;
I linearly recurrent if (ki )i and the blocks of 1s are bounded.
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Weak Mixing

Definition
A system (X ,T ) is called weakly mixing if the Koopman operator

UT (f ) = f ◦ T

has 1 as its only eigenvalue.

If an eigenfunction f is
I in L2, then its eigenvalue is called measurable,
I continuous, then its eigenvalue is called continuous.



Eigenvalue Conditions

Conditions for (non)existence of eigenvalues go back to Host and
Veech.
I Typical weak mixing for interval exchange transformations:

Nogueira & Rudolph, Sinaı̆ & Ulcigrai, Avila & Forni.
I Conditions for Bratteli-Vershik systems by Bressaud, Durand,

Frank, Maass,... several papers.
I Can more or less be translated into behaviour of the unimodular

incidence matrices Aki , interpreted as toral automorphisms:
There is an eigenvalue

~tAk1Ak2 · · ·Akn mod 1→ 0, for some~t = (t , t , t) 6= ~0.

Lemma
The dynamics of z 7→ Ak1Ak2 · · ·Akn z mod 1 has one stable and two
unstable directions.
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Subtractive Algorithm
Determining whether~tAk1Ak2 · · ·Akn mod 1→ 0 reduces to a problem
for a “subtractive algorithm” on the simplex ∆ = {0 ≤ u ≤ u + v ≤ 1}:

Hk : (u, v) =
1

Dk
(v , 1− v) for Dk = k(1− v) + 1− u,

u

v

∆
∆k = Hk (∆)

1
k
1

k+1

• (1, 1)

`2,1,0

`3,1,0

`1,1,0

We have~tAk1Ak2 · · ·Akn mod 1→ 0 “if and only if”

(u, v) ∈ ∆ lies on a line `p,q,r = {u(q − r) = v(p − r) + q − p}.



Subtractive Algorithm

Facts about the subtractive algorithm H : ∆→ ∆:

H(x , y) = H−1
k (x , y) 7→

(
x + (k + 1)y − 1

x + y
,

x
x + y

)
if (u, v) ∈ ∆k .

I H is full Markov: H(∆k ) = ∆ for all k .
I the line L = {x + y = 1} consists of neutral period 2 points (and

( 1
2 ,

1
2 ) is fixed).

I every rational point in ∆ is eventually mapped into L (finite type
case).

I elsewhere H is eventually expanding (in Hilbert metric): every
infinite type (ki )i≥1 is realized by exactly one point (x , y) ∈ ∆◦.

Question: Does H preserve an (infinite) invariant measure� Leb?
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Results (weak mixing)

Theorem
Every (pre)periodic infinite type sequence (ki )i≥1 corresponds to a
weakly mixing ITM.

Theorem
Every infinite type sequence (ki )i≥1 such that the corresponding
(u, v) /∈

⋃
p,q,r `p,q,r and lim inf i ki <∞ corresponds to a weakly

mixing ITM.
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Results (eigenvalues)

Recall that every infinite type sequence (ki )i≥1 corresponds to a
unique (u, v) ∈ ∆.

Theorem
Almost every (w.r.t. 1-dim. Lebesgue) infinite type sequence (ki )i≥1
such that (u, v) ∈ `p,q,r corresponds to an ITM with a continuous
eigenvalue e2πit of the Koopman operator.

However, for every p,q, r ∈ N there exist parameters

(u, v) = (u(t), v(t)) ∈ `p,q,r

such that e2πit is not a continuous eigenvalue.

Question: Do there exists ITMs in this family where the eigenvalue is
measurable but not continuous?
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Measurable Eigenvalues
Conditions for measurable eigenvalues are more difficult to compute:

Theorem (Durand, Frank, Maass in 2019)

There is a sequence of functions ρn : Vn+1 → R such that

gn(x) := t
(

S̃n(x) + ρn(w)
)

mod 1

converges for µ-a.e. x ∈ XBV as n→∞,

where S̃n(x) =
∑n

j=1〈s̃j (x),hj (v)〉 is the minimal number of steps to
the base of a tower.

Theorem
If lim infn kn <∞ and~t 6∈W s, then the corresponding ITM is weakly
mixing.

It is an open question if there are ITMs with measurable and
non-continuous eigenvalues.



Results for Continuous Eigenvalues

Theorem (Host in 1986)

For a primitive substitution system a sufficient condition to have an
eigenvalue e2πit for some t ∈ (0,1) is

∞∑
n=1

|||~tAn||| <∞, ~t = (t , t , t),

where |||x ||| is the distance of a vector to the nearest integer lattice
point.

This condition was later expanded to hold for linearly recurrent S-adic
shifts and their continuous eigenvalues:

∞∑
n=1

|||~tÃ1 · · · Ãn||| <∞, ~t = (t , t , t),
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