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Lorenz Flow

The appropriate Navier-Stokes equations reduce (via Galerkin
method) to the Lorenz Equations:

ẋ = σ(y − x) σ, ρ, β > 0 relate
ẏ = ρx − xz − y to the Prandl and
ż = xy − βz Rayleigh numbers



Lorenz Flow
ẋ = σ(y − x) σ, ρ, β > 0 relate
ẏ = ρx − xz − y to the Prandl and
ż = xy − βz Rayleigh numbers

For certain parameters (classical choice σ = 10, β = 8
3 , ρ = 28) the

Lorenz equations have a chaotic attractor.

http://www.malinc.se/m/Lorenz.php



Lorenz Flow

Afraı̆movič, Bykov, & Shilnikov and independently Guckenheimer &
Williams made geometrical models to explain the dynamics of the
Lorenz system.



Mixing (formal definitions)

A measure µ is invariant for the flow φt if

µ(φ−t (A)) = µ(A) for all t > 0 and measurable A.

We think of physical measures, i.e., those µ for which

µ(A) = inf
ε→0

lim
T→∞

1
T

∫ T

0
1B(A;ε) ◦ φt (x) dt

for x in a set of positive Lebesgue measure.

The measure mixing if the correlation coefficients tend to 0:

ρt (v ,w) :=

∫
X

(v ◦ φt ) · w dµ→ 0

for appropriate observables v ,w : X → R.

The speed at which ρt tends to 0 is called the rate of mixing.
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Mixing (heuristics)

Dynamical systems that are uniformly hyperbolic, i.e., which have
uniformly exponential contraction (in stable direction) and
exponential expansion (in unstable directions, tend to have
exponentially mixing physical measures.
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log 2
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1+x and baker map: ν = Leb.
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Pomeau-Manneville maps

A classical system with non-uniform expansion is the
Pomeau-Manneville map with parameter α > 0:

Tα : [0,1]→ [0,1], x 7→ x(1 + xα) mod 1.

The neutral fixed point (T ′α(0) = 1) makes the expansion non-uniform.

By taking the first return map to the right part, we obtain uniform
expansion.
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Pomeau-Manneville maps

0 0

1

0

T : x 7→ x(1 + xα) mod 1

Y

Y is the domain of
the second branch and

τ = 1

τ(y) = min{n ≥ 1 : T n(y) ∈ Y}.

τ = 2

The first return map
RY = T τ

is uniformly expanding,τ = 3
and preserves a measure

ν ≈ Leb.
with big tails

ν({τ > n}}) ∼ n1−1/α.
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Pomeau-Manneville maps

Theorem [Liverani-Saussol-Vaienti, Young, ...]

The Pomeau-Manneville map has an invariant measure µ ≈ Leb.
This measure is
I infinite if α ≥ 1 (the physical measure is δ0);
I finite if α < 1, and µ is the physical measure.
I the rate of mixing is polynomial if α < 1

2 : ρf (v ,w) ≤ Cv ,w n1− 1
α

The upper bound in the rate of mixing is sharp. Techniques to prove
this were developed by Sarig, Gouëzel (and by Melbourne & Terhesiu
in infinite measure setting). Requires: “big tails” are regularly varying:

ν(τ > n) = n−β`(n)

where ` is slowly varying (e.g. `(n)→ C 6= 0 or `(n) = (log n)γ ).
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Mixing in the Lorenz system

Theorem [Tucker 2000, rigorous computer-assisted]

The geometric Lorenz model is a valid description of the Lorenz
equations. In particular, the Lorenz attractor exists.

Theorem [Araújo et al. 2009]

The Lorenz system has a physical measure µ supported on the
Lorenz attractor A, and it has a positive Lyapunov exponent χ:

For µ-a.e. x ∈ A ∃ v ∈ TxR3 s.t. limt
1
t log ‖Dφt (v)‖ = χ > 0.

Theorem [Araújo & Melbourne 2016]

This physical measure is mixing at an exponential rate.
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Lorenz Flow - Local form at 0

Differential equation near 0 (hyperbolic saddle):
ẋ = +λ3x
ẏ = −λ1y
ż = −λ2z

+ O(2) 0 < λ3 < λ2 < λ1

Dulac times have exponential tails.
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Lorenz Flow - Surgery at 0

Differential equation near 0 (neutral saddle):


ẋ = x(a0x2 + a1xz + a2z2)

ẏ = −λ1y
ż = −y(b0x2 + b1xz + b2z2)

+O(4)

a0, a2, b0, b2 ≥ 0, a1, b1 ∈ R
∆ := a2b0 − a0b2 6= 0

a2
1 < 4a0a2, b2

1 < 4b0b2

b1
a1

= a0b2+a2+2b0b2
a2b0+a2+2a0a2

.

Question: Do the Dulac times have polynomial tails?
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Dulac times

x

z

•

•

η

ζ
•
0

{
ẋ = x(a0x2 + a1xz + a2z2)

ż = −y(b0x2 + b1xz + b2z2)
+O(4)

The Dulac time T is the time needed to flow from an incoming
transversal {z = η} to an outgoing transversal {x = ζ}.



Dulac times

x

y

(x , η)•

(ζ, y))•

η

ζ•0

(∗)

{
ẋ = x(a0x2 + a1xz + a2z2)

ẏ = −y(b0x2 + b1xz + b2z2)
+O(4)

Theorem (regularly varying Dulac times)

Define
Γ0 :=

2a0

a0 + b0
, Γ2 :=

2b2

a2 + b2
.

There exists Cx ,Cy > 0 such that the Dulac times (as, x , y → 0)

T = Cxx−Γ2 (1 +O(xΓ2/2)) = Cy y−Γ0 (1 +O(yΓ0/2)).



Neutral Lorenz flows
Consider the Lorenz flow after surgery; local form near 0:

ẋ = x(a0x2 + a1xz + a2z2)

ẏ = −λ1y
ż = −y(b0x2 + b1xz + b2z2)

+O(4)

a0, a2, b0, b2 ≥ 0, a1, b1 ∈ R
∆ := a2b0 − a0b2 6= 0

a2
1 < 4a0a2, b2

1 < 4b0b2

b1
a1

= a0b2+a2+2b0b2
a2b0+a2+2a0a2

.

Theorem (Bruin & Canales, 2022)

The above neutral Lorenz flow has correlation coefficients:

ρt (v ,w) ≤ C · (‖v‖Cη + ‖v‖C0,η ) · ‖w‖Cm,η · t−β , β =
a2 + b2

2b2
,

for C > 0 depending only on the flow and η-Hölder functions v and w.

‖v‖C0,η = sup
x∈M,t>0

|v(T t (x))− v(x)|
tη

, ‖w‖Cm,η =
m∑

k=0

‖∂k
t w‖Cη .

for η-Hölder norm ‖v‖Cη = supx 6=y
|v(x)−v(y)|
|x−y|η .
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Almost Anosov maps
Definition: T : X → X is called an Anosov map if the whole space X
is hyperbolic, i.e., the tangent bundle of X has a continuous splitting
into stable and unstable spaces along which the contraction and
expansion is uniform.

Examples are linear toral automorphisms, e.g.

T (x) = Mx mod 1, M =

(
1 1
1 0

)

unstable direction

stable
direction

J3

J2

J1

J2
J1

J3

M2

mod1

Figure: The Markov partition for TM : T2 → T2; the catmap is T 2
M .
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Almost Anosov maps
Definition: T : X → X is almost Anosov if the whole space X is (now
non-uniformly hyperbolic, except for finitely many periodic orbits.

The notion of almost Anosov map goes back to Anatoli Katok [1979],
who created area preserving examples. Later versions by Hu &
Young [1995], Hu [2000] and Young & Zhang [2017]:

Let T be an almost Anosov map with fixed point 0 such that

(∗∗) T
(

x
y

)
=

(
x(1 + a0x2 + a1xy + a2y2)
y(1− a0x2 − a1xy − b2y2)

)
.

in local coordinates near 0.

Theorem (Hu 2000)

I If a2 > 2b2 and a1 = 0 = b1 and a0b2 > a2b0, then T admits a
physical probability measure.

I If a2 < b2/2 and a1 6= 0 6= b1, then T admits an infinite “physical”
measure.
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Almost Anosov maps

Hu & Zhang [2017] gave polynomial upper bounds for mixing rates of
the physical measure of the almost Anosov map T .

But, T from (∗∗) is the time-1 map of a flow in (∗). The tail estimates
of (∗) are far more precise (exact exponent, slowly varying).

I Exact distinction between finite and infinite “physical” measure:

T has a physical probability measure iff β =
a2 + b2

2b2
> 1.

I Exact mixing rates: upper and lower, finite and infinite measure.

ρn(v ,w) ∼ C(v ,w) n1−β if β > 1,

Analogous formula on transfer operator LT if measure is infinite.
I Various other statistical limit theorems.
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Almost Anosov maps

Set T as the time-1 map of

(∗)

{
ẋ = x(a0x2 + a1xy + a2y2)

ẏ = −y(b0x2 + b1xy + b2y2)
+O(4)

with restrictions on parameters as before.

Theorem (Bruin & Terhesiu 2017, mixing for∞ measure)

Let T be an almost Anosov map of the torus as in (∗∗) with β ∈ ( 1
2 ,1),

i.e., there is an infinite “physical” measure µ.
Then for all observables v ,w ∈ C1 supported outside a
neighbourhood of the fixed point, we have

lim
n→∞

n1−β
∫

v · w ◦ T n dµ =
C0

Γ(β)(1− Γ(β))

∫
v dµ

∫
w dµ

for Γ-function Γ and C0 comes from the big tails µ(τ > n) ∼ C0n−β .
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ẋ = x(a0x2 + a1xy + a2y2)
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Almost Anosov maps
In case that T is the time-1 map of a cubic (∗), i.e., without higher
order terms, then the tail estimates can be improved to estimates of
the small tails:

µ(τ = n) = C0n−(β+1)(1 + o(1)).

Theorem (Bruin & Terhesiu 2017, mixing for∞ measure)

Let T be an almost Anosov map above, with β ∈ ( 1
2 ,1) and

q = max{j ∈ N : (j + 1)β > j}.

Then for all observables as previously there are (generically nonzero)
real constants d1, . . . ,dq ∈ R such that∫

v · w ◦ T n dµ ∼
(

d0nβ−1 + d1n2(β−1) + · · ·+ dqn(q+1)(β−1)
)

×
∫

v dµ
∫

w dµ.
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Almost Anosov flows (volume-preserving)

The almost Anosov flow can be made volume preserving by setting
the divergence of the vector field equal to zero. For the local
parameters this means:

3a0 = b0 a1 = b1 a2 = 3b2.

Then the condition b1
a1

= a0b2+a2+2b0b2
a2b0+a2+2a0a2

is automatically satisfied.

Use the change of coordinates

x̄ =
√

a0x , ȳ =
√

b2y , γ̄ = a1/
√

a0b2 ∈ (−4,4)

to transform the differential equation into ˙̄x
˙̄y
˙̄z

 =

 x̄(x̄2 + γ̄x̄ ȳ + 3ȳ2)
−ȳ(3x̄2 + γ̄x̄ ȳ + ȳ2))

1 + w̄(x̄ , ȳ)

+O(4),

for some real-valued function w̄ .



Almost Anosov flows (volume-preserving)
Theorem (Bruin, 2020)

Let γ̄ ∈ (−4,4) and v = v0 + o(ρ), where
∫ τ

0 v0 ◦ φt dt is
homogeneous of order ρ > −2 in local coordinates.

1. If ρ ∈ (0,∞), then v satisfies the Central Limit Theorem, i.e.,∫ t
0 v ◦ φs ds − t

∫
v dVol

σ
√

t
⇒dist N (0,1) as t →∞,

where the variance σ2 > 0 unless
∫ τ

0 v ◦ φt dt is a coboundary.
2. If ρ = 0, then v satisfies the Central Limit Theorem with

non-standard scaling
√

t log t , i.e.,∫ t
0 v ◦ φs ds − t

∫
v dVol

σ
√

t log t
⇒dist N (0,1) as t →∞,

and the variance σ2 > 0 unless
∫ τ

0 v ◦ φt dt is a coboundary.

3. If ρ ∈ (−2,0) then v satisfies a Stable Law of order 4
2−ρ ∈ (1,2).





En toen kwam er een olifant met een heel erg lange snuit....
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