Mixing rates for almost Anosov maps and flows

Henk Bruin

October 26, Colloquium, Leiden

Lorenz Flow

The appropriate Navier-Stokes equations reduce (via Galerkin method) to the Lorenz Equations:

$$
\begin{cases}\dot{x}=\sigma(y-x) & \sigma, \rho, \beta>0 \text { relate } \\ \dot{y}=\rho x-x z-y & \text { to the Prandl and } \\ \dot{z}=x y-\beta z & \text { Rayleigh numbers }\end{cases}
$$

Lorenz Flow

$$
\begin{cases}\dot{x}=\sigma(y-x) & \sigma, \rho, \beta>0 \text { relate } \\ \dot{y}=\rho x-x z-y & \text { to the Prandl and } \\ \dot{z}=x y-\beta z & \text { Rayleigh numbers }\end{cases}
$$

For certain parameters (classical choice $\sigma=10, \beta=\frac{8}{3}, \rho=28$) the Lorenz equations have a chaotic attractor.

Lorenz Flow

Afraĭmovič, Bykov, \& Shilnikov and independently Guckenheimer \& Williams made geometrical models to explain the dynamics of the Lorenz system.

Mixing (formal definitions)

A measure μ is invariant for the flow ϕ^{t} if

$$
\mu\left(\phi^{-t}(A)\right)=\mu(A) \quad \text { for all } t>0 \text { and measurable } A
$$

Mixing (formal definitions)

A measure μ is invariant for the flow ϕ^{t} if

$$
\mu\left(\phi^{-t}(A)\right)=\mu(A) \quad \text { for all } t>0 \text { and measurable } A \text {. }
$$

We think of physical measures, i.e., those μ for which

$$
\mu(A)=\inf _{\varepsilon \rightarrow 0} \lim _{T \rightarrow \infty} \frac{1}{T} \int_{0}^{T} 1_{B(A ; \varepsilon)} \circ \phi^{t}(x) d t
$$

for x in a set of positive Lebesgue measure.

Mixing (formal definitions)

A measure μ is invariant for the flow ϕ^{t} if

$$
\mu\left(\phi^{-t}(A)\right)=\mu(A) \quad \text { for all } t>0 \text { and measurable } A \text {. }
$$

We think of physical measures, i.e., those μ for which

$$
\mu(A)=\inf _{\varepsilon \rightarrow 0} \lim _{T \rightarrow \infty} \frac{1}{T} \int_{0}^{T} 1_{B(A ; \varepsilon)} \circ \phi^{t}(x) d t
$$

for x in a set of positive Lebesgue measure.
The measure mixing if the correlation coefficients tend to 0 :

$$
\rho_{t}(v, w):=\int_{X}\left(v \circ \phi^{t}\right) \cdot w d \mu \rightarrow 0
$$

for appropriate observables $v, w: X \rightarrow \mathbb{R}$.
The speed at which ρ_{t} tends to 0 is called the rate of mixing.

Mixing (heuristics)

Dynamical systems that are uniformly hyperbolic, i.e., which have uniformly exponential contraction (in stable direction) and exponential expansion (in unstable directions, tend to have exponentially mixing physical measures.

Mixing (heuristics)

Dynamical systems that are uniformly hyperbolic, i.e., which have uniformly exponential contraction (in stable direction) and exponential expansion (in unstable directions, tend to have exponentially mixing physical measures.

Figure 1 The baker map

Toy examples: Gauss map: $d \nu=\frac{1}{\log 2} \frac{d x}{1+x}$ and baker map: $\nu=L e b$.

Pomeau-Manneville maps

A classical system with non-uniform expansion is the Pomeau-Manneville map with parameter $\alpha>0$:

$$
T_{\alpha}:[0,1] \rightarrow[0,1], \quad x \mapsto x\left(1+x^{\alpha}\right) \bmod 1
$$

The neutral fixed point $\left(T_{\alpha}^{\prime}(0)=1\right)$ makes the expansion non-uniform.

Pomeau-Manneville maps

A classical system with non-uniform expansion is the Pomeau-Manneville map with parameter $\alpha>0$:

$$
T_{\alpha}:[0,1] \rightarrow[0,1], \quad x \mapsto x\left(1+x^{\alpha}\right) \bmod 1
$$

The neutral fixed point $\left(T_{\alpha}^{\prime}(0)=1\right)$ makes the expansion non-uniform.

By taking the first return map to the right part, we obtain uniform expansion.

Pomeau-Manneville maps

Pomeau-Manneville maps

Y is the domain of the second branch and

Pomeau-Manneville maps

Pomeau-Manneville maps

Y is the domain of the second branch and $\tau(y)=\min \left\{n \geq 1: T^{n}(y) \in Y\right\}$.

The first return map

$$
R_{Y}=T^{\tau}
$$

is uniformly expanding,

Pomeau-Manneville maps

Y is the domain of the second branch and $\tau(y)=\min \left\{n \geq 1: T^{n}(y) \in Y\right\}$.

The first return map

$$
R_{Y}=T^{\tau}
$$

is uniformly expanding, and preserves a measure

$$
\nu \approx L e b .
$$

with big tails

$$
\nu(\{\tau>n\}\}) \sim n^{1-1 / \alpha} .
$$

Pomeau-Manneville maps

Theorem [Liverani-Saussol-Vaienti, Young, ...]

The Pomeau-Manneville map has an invariant measure $\mu \approx$ Leb.
This measure is

- infinite if $\alpha \geq 1$ (the physical measure is δ_{0});
- finite if $\alpha<1$, and μ is the physical measure.
- the rate of mixing is polynomial if $\alpha<\frac{1}{2}: \quad \rho_{f}(v, w) \leq C_{v, w} n^{1-\frac{1}{\alpha}}$

Pomeau-Manneville maps

Theorem [Liverani-Saussol-Vaienti, Young, ...]

The Pomeau-Manneville map has an invariant measure $\mu \approx$ Leb.
This measure is

- infinite if $\alpha \geq 1$ (the physical measure is δ_{0});
- finite if $\alpha<1$, and μ is the physical measure.
- the rate of mixing is polynomial if $\alpha<\frac{1}{2}: \quad \rho_{f}(v, w) \leq C_{v, w} n^{1-\frac{1}{\alpha}}$

The upper bound in the rate of mixing is sharp. Techniques to prove this were developed by Sarig, Gouëzel (and by Melbourne \& Terhesiu in infinite measure setting). Requires: "big tails" are regularly varying:

$$
\nu(\tau>n)=n^{-\beta} \ell(n)
$$

where ℓ is slowly varying (e.g. $\ell(n) \rightarrow C \neq 0$ or $\left.\ell(n)=(\log n)^{\gamma}\right)$.

Mixing in the Lorenz system

Theorem [Tucker 2000, rigorous computer-assisted]
The geometric Lorenz model is a valid description of the Lorenz equations. In particular, the Lorenz attractor exists.

Mixing in the Lorenz system

Theorem [Tucker 2000, rigorous computer-assisted]

The geometric Lorenz model is a valid description of the Lorenz equations. In particular, the Lorenz attractor exists.

Theorem [Araújo et al. 2009]

The Lorenz system has a physical measure μ supported on the Lorenz attractor A, and it has a positive Lyapunov exponent χ :
For μ-a.e. $x \in A \exists v \in T_{x} \mathbb{R}^{3}$ s.t. $\lim _{t} \frac{1}{t} \log \left\|D \phi^{t}(v)\right\|=\chi>0$.

Mixing in the Lorenz system

Theorem [Tucker 2000, rigorous computer-assisted]

The geometric Lorenz model is a valid description of the Lorenz equations. In particular, the Lorenz attractor exists.

Theorem [Araújo et al. 2009]

The Lorenz system has a physical measure μ supported on the Lorenz attractor A, and it has a positive Lyapunov exponent χ :
For μ-a.e. $x \in A \exists v \in T_{x} \mathbb{R}^{3}$ s.t. $\lim _{t} \frac{1}{t} \log \left\|D \phi^{t}(v)\right\|=\chi>0$.

Theorem [Araújo \& Melbourne 2016]

This physical measure is mixing at an exponential rate.

Lorenz Flow - Local form at 0

Lorenz Flow - Local form at 0

Differential equation near 0 (hyperbolic saddle):

$$
\left\{\begin{array}{l}
\dot{x}=+\lambda_{3} x \\
\dot{y}=-\lambda_{1} y \quad+\mathcal{O}(2) \quad 0<\lambda_{3}<\lambda_{2}<\lambda_{1} \\
\dot{z}=-\lambda_{2} z
\end{array}\right.
$$

Dulac times have exponential tails.

Lorenz Flow - Surgery at 0

Lorenz Flow - Surgery at 0

Differential equation near 0 (neutral saddle):

$$
\begin{cases}\dot{x}=x\left(a_{0} x^{2}+a_{1} x z+a_{2} z^{2}\right) & a_{0}, a_{2}, b_{0}, b_{2} \geq 0, a_{1}, b_{1} \in \mathbb{R} \tag{4}\\ \dot{y}=-\lambda_{1} y & \Delta:=a_{2} b_{0}-a_{0} b_{2} \neq 0 \\ \dot{z}=-y\left(b_{0} x^{2}+b_{1} x z+b_{2} z^{2}\right) & +\mathcal{O}(4) \\ & a_{1}^{2}<4 a_{0} a_{2}, b_{1}^{2}<4 b_{0} b_{2} \\ \frac{b_{1}}{a_{1}}=\frac{a_{0} b_{2}+a_{2}+2 b_{0} b_{2}}{a_{2} b_{0}+a_{2}+2 a_{0} a_{2}}\end{cases}
$$

Question: Do the Dulac times have polynomial tails?

Dulac times

The Dulac time T is the time needed to flow from an incoming transversal $\{z=\eta\}$ to an outgoing transversal $\{x=\zeta\}$.

Dulac times

Theorem (regularly varying Dulac times)

Define

$$
\Gamma_{0}:=\frac{2 a_{0}}{a_{0}+b_{0}}, \quad \Gamma_{2}:=\frac{2 b_{2}}{a_{2}+b_{2}} .
$$

There exists $C_{x}, C_{y}>0$ such that the Dulac times (as, $x, y \rightarrow 0$)

$$
T=C_{x} x^{-\Gamma_{2}}\left(1+\mathcal{O}\left(x^{\Gamma_{2} / 2}\right)\right)=C_{y} y^{-\Gamma_{0}}\left(1+\mathcal{O}\left(y^{\Gamma_{0} / 2}\right)\right)
$$

Neutral Lorenz flows

Consider the Lorenz flow after surgery; local form near 0:

$$
\left\{\begin{array}{l}
\dot{x}=x\left(a_{0} x^{2}+a_{1} x z+a_{2} z^{2}\right) \\
\dot{y}=-\lambda_{1} y \\
\dot{z}=-y\left(b_{0} x^{2}+b_{1} x z+b_{2} z^{2}\right)
\end{array}+\mathcal{O}(4)\right.
$$

$$
\begin{aligned}
& a_{0}, a_{2}, b_{0}, b_{2} \geq 0, a_{1}, b_{1} \in \mathbb{R} \\
& \Delta:=a_{2} b_{0}-a_{0} b_{2} \neq 0 \\
& a_{1}^{2}<4 a_{0} a_{2}, b_{1}^{2}<4 b_{0} b_{2} \\
& \frac{b_{1}}{a_{1}}=\frac{a_{0} b_{2}+a_{2}+2 b_{0} b_{2}}{a_{2} b_{0}+a_{2}+2 a_{0} a_{2}}
\end{aligned}
$$

Theorem (Bruin \& Canales, 2022)

The above neutral Lorenz flow has correlation coefficients:

$$
\rho_{t}(v, w) \leq C \cdot\left(\|v\|_{C^{\eta}}+\|v\|_{C^{0, \eta}}\right) \cdot\|w\|_{C^{m, \eta}} \cdot t^{-\beta}, \quad \beta=\frac{a_{2}+b_{2}}{2 b_{2}}
$$

for $C>0$ depending only on the flow and η-Hölder functions v and w.

Neutral Lorenz flows

Consider the Lorenz flow after surgery; local form near 0:

$$
\left\{\begin{array}{l}
\dot{x}=x\left(a_{0} x^{2}+a_{1} x z+a_{2} z^{2}\right) \\
\dot{y}=-\lambda_{1} y \\
\dot{z}=-y\left(b_{0} x^{2}+b_{1} x z+b_{2} z^{2}\right)
\end{array}+\mathcal{O}(4)\right.
$$

$$
\begin{aligned}
& a_{0}, a_{2}, b_{0}, b_{2} \geq 0, a_{1}, b_{1} \in \mathbb{R} \\
& \Delta:=a_{2} b_{0}-a_{0} b_{2} \neq 0 \\
& a_{1}^{2}<4 a_{0} a_{2}, b_{1}^{2}<4 b_{0} b_{2} \\
& \frac{b_{1}}{a_{1}}=\frac{a_{0} b_{2}+a_{2}+2 b_{0} b_{2}}{a_{2} b_{0}+a_{2}+2 a_{0} a_{2}}
\end{aligned}
$$

Theorem (Bruin \& Canales, 2022)

The above neutral Lorenz flow has correlation coefficients:

$$
\rho_{t}(v, w) \leq C \cdot\left(\|v\|_{C^{\eta}}+\|v\|_{C^{0, \eta}}\right) \cdot\|w\|_{C^{m, \eta}} \cdot t^{-\beta}, \quad \beta=\frac{a_{2}+b_{2}}{2 b_{2}}
$$

for $C>0$ depending only on the flow and η-Hölder functions v and w.

$$
\|v\|_{C^{0, \eta}}=\sup _{x \in M, t>0} \frac{\left|v\left(T^{t}(x)\right)-v(x)\right|}{t^{\eta}}, \quad\|w\|_{C^{m, \eta}}=\sum_{k=0}^{m}\left\|\partial_{t}^{k} w\right\|_{C^{\eta}} .
$$

for η-Hölder norm $\|v\|_{C^{n}}=\sup _{x \neq y} \frac{|v(x)-v(y)|}{|x-y|^{\eta}}$.

Almost Anosov maps

Definition: $T: X \rightarrow X$ is called an Anosov map if the whole space X is hyperbolic, i.e., the tangent bundle of X has a continuous splitting into stable and unstable spaces along which the contraction and expansion is uniform.

Almost Anosov maps

Definition: $T: X \rightarrow X$ is called an Anosov map if the whole space X is hyperbolic, i.e., the tangent bundle of X has a continuous splitting into stable and unstable spaces along which the contraction and expansion is uniform.

Examples are linear toral automorphisms, e.g.

$$
T(x)=M x \bmod 1, \quad M=\left(\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right)
$$

Figure: The Markov partition for $T_{M}: \mathbb{T}^{2} \rightarrow \mathbb{T}^{2}$; the catmap is T_{M}^{2}.

Almost Anosov maps

Definition: $T: X \rightarrow X$ is almost Anosov if the whole space X is (now non-uniformly hyperbolic, except for finitely many periodic orbits.

Almost Anosov maps

Definition: $T: X \rightarrow X$ is almost Anosov if the whole space X is (now non-uniformly hyperbolic, except for finitely many periodic orbits.

The notion of almost Anosov map goes back to Anatoli Katok [1979], who created area preserving examples. Later versions by Hu \& Young [1995], Hu [2000] and Young \& Zhang [2017]:

Let T be an almost Anosov map with fixed point 0 such that

$$
(* *) \quad T\binom{x}{y}=\binom{x\left(1+a_{0} x^{2}+a_{1} x y+a_{2} y^{2}\right)}{y\left(1-a_{0} x^{2}-a_{1} x y-b_{2} y^{2}\right)} .
$$

in local coordinates near 0.

Almost Anosov maps

Definition: $T: X \rightarrow X$ is almost Anosov if the whole space X is (now non-uniformly hyperbolic, except for finitely many periodic orbits.

The notion of almost Anosov map goes back to Anatoli Katok [1979], who created area preserving examples. Later versions by Hu \& Young [1995], Hu [2000] and Young \& Zhang [2017]:

Let T be an almost Anosov map with fixed point 0 such that

$$
(* *) \quad T\binom{x}{y}=\binom{x\left(1+a_{0} x^{2}+a_{1} x y+a_{2} y^{2}\right)}{y\left(1-a_{0} x^{2}-a_{1} x y-b_{2} y^{2}\right)} .
$$

in local coordinates near 0 .

Theorem (Hu 2000)

- If $a_{2}>2 b_{2}$ and $a_{1}=0=b_{1}$ and $a_{0} b_{2}>a_{2} b_{0}$, then T admits a physical probability measure.
- If $a_{2}<b_{2} / 2$ and $a_{1} \neq 0 \neq b_{1}$, then T admits an infinite "physical" measure.

Almost Anosov maps

Hu \& Zhang [2017] gave polynomial upper bounds for mixing rates of the physical measure of the almost Anosov map T.

But, T from $(* *)$ is the time-1 map of a flow in $(*)$. The tail estimates of $(*)$ are far more precise (exact exponent, slowly varying).

Almost Anosov maps

Hu \& Zhang [2017] gave polynomial upper bounds for mixing rates of the physical measure of the almost Anosov map T.

But, T from $(* *)$ is the time-1 map of a flow in $(*)$. The tail estimates of $(*)$ are far more precise (exact exponent, slowly varying).

- Exact distinction between finite and infinite "physical" measure:
T has a physical probability measure iff $\beta=\frac{a_{2}+b_{2}}{2 b_{2}}>1$.

Almost Anosov maps

Hu \& Zhang [2017] gave polynomial upper bounds for mixing rates of the physical measure of the almost Anosov map T.

But, T from $(* *)$ is the time-1 map of a flow in $(*)$. The tail estimates of $(*)$ are far more precise (exact exponent, slowly varying).

- Exact distinction between finite and infinite "physical" measure:

$$
T \text { has a physical probability measure iff } \beta=\frac{a_{2}+b_{2}}{2 b_{2}}>1 \text {. }
$$

- Exact mixing rates: upper and lower, finite and infinite measure.

$$
\rho_{n}(v, w) \sim C(v, w) n^{1-\beta} \quad \text { if } \beta>1,
$$

Analogous formula on transfer operator \mathcal{L}_{T} if measure is infinite.

Almost Anosov maps

Hu \& Zhang [2017] gave polynomial upper bounds for mixing rates of the physical measure of the almost Anosov map T.

But, T from $(* *)$ is the time-1 map of a flow in $(*)$. The tail estimates of $(*)$ are far more precise (exact exponent, slowly varying).

- Exact distinction between finite and infinite "physical" measure:

$$
T \text { has a physical probability measure iff } \beta=\frac{a_{2}+b_{2}}{2 b_{2}}>1 \text {. }
$$

- Exact mixing rates: upper and lower, finite and infinite measure.

$$
\rho_{n}(v, w) \sim C(v, w) n^{1-\beta} \quad \text { if } \beta>1,
$$

Analogous formula on transfer operator \mathcal{L}_{T} if measure is infinite.

- Various other statistical limit theorems.

Almost Anosov maps

Set T as the time-1 map of

$$
(*) \quad\left\{\begin{array}{l}
\dot{x}=x\left(a_{0} x^{2}+a_{1} x y+a_{2} y^{2}\right) \\
\dot{y}=-y\left(b_{0} x^{2}+b_{1} x y+b_{2} y^{2}\right)
\end{array} \quad+\mathcal{O}(4)\right.
$$

with restrictions on parameters as before.

Almost Anosov maps

Set T as the time-1 map of

$$
(*) \quad\left\{\begin{array}{l}
\dot{x}=x\left(a_{0} x^{2}+a_{1} x y+a_{2} y^{2}\right) \\
\dot{y}=-y\left(b_{0} x^{2}+b_{1} x y+b_{2} y^{2}\right)
\end{array} \quad+\mathcal{O}(4)\right.
$$

with restrictions on parameters as before.

Theorem (Bruin \& Terhesiu 2017, mixing for ∞ measure)

Let T be an almost Anosov map of the torus as in ($* *)$ with $\beta \in\left(\frac{1}{2}, 1\right)$, i.e., there is an infinite "physical" measure μ.

Then for all observables $v, w \in C^{1}$ supported outside a neighbourhood of the fixed point, we have

$$
\lim _{n \rightarrow \infty} n^{1-\beta} \int v \cdot w \circ T^{n} d \mu=\frac{C_{0}}{\Gamma(\beta)(1-\Gamma(\beta))} \int v d \mu \int w d \mu
$$

for Γ-function Γ and C_{0} comes from the big tails $\mu(\tau>n) \sim C_{0} n^{-\beta}$.

Almost Anosov maps

In case that T is the time-1 map of a cubic $(*)$, i.e., without higher order terms, then the tail estimates can be improved to estimates of the small tails:

$$
\mu(\tau=n)=C_{0} n^{-(\beta+1)}(1+o(1))
$$

Almost Anosov maps

In case that T is the time-1 map of a cubic (*), i.e., without higher order terms, then the tail estimates can be improved to estimates of the small tails:

$$
\mu(\tau=n)=C_{0} n^{-(\beta+1)}(1+o(1))
$$

Theorem (Bruin \& Terhesiu 2017, mixing for ∞ measure)

Let T be an almost Anosov map above, with $\beta \in\left(\frac{1}{2}, 1\right)$ and

$$
q=\max \{j \in \mathbb{N}:(j+1) \beta>j\} .
$$

Then for all observables as previously there are (generically nonzero) real constants $d_{1}, \ldots, d_{q} \in \mathbb{R}$ such that

$$
\begin{aligned}
\int v \cdot w \circ T^{n} d \mu \sim & \left(d_{0} n^{\beta-1}+d_{1} n^{2(\beta-1)}+\cdots+d_{q} n^{(q+1)(\beta-1)}\right) \\
& \times \int v d \mu \int w d \mu .
\end{aligned}
$$

Almost Anosov flows (volume-preserving)

The almost Anosov flow can be made volume preserving by setting the divergence of the vector field equal to zero. For the local parameters this means:

$$
3 a_{0}=b_{0} \quad a_{1}=b_{1} \quad a_{2}=3 b_{2}
$$

Then the condition $\frac{b_{1}}{a_{1}}=\frac{a_{0} b_{2}+a_{2}+2 b_{0} b_{2}}{a_{2} b_{0}+a_{2}+2 a_{0} a_{2}}$ is automatically satisfied.
Use the change of coordinates

$$
\bar{x}=\sqrt{a_{0}} x, \bar{y}=\sqrt{b_{2}} y, \bar{\gamma}=a_{1} / \sqrt{a_{0} b_{2}} \in(-4,4)
$$

to transform the differential equation into

$$
\left(\begin{array}{c}
\dot{\bar{x}} \\
\overline{\bar{y}} \\
\dot{\bar{z}}
\end{array}\right)=\left(\begin{array}{c}
\bar{x}\left(\bar{x}^{2}+\bar{\gamma} \bar{x} \bar{y}+3 \bar{y}^{2}\right) \\
\left.-\bar{y}\left(3 \bar{x}^{2}+\bar{y} \bar{x} \bar{y}+\bar{y}^{2}\right)\right) \\
1+\bar{w}(\bar{x}, \bar{y})
\end{array}\right)+\mathcal{O}(4),
$$

for some real-valued function \bar{w}.

Almost Anosov flows (volume-preserving)

Theorem (Bruin, 2020)

Let $\bar{\gamma} \in(-4,4)$ and $v=v_{0}+o(\rho)$, where $\int_{0}^{\tau} v_{0} \circ \phi^{t} d t$ is homogeneous of order $\rho>-2$ in local coordinates.

1. If $\rho \in(0, \infty)$, then v satisfies the Central Limit Theorem, i.e.,

$$
\frac{\int_{0}^{t} v \circ \phi^{s} d s-t \int v d V o l}{\sigma \sqrt{t}} \Rightarrow d_{\text {ist }} \mathcal{N}(0,1) \quad \text { as } t \rightarrow \infty
$$

where the variance $\sigma^{2}>0$ unless $\int_{0}^{\tau} v \circ \phi^{t} d t$ is a coboundary.
2. If $\rho=0$, then v satisfies the Central Limit Theorem with non-standard scaling $\sqrt{t \log t}$, i.e.,

$$
\frac{\int_{0}^{t} v \circ \phi^{s} d s-t \int v d V o l}{\sigma \sqrt{t \log t}} \Rightarrow \text { dist } \mathcal{N}(0,1) \quad \text { as } t \rightarrow \infty
$$

and the variance $\sigma^{2}>0$ unless $\int_{0}^{\tau} v \circ \phi^{t} d t$ is a coboundary.
3. If $\rho \in(-2,0)$ then v satisfies a Stable Law of order $\frac{4}{2-\rho} \in(1,2)$.

En toen kwam er een olifant met een heel erg lange snuit....

圕 Afraĭmovič，V．，Bykov，V．and Shilnikov，L．，The origin and structure of the Lorenz attractor．，Dokl．Akad．Nauk SSSR，Vol． 234，2，336－339， 1977.
國 Araújo，V．and Melbourne，I．，Exponential decay of correlations for non－uniformly hyperbolic flows with a $C^{1+\alpha}$ stable foliation， including the classical Lorenz attractor，Annales Henri Poincaré， Springer，Vol．17，11，2975－3004， 2016.
围 Araújo，V．，Pacifico，M．，Pujals，E．，Viana，M．，Singular－hyperbolic attractors are chaotic．Trans．Amer．Math．Soc． 361 （2009）， 2431－2485．
围 Bruin，H．，On volume preserving almost Anosov flows，Monatsh． Math．DOI：10．1007／s00605－022－01807－w appeared electronically in December 2022
－Bruin，H．，Canales Farias H．H．，Mixing rates of the geometrical neutral Lorenz model，Preprint 2023 arXiv：2305．07502．
R Bruin，H．and Terhesiu，D．，Regular variation and rates of mixing for infinite measure preserving almost Anosov diffeomorphisms， Ergodic Theory and Dynamical Systems，Cambridge University Press，Vol．48，3，663－698 2020.

围 Gouëzel，S．，Sharp polynomial estimates for the decay of correlations．Israel J．Math． 139 （2004）29－65．
Ruckenheimer，J．and Williams，R．，Structural stability of Lorenz attractors，Inst．Hautes Etudes Sci．Publ．Math． 50 （1979），59－72．
囬 Hu, H ，Conditions for the existence of SBR measures of＂almost Anosov＂diffeomorphisms，Trans．Amer．Math．Soc． 352 （2000） 2331－2367．
（ Hu，H．，Young，L－S．，Nonexistence of SBR measures for some diffeomorphisms that are＂almost Anosov＂，Ergodic Theory and Dynamical Systems，15，（1995）67－76．
戋 Hu，H．，Zhang，X．，Polynomial decay of correlations for almost Anosov diffeomorphisms，Ergod．Th．Dynam．Sys．published online 2017 doi：10．1017／etds．2017．45
Katok，A．，Bernoulli diffeomorphisms on surfaces，Ann．of Math． 110 （1979），529－547．
－Melbourne，I．，Terhesiu，D．，Operator renewal theory for continuous time dynamical systems with finite and infinite measure．Monatsh．Math． 182 （2017）377－432．

Sarig, O., Subexponential decay of correlations. Invent. Math. 150 (2002) 629-653.

