Interval Translation Maps with Weakly Mixing Attractors of Interval translation Maps

Henk Bruin

based on a joint work with Serge Troubetzkoy and with Silvia Radinger

January 19, 2024
Vienna

Dynamical Systems

The simplest form of a dynamical system is the iteration of a map $T: X \rightarrow X$. That is, we look at orbits:

$$
\operatorname{orb}(x)=\{x, T(x), T \circ T(x), \ldots, T^{n}(x):=\underbrace{T \circ \cdots \circ T(x)}_{n \text { times }}, \ldots\} .
$$

Sometimes orbits are simple, like fixed points $T(x)=x$ or periodic points $T^{p}(x)=x$ for period $p \in \mathbb{N}$, or asymptotic to e.g. fixed points: $\lim _{n \rightarrow \infty} T^{n}(x)=y=T(y)$.

Most of the time orbits are complicated and erratic (chaotic). How to understand all (or at least most) orbits?

Interval Translation Maps

Our dynamical system will be an interval translation map (ITM) introduced by Bruin \& Troubetzkoy in 2003:

$$
T_{\alpha, \beta}(x)= \begin{cases}x+\alpha, & x \in[0,1-\alpha), \\ x+\beta, & x \in[1-\alpha, 1-\beta), \\ x-1+\beta, & x \in[1-\beta, 1]\end{cases}
$$

on the parameter space $U=\{(\alpha, \beta): 0<\beta \leq \alpha \leq 1\}$.

Interval Translation Maps

Our dynamical system will be an interval translation map (ITM) introduced by Bruin \& Troubetzkoy in 2003:

$$
T_{\alpha, \beta}(x)= \begin{cases}x+\alpha, & x \in[0,1-\alpha), \\ x+\beta, & x \in[1-\alpha, 1-\beta), \\ x-1+\beta, & x \in[1-\beta, 1]\end{cases}
$$

on the parameter space $U=\{(\alpha, \beta): 0<\beta \leq \alpha \leq 1\}$.

Interval Translation Maps

Our dynamical system will be an interval translation map (ITM) introduced by Bruin \& Troubetzkoy in 2003:

$$
T_{\alpha, \beta}(x)= \begin{cases}x+\alpha, & x \in[0,1-\alpha), \\ x+\beta, & x \in[1-\alpha, 1-\beta), \\ x-1+\beta, & x \in[1-\beta, 1]\end{cases}
$$

on the parameter space $U=\{(\alpha, \beta): 0<\beta \leq \alpha \leq 1\}$.

Interval Translation Maps

Note that $T_{\alpha, \beta}$ is usually not continuous, not one-to-one and not onto: $T([0,1]) \subsetneq[0,1]$.

Interval Translation Maps

Note that $T_{\alpha, \beta}$ is usually not continuous, not one-to-one and not onto: $T([0,1]) \subsetneq[0,1]$.

Set $I_{0}=[0,1]$ and $I_{n}=\overline{T\left(I_{n-1}\right)}$ for $n \geq 1$. Then

$$
I_{0} \supseteq I_{1} \supseteq I_{2} \supseteq \cdots \supseteq I_{\infty}:=\bigcap_{n \geq 0} I_{n} .
$$

We call the set I_{∞} the attractor of $T_{\alpha, \beta}$.
What kind of set is I_{∞} and what is the dynamics on it?

Renormalization of Interval Translation Maps

We look at the first return map of $T_{\alpha, \beta}$ to the subinterval $[1-\alpha, 1]$.

Renormalization of Interval Translation Maps

We look at the first return map of $T_{\alpha, \beta}$ to the subinterval $[1-\alpha, 1]$.

Renormalization of Interval Translation Maps

We look at the first return map of $T_{\alpha, \beta}$ to the subinterval $[1-\alpha, 1]$.

Renormalization of Interval Translation Maps

We look at the first return map of $T_{\alpha, \beta}$ to the subinterval $[1-\alpha, 1]$.

Renormalization of Interval Translation Maps

We look at the first return map of $T_{\alpha, \beta}$ to the subinterval $[1-\alpha, 1]$.

Renormalization of Interval Translation Maps

We look at the first return map of $T_{\alpha, \beta}$ to the subinterval $[1-\alpha, 1]$.

Renormalization

Renormalization

Types of parameters

- Finite Type: $\mathbb{G}^{n}(\alpha, \beta) \notin U^{\circ}$ for some $n \geq 1$. Then I_{∞} is a finite union of intervals and $T_{\alpha, \beta}$ reduces to a circle rotation.
- Infinite Type: $G^{n}(\alpha, \beta) \in U$ for all $n \geq 1$. Then I_{∞} is a Cantor set.

Renormalization

Approximation of the set Ω of parameters (α, β) with $T_{\alpha, \beta}$ of infinite type (10, 000 pixels).

The set Ω has Lebesgue measure zero but positive Hausdorff dimension.

Renormalization

Every renormalization step gives an integer $k=\left\lfloor\frac{1}{\alpha}\right\rfloor$.
Hence we get a sequence $\left(k_{i}\right)_{i \geq 1}$ of natural numbers that uniquely determines a parameter (α, β) of infinite type.

Renormalization

Every renormalization step gives an integer $k=\left\lfloor\frac{1}{\alpha}\right\rfloor$.
Hence we get a sequence $\left(k_{i}\right)_{i \geq 1}$ of natural numbers that uniquely determines a parameter (α, β) of infinite type.
But is every sequence allowed, or are the restrictions?

Renormalization

Every renormalization step gives an integer $k=\left\lfloor\frac{1}{\alpha}\right\rfloor$.
Hence we get a sequence $\left(k_{i}\right)_{i \geq 1}$ of natural numbers that uniquely determines a parameter (α, β) of infinite type.
But is every sequence allowed, or are the restrictions?

Renormalization

Every renormalization step gives an integer $k=\left\lfloor\frac{1}{\alpha}\right\rfloor$.
Hence we get a sequence $\left(k_{i}\right)_{i \geq 1}$ of natural numbers that uniquely determines a parameter (α, β) of infinite type.
But is every sequence allowed, or are the restrictions?

Invariant measures

Orbits can be described statistically by means of invariant measures:
Definition: A measure μ on a space X is a σ-additive function

$$
\mu:\{\text { Borel sets }\} \rightarrow[0,1]
$$

such that $\mu(\emptyset)=0, \mu(X)=1 . \mu$ is called T-invariant if

$$
\mu(B)=\mu\left(T^{-1}(B)\right) \quad \text { for every Borel set } B
$$

Invariant measures

Orbits can be described statistically by means of invariant measures:
Definition: A measure μ on a space X is a σ-additive function

$$
\mu:\{\text { Borel sets }\} \rightarrow[0,1]
$$

such that $\mu(\emptyset)=0, \mu(X)=1$. μ is called T-invariant if

$$
\mu(B)=\mu\left(T^{-1}(B)\right) \quad \text { for every Borel set } B
$$

Birkhoff's Ergodic Theorem

Let T be a transformation of a compact metric space X and μ an ergodic T-invariant measure. Then for every $f: X \rightarrow \mathbb{R}$ continuous,

$$
\underbrace{\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{j=0}^{n-1} f \circ T^{j}(x)}_{\text {time average }}=\underbrace{\int_{x} f d \mu}_{\text {space average }}
$$

for all x except for a set of μ-measure zero.

Invariant measures

Orbits can be described statistically by means of invariant measures:
Definition: A measure μ on a space X is a σ-additive function

$$
\mu:\{\text { Borel sets }\} \rightarrow[0,1]
$$

such that $\mu(\emptyset)=0, \mu(X)=1$. μ is called T-invariant if

$$
\mu(B)=\mu\left(T^{-1}(B)\right) \quad \text { for every Borel set } B .
$$

Birkhoff's Ergodic Theorem

Let T be a transformation of a compact metric space X and μ an ergodic T-invariant measure. Then for every $f: X \rightarrow \mathbb{R}$ continuous,

$$
\underbrace{\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{j=0}^{n-1} f \circ T^{j}(x)}_{\text {time average }}=\underbrace{\int_{x} f d \mu}_{\text {space average }}
$$

for all x except for a set of μ-measure zero. If there is only one T-invariant measure (T is uniquely ergodic), then this holds for all $x \in X$ and the convergence is uniform (Oxtoby's Theorem).

Symbolically, one renormalization step is given by the substitution

$$
\chi_{k}:\left\{\begin{array}{l}
1 \rightarrow 2 \\
2 \rightarrow 31^{k} \\
3 \rightarrow 31^{k-1}
\end{array} \quad \text { for } k=\left\lfloor\frac{1}{\alpha}\right\rfloor \in \mathbb{N}\right.
$$

with unimodular incidence matrix

$$
A_{k}=\left(\begin{array}{ccc}
0 & k & k-1 \\
1 & 0 & 0 \\
0 & 1 & 1
\end{array}\right) \quad \text { and } \quad \operatorname{det}\left(A_{k}\right)=-1
$$

This matrix indicates how many letters a there are in $\chi_{k}(b)$.

Recap

Every ITM of infinite type in this family is uniquely characterised by a sequence $\left(k_{i}\right)_{i \in \mathbb{N}} \subset \mathbb{N}$ such that

$$
k_{2 i}=1 \text { and } k_{2 i-1}>1 \text { for only finitely many } i \in \mathbb{N} \text {. }
$$

Recap

Every ITM of infinite type in this family is uniquely characterised by a sequence $\left(k_{i}\right)_{i \in \mathbb{N}} \subset \mathbb{N}$ such that

$$
k_{2 i}=1 \text { and } k_{2 i-1}>1 \text { for only finitely many } i \in \mathbb{N} .
$$

We define a (so-called S-adic) subshift based on the sequence of substitutions $\chi_{k_{i}}, k_{i} \in \mathbb{N}$. The itinerary of the point 1 is

$$
\rho=\lim _{i \rightarrow \infty} \chi_{k_{1}} \circ \chi_{k_{2}} \circ \chi_{k_{3}} \circ \cdots \circ \chi_{k_{i}}(3) .
$$

The (left-)shift σ removes the first symbols and moves the other symbols one lace to the left:

$$
\rho=\rho_{1} \rho_{2} \rho_{3} \rho_{4} \ldots \quad \sigma(\rho)=\rho_{2} \rho_{3} \rho_{4} \ldots
$$

The subshift X is the closure of $\left\{\sigma^{n}(\rho)\right\}_{n \in \mathbb{N}}$ where σ.

Unique ergodicity

Birkhoff's ergodic theorem implies that each shift-invariant measure μ determines fixed "frequency" of letters $a \in\{1,2,3\}$:

$$
v_{a}(x)=\lim _{n \rightarrow \infty} \frac{1}{n} \#\left\{1 \leq j \leq n: x_{j}=a\right\}
$$

and the same for frequencies of blocks. Let $\vec{e}_{b}, b=1,2,3$, be the unit vectors in \mathbb{R}^{3}. Then

$$
v_{a}(\rho)=\left(\lim _{n \rightarrow \infty} \frac{A_{1} \cdot A_{2} \cdots A_{n} \vec{e}_{3}}{\left\|A_{1} \cdot A_{2} \cdots A_{n} \vec{e}_{3}\right\|}\right)_{a}
$$

Lemma

Let $Q=[0, \infty)^{3}$ be the positive octant.
The symbolic shift $\left(\Sigma_{\rho}, \sigma\right)$ is uniquely ergodic if and only if

$$
\bigcap_{n \geq 1} A_{1} \cdot A_{2} \cdots A_{n}(Q) \text { is a single line } \ell .
$$

The frequency vector $\vec{v}(\rho)$ is the intersection $\ell \cap\left\{x_{1}+x_{2}+x_{3}=1\right\}$.

The task is now to (find conditions to) ensure that the matrices A_{k} squeeze the positive octant to a single line.

The task is now to (find conditions to) ensure that the matrices A_{k} squeeze the positive octant to a single line.

If all A_{k} were the positive and the same (or just bounded), then this would follow from the Perron-Frobenius Theorem.
But if the A_{k} increase too fast, then $\bigcap_{n \geq 1} A_{1} \cdot A_{2} \cdots A_{n}(Q)$ can be more than a line.

Unique ergodicity

We solve the problem using Hilbert semi-metric - in this metric the matrices are contractions, but the contraction factors $r_{k}<1$ depend on A_{k}. Under certain condition $\prod_{k=1}^{\infty} r_{k}=0$, and this assures that $\bigcap_{n \geq 1} A_{1} \cdot A_{2} \cdots A_{n}(Q)$ is a single line, and unique ergodicity follows.

Unique ergodicity

We solve the problem using Hilbert semi-metric - in this metric the matrices are contractions, but the contraction factors $r_{k}<1$ depend on A_{k}. Under certain condition $\prod_{k=1}^{\infty} r_{k}=0$, and this assures that
$\bigcap_{n \geq 1} A_{1} \cdot A_{2} \cdots A_{n}(Q)$ is a single line, and unique ergodicity follows.

Theorem

Let $\left(k_{i}\right)_{i \geq 1}$ be the sequence corresponding to a parameter (α, β) of infinite type.

- If $\lim \inf _{i} k_{i}<\infty$ then $T_{\alpha, \beta}$ is uniquely ergodic.
- If $k_{i+1} \geq \lambda k_{i}$ for some $\lambda>1$ and all i sufficiently large, then $T_{\alpha, \beta}$ is not uniquely ergodic.

