Rarity of one-sided Bernoulli systems

Henk Bruin
University of Surrey

joint work with

Jane Hawkins
University of North Carolina at Chapel Hill

Queen Mary, University of London
October 31 2007
Definition 0.1. Let \(n \geq 2 \) and let \(\mathcal{A} = \{1, \ldots, n\} \) be the alphabet.
Let \(p = \{p_1, \ldots, p_n\}, p_k > 0 \) be a probability vector.
Let \(\Omega = \mathcal{A}^\mathbb{Z} \) or \(\mathcal{A}^\mathbb{N} \) and let \(\mathcal{D} \) be the \(\sigma \)-algebra generated by cylinder sets.
Let \(\rho \) be the product measure determined by \(p \).
Let \(\sigma \) is the left-shift.
Then \((\Omega, \mathcal{D}, \rho; \sigma)\) is the two-sided (respectively one-sided) Bernoulli shift.
Definition 0.2. An *isomorphism* ψ between $(X_1, \mathcal{B}_1, \mu_1; T_1)$ and $(X_2, \mathcal{B}_2, \mu_2; T_2)$ is a measurable a.e.-bijection such that

\[(X_1, \mathcal{B}_1, \mu_1) \xrightarrow{T_1} (X_1, \mathcal{B}_1, \mu_2) \]

\[\downarrow \psi \hspace{1cm} \downarrow \psi \]

\[(X_2, \mathcal{B}_2, \nu) \xrightarrow{T_2} (X_2, \mathcal{B}_2, \mu_2) \]

commutes.

More precisely
- There are $Y_1 \subset X_1$, $Y_2 \subset X_2$ of full measure such that $\psi : Y_1 \to Y_2$ is a bijection.

- $T_2 \circ \psi = \psi \circ T_1$ for all $x \in Y_1$.

- $\psi^{-1}B \in \mathcal{B}_1$ and $\mu_1(\psi^{-1}B) = \mu_2(B)$ for all $B \in \mathcal{B}_2$.
The Two-sided Bernoulli Property.

Definition 0.3. A invertible measure preserving transformation \((X, \mathcal{B}, \mu; T)\) is Bernoulli if it is isomorphic to a two-sided Bernoulli shift.

For two-sided Bernoulli shifts, and hence, invertible measure preserving transformations, entropy is a complete invariant.

For one-sided Bernoulli shifts, entropy is an invariant, but not a complete invariant.
Noninvertible Bernoulli Properties.

Let \((X, \mathcal{B}, \mu; T)\) be a non-invertible measure preserving transformation. There are several ways of relating it to Bernoulli shifts.

(a) The natural extension is Bernoulli.

(b) \((X, \mathcal{B}, \mu; T)\) is weakly Bernoulli.

(c) \((X, \mathcal{B}, \mu; T)\) is one-sided Bernoulli, i.e., isomorphic to a one-sided Bernoulli shift.

The implications are as follows:

\[(c) \Rightarrow (b) \Rightarrow (a)\]

but the reverse implications are both false.
Definition 0.4. Let $(X, \mathcal{B}, \mu; T)$ be a measure preserving endomorphism. Let $\zeta = \{P_1, P_2, \cdots\}$ and $\eta = \{Q_1, Q_2, \cdots\}$ be partitions. The partition ζ is independent of η if
\[
\sum_{i,j} |\mu(P_i \cap Q_j) - \mu(P_i)\mu(Q_j)| = 0
\]
and $\varepsilon-$independent of ζ if
\[
\sum_{i} \sum_{j} |\mu(P_i \cap Q_j) - \mu(P_i)\mu(Q_j)| \leq \varepsilon.
\]
A partition ζ is weak Bernoulli if given $\varepsilon > 0$, there exists $N \in \mathbb{N}$ such that for all $m \geq 1$,
\[
\bigvee_{0}^{m} T^{-i}\zeta \text{ is } \varepsilon-\text{independent of } \bigvee_{N}^{N+m} T^{-i}\zeta,
\]
and $(X, \mathcal{B}, \mu; T)$ is weakly Bernoulli if it has a generating weak Bernoulli partition.
Theorem 0.5 (Friedman & Ornstein). If \((X, \mathcal{B}, \mu; T)\) be an invertible measure preserving system, and \(\eta\) is a weak-Bernoulli partition such that

\[
\zeta_{-\infty}^{\infty} \equiv \bigvee_{i=-\infty}^{\infty} T^{-i}(\zeta)
\]

generates \(\mathcal{B}\), then \(T\) is isomorphic to a two-sided Bernoulli shift.

Therefore, if a measure preserving endomorphism is weakly Bernoulli, its natural extension is two-sided Bernoulli.

Among endomorphism shown to be weakly Bernoulli are:

- Toral endomorphisms (Adler & Smorodinski, 1972)

- Various interval maps with acips (Ledrappier, 1981)

- Equilibrium states for rational maps of \(\overline{\mathbb{C}}\) with supremum gap (Haydn, 2000)
\textbf{\textit{n-to-one Endomorphisms.}}

Due to Rohlin (1952) a \textbf{\textit{n-to-one}} (for \(n = 2, 3, \ldots, \aleph_0 \)) measure preserving endomorphism \((X, \mathcal{B}, \mu; T)\) has a proper factor \((Y, T^{-1}\mathcal{B}, \nu; T)\) with factor map \(\varphi\) such
\[
\begin{array}{cccc}
(X, \mathcal{B}, \mu) & \xrightarrow{T} & (X, \mathcal{B}, \mu) \\
\downarrow \varphi & & \downarrow \varphi \\
(Y, T^{-1}\mathcal{B}, \nu) & \xrightarrow{T} & (Y, T^{-1}\mathcal{B}, \nu)
\end{array}
\]
commutes, where \(\nu = \mu|_{T^{-1}\mathcal{B}}\).

Thus we can decompose
\[
\mu(B) = \int_Y \mu_y(B) d\nu(y)
\]
where for \(\nu\)-a.e. \(y \in Y\) \(\mu_y = \mu|_{T^{-1}x}\) is a measure that is nonsingular for \(T\), purely atomic (since \(T\) is at most countable-to-one), and its support is contained in the set of points \(\{T^{-1}x\}\) such that \([y] = [T^{-1}x]\).
The Index of a Point.

Definition 0.6. For a nonsingular endomorphism T, the *index function* (or index) $\text{ind}_T(x)$ is defined to be, $(\mu \mod 0)$, the cardinality of the support of $\mu_{[T^{-1}x]} = \mu_{[\varphi(x)]]}$ for $x \in X$.

If $(X, \mathcal{B}, \mu; T)$ is one-sided Bernoulli, then the index is constant n.

Moreover, the Jacobians

$$J(x) = \frac{d\mu \circ T}{d\mu}(x) \in$$

satisfy

$$\{J_{\mu T}(y)\}_{y \in \text{supp}(\mu_{[T^{-1}x]})} = \{1/p_1, 1/p_2, \ldots, 1/p_n\}.$$ for μ-a.e. x.

Figure 1. The map $T(x) = |\min\{3x - 1, 2 - 3x\}|$ preserves an acip μ with $\frac{d\mu}{dm} = \frac{4}{3}$ on $[0, \frac{1}{2})$ and $\frac{d\mu}{dm} = \frac{2}{3}$ on $(\frac{1}{2}, 1]$. T is bounded-to-one w.r.t. Lebesgue, but 2-to-1 w.r.t. Hausdorff measure supported on the middle thirds Cantor set.
Rohlin Partitions An bounded-to-one measure preserving endomorphisms $(X, \mathcal{B}, \mu; T)$ has a ordered partition $\zeta = \{A_1, A_2, A_3, \ldots \}$ satisfying:

1. $\mu(A_i) > 0$ for each i;

2. the restriction of T to each A_i, which we will write as T_i, is one-to-one ($\mu \text{ mod } 0$);

3. each A_i is of maximal measure in $X \setminus \bigcup_{j<i} A_j$ with respect to property 2;

4. T_1 is one-to-one and onto X ($\mu \text{ mod } 0$) by numbering the atoms so that

$$\mu(T A_i) \geq \mu(T A_{i+1})$$

for $i \in \mathbb{N}$.
Non-uniqueness of Rohlin Partitions.

- For the angle doubling map (preserving Lebesgue measure), any partition
 \[\zeta_t = \{ A_0 = [0, t) \cup (t + \frac{1}{2}, 1], \quad A_1 = [t, t + \frac{1}{2}) \} \]
 is a Rohlin partition.

- \(\zeta_t \) generates \(B \) for all \(t \in (0, \frac{1}{2}) \) except \(t = \frac{1}{4} \).

- The coding map \(\pi_t \) is surjective but not injective. for all \(t \in (0, \frac{1}{2}) \).
 For \(t = 0 \), \(\pi_t \) is injective, but no point has code 111...).
 For the map \(T_{p,t} \) below, Lebesgue measure is one-sided \(\{p, 1-p\}\)-Bernoulli, except for \(t = \frac{1}{4} \).

\[\text{Figure 2. The map } T_{p,t} \text{ is not one-sided Bernoulli for } t = \frac{1}{4} \text{ (left) but it is for e.g. } t = \frac{3}{20} \text{ (right).} \]
Theorem 0.7. Suppose $p \neq \frac{1}{2}$:

(1) Let σ on (Ω, ρ) be the one-sided $\{p, 1-p\}$ Bernoulli shift. Then there exists no nontrivial nonsingular automorphism $\varphi : (\Omega, \rho) \to (\Omega, \rho)$ with $\varphi \circ \sigma = \sigma \circ \varphi (\mu \mod 0)$.

(2) If T on (X, \mathcal{B}, μ) is a one-sided $\{p, 1-p\}$ Bernoulli endomorphism, then there is no nontrivial nonsingular commuting automorphism $\varphi : (X, \mu) \to (X, \mu)$.

Corollary 0.8 (Parry). Suppose $(X, \mathcal{B}, \mu; T)$ is a measure preserving 2-to-one endomorphism. If there exists a nontrivial nonsingular automorphism φ commuting with T, then T is not isomorphic to a one-sided $\{p, 1-p\}$ Bernoulli shift.

Figure 3. $T(x) = 2x + \varepsilon \sin 4\pi x$ preserves an acip μ but is not one-sided Bernoulli, because of its symmetry $x \mapsto 1-x$.

A Livsič-like Result

Theorem 0.9. Let $T : I = [0, 1] \to I$ be a piecewise C^2 n-to-1 map and assume T preserves a probability measure $\mu \sim m$.

Assume that the Radon-Nikodym derivative

$$g(x) = \frac{d\mu}{dm}$$

is continuous and bounded away from 0.

Then T is one-sided Bernoulli on (I, \mathcal{B}, m) if and only if T is C^1-conjugate to a map $S : I \to I$ whose graph consists of n linear pieces, with slopes $\pm \frac{1}{p_i}$ such that $h_\mu(T) = - \sum_{i=1}^{n} p_i \log p_i$.

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{diagram.png}
\caption{Commutative diagram to construct $\Psi = \psi \circ \pi^{-1}$.}
\end{figure}
Applications to Postcritically Finite Maps:

Any degree n Chebyshev system is Bernoulli.

Let $T : \mathbb{C} \to \mathbb{C}$ be the rational map associated to the Newton algorithm for finding the roots of the equation $z^d - 1 = 0$:

$$T(z) = z - \frac{z^d - 1}{dz^{d-1}} = \frac{(d - 1)z^d + 1}{dz^{d-1}}.$$

Then T preserves a measure $\mu \ll m_t$, where $t = \dim_H(\mathcal{J})$ and m_t is t-conformal measure.

The dihedral group \mathcal{G} generated by $z \mapsto e^{2\pi i/d}z$ and $z \mapsto \overline{z}$ is the group of symmetries of \mathcal{J}, which also transitively permutes the atoms of the Rohlin partition $\{A_1, \ldots, A_d\}$.

The system $(\mathcal{J}, \mathcal{B}, \mu; T)$ is not one-sided Bernoulli.
Selected references.

References