Hubbard Trees and Symbolic Dynamics for Quadratic Polynomials.

Henk Bruin

Department of Mathematics, University of Surrey,
Guildford, Surrey GU2 7XH, UK H.Bruin@surrey.ac.uk
joint work with Dierk Schleicher Jacobs University, Bremen.

Iteration of Quadratic Maps

$$
f_{c}: z \mapsto z^{2}+c, \quad z, c \in \mathbb{C} .
$$

Depending on the behaviour of the orbits

$$
\operatorname{orb}(z):=\{z, f_{c}(z), \underbrace{f_{c}^{2}(z)}_{f_{c} \circ f_{c}(z)}, f_{c}^{3}(z), \ldots\},
$$

we divide the complex plane into

- the Fatou set: regular behaviour.
a neighbournood of z is
- asymptoticially periodic,
- goes of to ∞, or
- behaves as an irrational rotation.
- the Julia set: chaotic behaviour.

Properties of the Julia Set

For polynomials $z \mapsto z^{2}+c$, the Julia set is

$$
\begin{aligned}
J_{c} & =\overline{\{\text { repelling periodic points }\}} \\
& =\partial\left\{z \in \mathbb{C}: f_{c}^{n}(z) \rightarrow \infty\right\} \\
& =\partial \underbrace{\{z \in \mathbb{C}: \operatorname{orb}(z) \text { is bounded }\}}_{\text {filled-in Julia set } K_{c}}
\end{aligned}
$$

The Julia set is compact, fully invariant, i.e.,

$$
f_{c}\left(J_{c}\right)=f_{c}^{-1}\left(J_{c}\right)=J_{c}
$$

and self-similar: For every open U intersecting J_{c} there is n such that $f_{c}^{n}(U) \supset J_{c}$.

The Mandelbrot Set

The critical point of f_{c} is $z=0$.
J_{c} is $\begin{cases}\text { connected } & \text { if } \operatorname{orb}(0) \text { is bounded, } \\ \text { a Cantor set } & \text { if } f_{c}^{n}(0) \rightarrow \infty .\end{cases}$

The Mandelbrot set is

$$
\mathcal{M}=\left\{c \in \mathbb{C}: J_{c} \text { is connected }\right\} .
$$

N.B.
$\mathcal{M} \subset$ parameter space.
$J_{c} \subset$ dynamical space.

Hubbard Trees

A Hubbard tree is a tree T with map $f: T \rightarrow T$ and a single critical point 0 , such that:

1. $f: T \rightarrow T$ is continuous and surjective;
2. every $z \in T$ has at most two preimages;
3. at every $z \neq 0$, the map f is a local homeomorphism onto its image;
4. all endpoints of T are on the critical orbit;
5. the critical point is (pre)periodic, but not fixed;
6. (expansivity) if $x \neq y$ are branch points or points on the critical orbit, then there is an $n \geq 0$ such that $f^{n}([x, y]) \ni 0$.

Theorem 1. Every prepriodic or *-periodic sequence has a Hubbard tree, but not all of them correspond to a quadratic polynomial.

Symbolic Dynamics

Divide the Hubbard tree into

$$
T=\underbrace{T_{1}}_{\ni f(0)} \cup \underbrace{T_{*}}_{=\{0\}} \cup T_{0}
$$

The itinerary of z is

$$
e(z)=e_{0} e_{1} e_{2} \text { with } e_{k}=a \text { if } f^{k}(z) \in T_{a}
$$

The kneading sequence ν is the itin. of $f(0)$. Reverse Question:

Given a sequence $\nu \in\{0,1\}^{\mathbb{N}}$

- Is it the kneading sequence of some HT?
- If so how to construct it?
- Combinatorial properties of the HT?
(branchpoints, their itineraries, number of arms, relative positions)
- Is it the kneading sequence of a quadratic polynomial?

The ρ-function

Given $\nu, e \in\{0,1\}^{\mathbb{N}}$ define

$$
\rho(n)=\min \left\{m>n: \nu_{m} \neq \nu_{m-n}\right\}
$$

and

$$
\rho(n)=\min \left\{m>n: e_{m} \neq \nu_{m-n}\right\}
$$

Facts:

- $\operatorname{orb}_{\rho}(1)=$ internal address.
- If ζ_{k} is a closest precritical point (CCP) with $f^{k}\left(\zeta_{k}\right)=c_{1}$, then the next ccp on [$\left.f(0), \zeta_{k}\right]$ is $\zeta_{\rho(k)}$.
- The first ccp on $\left[f(0), f^{k+1}(0)\right]$ is $\zeta_{\rho(k)-k}$.
- If $e=e(z)$, then the number of arms of z in J_{c} equals the number of disjoint ρ_{e}-orbits.

Evil Branchpoints

A branchpoint is called evil if it is n-periodic but f^{n} doesn't permute its arm cyclically.

For the characteristic (i.e., closest to $f(0)$) evil branchpoint, f^{n} fixes the arms towards 0 and permutes the other arms cyclically.

A kneading sequence $\nu \in\{0,1\}^{\mathbb{N}}$ fails the admissibility condition for period m if the following hold:

1. m is not in the internal address of ν;
2. if $k<m$ divides m, then $\rho(k) \leq m$;
3. $\rho(m)<\infty$ and

$$
\rho(m)=q m+r, \quad r \in\{1, \ldots, m\},
$$

then $m \in \operatorname{orb}_{\rho}(r)$.

Branchpoints and Arms

Proposition 1. If ν fails the admissibility condition for m, such that

$$
\rho(m)=q m+r, \quad r \in\{1, \ldots, m\}
$$

then the Hubbard tree contains an evil branch point z with

$$
e(z)=\overline{\nu_{1} \ldots \nu_{m}} \quad \text { and } \quad q+2 \text { arms. }
$$

Proposition 2. If $k \in \operatorname{orb}_{[} \rho(1)$ is such that

$$
\rho(k)=q k+r, \quad r \in\{1, \ldots, k\}
$$

then the Hubbard tree contains a tame branch point z with with $e(z)=\overline{\nu_{1} \ldots \nu_{k}}$ and

$$
\left\{\begin{array}{l}
q+1 \\
q+2
\end{array}\right\} \text { arms if }\left\{\begin{array}{l}
k \in \operatorname{orb}_{\rho}(r) \\
k \notin \operatorname{orb}_{\rho}(r)
\end{array}\right.
$$

Propositions 1 and 2. account for all periodic branch points.

