Hubbard Trees and Symbolic Dynamics for Quadratic Polynomials.

Henk Bruin

Department of Mathematics, University of Surrey, Guildford, Surrey GU2 7XH, UK H.Bruin@surrey.ac.uk

joint work with Dierk Schleicher Jacobs University, Bremen.

Iteration of Quadratic Maps

$$f_c: z \mapsto z^2 + c, \qquad z, c \in \mathbb{C}.$$

Depending on the behaviour of the orbits

orb(z) := {
$$z, f_c(z), \underbrace{f_c^2(z)}_{f_c \circ f_c(z)}, f_c^3(z), \dots$$
 },

we divide the complex plane into

- the Fatou set: regular behaviour.
 a neighbournood of z is
 - asymptoticially periodic,
 - goes of to ∞ , or
 - behaves as an irrational rotation.
- the Julia set: chaotic behaviour.

Properties of the Julia Set

For polynomials $z \mapsto z^2 + c$, the Julia set is

$$J_c = \overline{\{\text{repelling periodic points}\}}$$
$$= \partial \{z \in \mathbb{C} : f_c^n(z) \to \infty \}$$
$$= \partial \underbrace{\{z \in \mathbb{C} : \text{orb}(z) \text{ is bounded}\}}_{\text{filled-in Julia set } K_c}$$

The Julia set is compact, fully invariant, i.e.,

$$f_c(J_c) = f_c^{-1}(J_c) = J_c$$

and self-similar: For every open U intersecting J_c there is n such that $f_c^n(U) \supset J_c$.

The Mandelbrot Set

The critical point of f_c is z = 0.

 J_c is $\begin{cases} \text{connected} & \text{if orb}(0) \text{ is bounded,} \\ a \text{ Cantor set} & \text{if } f_c^n(0) \to \infty. \end{cases}$

The Mandelbrot set is

 $\mathcal{M} = \{ c \in \mathbb{C} : J_c \text{ is connected} \}.$

N.B.

 $\mathcal{M} \subset$ parameter space.

 $J_c \subset$ dynamical space.

Hubbard Trees

A Hubbard tree is a tree T with map $f: T \to T$ and a single critical point 0, such that:

1. $f: T \rightarrow T$ is continuous and surjective;

2. every $z \in T$ has at most two preimages;

3. at every $z \neq 0$, the map f is a local homeomorphism onto its image;

4. all endpoints of T are on the critical orbit;

5. the critical point is (pre)periodic, but not fixed;

6. (expansivity) if $x \neq y$ are branch points or points on the critical orbit, then there is an $n \geq 0$ such that $f^n([x, y]) \ni 0$.

Theorem 1. Every prepriodic or *-periodic sequence has a Hubbard tree, but not all of them correspond to a quadratic polynomial.

Symbolic Dynamics

Divide the Hubbard tree into

$$T = \underbrace{T_1}_{\ni f(0)} \cup \underbrace{T_*}_{= \{0\}} \cup T_0$$

The **itinerary** of z is

 $e(z) = e_0 e_1 e_2$ with $e_k = a$ if $f^k(z) \in T_a$.

The **kneading sequence** ν is the itin. of f(0).

Reverse Question:

Given a sequence $u \in \{0,1\}^{\mathbb{N}}$

- Is it the kneading sequence of some HT?
- If so how to construct it?
- Combinatorial properties of the HT? (branchpoints, their itineraries, number of arms, relative positions)
- Is it the kneading sequence of a quadratic polynomial?

The ρ -function

Given $\nu, e \in \{0, 1\}^{\mathbb{N}}$ define $\rho(n) = \min\{m > n : \nu_m \neq \nu_{m-n}\}$ and

$$\rho(n) = \min\{m > n : e_m \neq \nu_{m-n}\}$$

Facts:

- $orb_{\rho}(1) =$ internal address.
- If ζ_k is a closest precritical point (ccp) with $f^k(\zeta_k) = c_1$, then the next ccp on $[f(0), \zeta_k]$ is $\zeta_{\rho(k)}$.
- The first ccp on $[f(0), f^{k+1}(0)]$ is $\zeta_{\rho(k)-k}$.
- If e = e(z), then the number of arms of z in J_c equals the number of disjoint ρ_e -orbits.

Evil Branchpoints

A branchpoint is called **evil** if it is n-periodic but f^n doesn't permute its arm cyclically.

For the **characteristic** (*i.e.*, closest to f(0)) evil branchpoint, f^n fixes the arms towards 0 and permutes the other arms cyclically.

A kneading sequence $\nu \in \{0,1\}^{\mathbb{N}}$ fails the admissibility condition for period m if the following hold:

1. m is not in the internal address of ν ; 2. if k < m divides m, then $\rho(k) \le m$; 3. $\rho(m) < \infty$ and

 $ho(m)=qm+r, \quad r\in\{1,\ldots,m\},$ then $m\in {
m orb}_
ho(r).$

Branchpoints and Arms

Proposition 1. If ν fails the admissibility condition for m, such that

$$\rho(m) = qm + r, \quad r \in \{1, \dots, m\}$$

then the Hubbard tree contains an evil branch point z with

 $e(z) = \overline{\nu_1 \dots \nu_m}$ and q+2 arms.

Proposition 2. If $k \in orb_{\lceil}\rho(1)$ is such that

 $\rho(k) = qk + r, \quad r \in \{1, \dots, k\}$

then the Hubbard tree contains a tame branch point z with with $e(z) = \overline{\nu_1 \dots \nu_k}$ and

$$\left\{\begin{array}{c} q+1\\ q+2 \end{array}\right\} \text{ arms if } \left\{\begin{array}{c} k \in \operatorname{orb}_{\rho}(r);\\ k \notin \operatorname{orb}_{\rho}(r). \end{array}\right.$$

Propositions 1 and 2. account for all periodic branch points.