The Ingram Conjecture

Henk Bruin University of Surrey

joint with Marcy Barge (Montana) and Sonja Štimac (Zagreb)

Tent maps and inverse limits:

Let $T_s : I \to I$, $x \mapsto \min\{sx, s(1-x)\}$ be the tent map with slope $s \in [0, 1]$.

The inverse limit space

 $\varprojlim([0,1],T_s) = \{(x_k)_{k \le 0} : T_s(x_k) = x_{k+1} \forall k < 0\}$

is the space of all backward orbits, equipped with product topology.

Theorem: (Ingram's Conjecture)

If $1 \leq s < s' \leq 2$, then $\lim_{t \to 0} ([0,1],T_s)$ and $\lim_{t \to 0} ([0,1],T_{s'})$ are non-homeomorphic.

Some History:

Tom Ingram posed the question in the early 1990s, specifically for the case that c is periodic.

Partial results for specific critical behaviour.

Barge & Diamond	three period 5 non-homeo \exists complete algebraic inv.
Bruin	$\frac{\log s}{\log s'}$ irrational \Rightarrow non-home
Kailhofer Block, Jakimovik,	all periodic cases non-homeo
Štimac	all (pre)periodic non-homeo
X	
Raines & Stimac	all non-recurrent non-homed
Barge & Diamond Brucks & Bruin	uncountable many non-homeo recurrent cases

Notation:

 $c = \frac{1}{2}$ is critical point. $c_n = c_n(s) = T_s^n(c)$ I = [0, 1] and $[c_2, c_1]$ is the **core** of T_s .

The shift homeomorphism is

$$\sigma(x) = (\dots, x_{-3}, x_{-2}, x_{-1}, x_0, T_s(x_0)).$$

The projection on coordinate -q is

 $\pi_q : \varprojlim([0,1],T_s) \to I, \qquad \pi_q(x) = x_{-q}$ commutes as $T \circ \pi_q = \pi_q \circ \sigma$.

The zero-composant

 $\mathfrak{C} = \{x \in \varprojlim([0, 1], T_s) : x_{-k} < c \forall k \text{ suff. large}\}$ is a ray disjoint from but converging to the **core** of the inverse limit space $\varprojlim([c_2, c_1], T_s).$

Main Result:

If $s \in (\sqrt{2}, 2]$, then $\lim_{t \to \infty} ([c_2, c_1], T_s)$ is indecomposable.

Theorem: If $\sqrt{2} < s \leq 2$, then every self-homeomorphism

 $h: \varprojlim([0,1],T_s) \rightarrow \varprojlim([0,1],T_s)$

is **isotopic** to a power of the shift.

Remark: We started proving that h is pseudoisotopic to σ^R , *i.e.*, h permutes the composants of $\varprojlim([c_2, c_1], T_s)$ in the same way as σ^R .

This makes the Ingram Conjecture easier to prove as well.

Chains:

Unimodal inverse limits are **chainable**, i.e., for every $\varepsilon > 0$ there is a chain $C = \{\ell_j\}_{j=1}^N$ such that

- $\varprojlim([0,1],T_s) \subset \cup_j \ell_j;$
- ℓ_j are open;
- $\ell_i \cap \ell_j \neq \emptyset$ if and only if $|i j| \leq 1$;
- $\operatorname{mesh}(C) = \operatorname{max}_j \operatorname{diam}(\ell_j) < \varepsilon.$

We will use *q*-chains constructed as follows:

- $I \subset \cup \{I_j^q\}$, where I_j^q are intervals of length $< \varepsilon s^{-q}/2;$
- $\ell_j^q = \pi_q^{-1}(I_j^q);$
- The resulting chain $C_q = \{\ell_j^q\}.$

More notation:

A point $x \in \mathfrak{C}$ is a *p*-point if $x_{-(p+j)} = c$ for some $j \ge 0$. The largest such $j = L_p(x)$ is the *p*-level of *x*.

The set of *p*-points E_p can be ordered according to arc-length \overline{d} along \mathfrak{C} :

$$x \preceq y$$
 if $\overline{d}(\alpha, x) \leq \overline{d}(\alpha, y)$

where α is the end-point of \mathfrak{C} .

The folding pattern is the list of *p*-levels of *p*-points in an arc $A \subset \mathfrak{C}$:

$$FP(A) = L_p(x_1)L_p(x_2)\dots L_p(x_N)$$

if $x_1 \preceq x_2 \preceq \cdots \preceq x_N$ are the *p*-points of *A*.

 s_k is the k-th salient p-point if

•
$$L_p(s_k) = k;$$

• $L_p(x) < k$ for all $\alpha \prec x \prec s_k$.

p-link-symmetry:

Definition: Given an arc $A \subset \mathfrak{C}$ and a *p*-chain \mathcal{C}_p , let $\ell^0, \ell^1, \ldots, \ell^N$ be the links successively visited by A. Then A is

• symmetric if the folding pattern FP(A) is a palindrome and $\pi_p(\partial A)$ is a single point;

• *p*-link-symmetric if $\ell^j = \ell^{N-j}$ for $0 \le j \le N$;

• maximal *p*-link-symmetric if there is no *p*-link-symmetric arc $A' \supset A$ passing though more links.

A symmetric arc has a well-defined midpoint.

If $h(C_q)$ refines C_p , then *q*-link-symmetric arcs map to *p*-link-symmetric arcs.

Main Lemmas on *p*-link-symmetric Arcs:

Assume that c has an infinite orbit.

Let $\kappa := \min\{i \ge 3 : c_i > c\}.$

Lemma 1: The maximal *p*-link-symmetric arc A_i centred at s_i , $i \ge \kappa$, contains κ salient points, namely

 $s_{i-\kappa+2},\ldots,s_i,s_{i+1}$

and $s_{i-\kappa+2}$ is interior to this arc.

Lemma 2: If a *p*-link-symmetric arc *J* is **not** centred at a salient point *y*, say $s_{i-1} \prec y \prec s_i$, then *J* contains at most one salient point, and $J \subset A_i$.

How to use *p*-link Symmetry

Folding points.

A point is called **folding point** if it has no neighbourhood in the core $\lim_{t \to \infty} ([c_2, c_1], T_s)$ homeomorphic with a Cantor set of arcs.

Characterisations of folding points:

- x is folding point iff $x_k \in \omega(c)$ for all k.
- x is folding point iff there is a sequence of p-points $x^k \to x$ such that $L(x^k) \to \infty$.
- x is folding point iff there is a sequence of salient points $s_{i_k} \to x$.

Theorem: If $s \in (\sqrt{2}, 2]$ and $h : \varprojlim([c_2, c_1], T_s) \rightarrow \varprojlim([c_2, c_1], T_s)$ is a homeomorphism, then there is R such that for every folding point x: $h(x) = \sigma^R(x)$

A typical example of this is when T has a periodic critical point of period 3. The below picture illustrates the resulting inverse limit space; p is the fixed point of \hat{f} .

This representation has a single infinite Wada channel.