The Ingram Conjecture

Henk Bruin

University of Surrey

joint with

Marcy Barge (Montana)
 and

Sonja Štimac (Zagreb)

Tent maps and inverse limits:

Let $T_{s}: I \rightarrow I, x \mapsto \min \{s x, s(1-x)\}$ be the tent map with slope $s \in[0,1]$.

The inverse limit space
$\underset{\longleftarrow}{\lim }\left([0,1], T_{s}\right)=\left\{\left(x_{k}\right)_{k \leq 0}: T_{s}\left(x_{k}\right)=x_{k+1} \forall k<0\right\}$ is the space of all backward orbits, equipped with product topology.

Theorem: (Ingram's Conjecture)
If $1 \leq s<s^{\prime} \leq 2$, then $\lim \left([0,1], T_{s}\right)$ and

Some History:

> Tom Ingram posed the question in the early 1990s, specifically for the case that c is periodic.

Partial results for specific critical behaviour.
Barge \& Diamond three period 5 non-homeo
\exists complete algebraic inv.
Swanson \& Volkmer all period ≤ 15 non-homeo
Bruin
$\frac{\log s}{\log s^{\prime}}$ irrational \Rightarrow non-home
Kailhofer
Block, Jakimovik, Kailhofer \& Keesling Štimac
all periodic cases non-homeo
all (pre)periodic non-homeo
Raines \& Štimac
Barge \& Diamond
Brucks \& Bruin
all non-recurrent non-homed
uncountable many non-homeo recurrent cases

Notation:

$c=\frac{1}{2}$ is critical point. $\quad c_{n}=c_{n}(s)=T_{s}^{n}(c)$
$I=[0,1]$ and $\left[c_{2}, c_{1}\right]$ is the core of T_{s}.
The shift homeomorphism is

$$
\sigma(x)=\left(\ldots, x_{-3}, x_{-2}, x_{-1}, x_{0}, T_{s}\left(x_{0}\right)\right)
$$

The projection on coordinate $-q$ is

$$
\pi_{q}: \lim _{\check{\lim }}\left([0,1], T_{s}\right) \rightarrow I, \quad \pi_{q}(x)=x_{-q}
$$

commutes as $T \circ \pi_{q}=\pi_{q} \circ \sigma$.

The zero-composant

$\mathfrak{C}=\left\{x \in \underset{\varliminf}{\lim }\left([0,1], T_{s}\right): x_{-k}<c \forall k\right.$ suff. large $\}$
is a ray disjoint from but converging to the core of the inverse limit space $\underset{\swarrow}{\lim }\left(\left[c_{2}, c_{1}\right], T_{s}\right)$.

Main Result:

If $s \in(\sqrt{2}, 2]$, then $\varliminf_{\varliminf}\left(\left[c_{2}, c_{1}\right], T_{s}\right)$ is indecomposable.

Theorem: If $\sqrt{2}<s \leq 2$, then every selfhomeomorphism

$$
h: \varliminf_{幺}^{\lim }\left([0,1], T_{s}\right) \rightarrow \underset{\leftrightarrows}{\lim }\left([0,1], T_{s}\right)
$$

is isotopic to a power of the shift.

Remark: We started proving that h is pseudoisotopic to σ^{R}, i.e., h permutes the composants of $\underset{\leftrightarrows}{\lim }\left(\left[c_{2}, c_{1}\right], T_{s}\right)$ in the same way as σ^{R}.

This makes the Ingram Conjecture easier to prove as well.

Chains:

Unimodal inverse limits are chainable, i.e., for every $\varepsilon>0$ there is a chain $C=\left\{\ell_{j}\right\}_{j=1}^{N}$ such that

- $\lim _{\leftrightarrows}\left([0,1], T_{s}\right) \subset \cup_{j} \ell_{j}$;
- ℓ_{j} are open;
- $\ell_{i} \cap \ell_{j} \neq \emptyset$ if and only if $|i-j| \leq 1$;
- $\operatorname{mesh}(C)=\max _{j} \operatorname{diam}\left(\ell_{j}\right)<\varepsilon$.

We will use q-chains constructed as follows:

- $I \subset \cup\left\{I_{j}^{q}\right\}$, where I_{j}^{q} are intervals of length
$<\varepsilon s^{-q} / 2$;
- $\ell_{j}^{q}=\pi_{q}^{-1}\left(I_{j}^{q}\right)$;
- The resulting chain $\mathcal{C}_{q}=\left\{\ell_{j}^{q}\right\}$.

More notation:

A point $x \in \mathfrak{C}$ is a p-point if $x_{-(p+j)}=c$ for some $j \geq 0$. The largest such $j=L_{p}(x)$ is the p-level of x.

The set of p-points E_{p} can be ordered according to arc-length \bar{d} along \mathfrak{C} :

$$
x \preceq y \text { if } \bar{d}(\alpha, x) \leq \bar{d}(\alpha, y)
$$

where α is the end-point of \mathfrak{C}.
The folding pattern is the list of p-levels of p-points in an arc $A \subset \mathfrak{C}$:

$$
F P(A)=L_{p}\left(x_{1}\right) L_{(}\left(p_{2}\right) \ldots L_{p}\left(x_{N}\right)
$$

if $x_{1} \preceq x_{2} \preceq \cdots \preceq x_{N}$ are the p-points of A.
s_{k} is the k-th salient p-point if

- $L_{p}\left(s_{k}\right)=k$;
- $L_{p}(x)<k$ for all $\alpha \prec x \prec s_{k}$.

p-link-symmetry:

Definition: Given an arc $A \subset \mathfrak{C}$ and a p-chain \mathcal{C}_{p}, let $\ell^{0}, \ell^{1}, \ldots, \ell^{N}$ be the links successively visited by A. Then A is

- symmetric if the folding pattern $F P(A)$ is a palindrome and $\pi_{p}(\partial A)$ is a single point;
- p-link-symmetric if $\ell^{j}=\ell^{N-j}$ for $0 \leq j \leq$ N;
- maximal p-link-symmetric if there is no p-link-symmetric arc $A^{\prime} \supset A$ passing though more links.

A symmetric arc has a well-defined midpoint.
If $h\left(\mathcal{C}_{q}\right)$ refines \mathcal{C}_{p}, then q-link-symmetric arcs map to p-link-symmetric arcs.

Main Lemmas on p-link-symmetric Arcs:

Assume that c has an infinite orbit.
Let $\kappa:=\min \left\{i \geq 3: c_{i}>c\right\}$.
Lemma 1: The maximal p-link-symmetric $\operatorname{arc} A_{i}$ centred at $s_{i}, i \geq \kappa$, contains κ salient points, namely

$$
s_{i-\kappa+2}, \ldots, s_{i}, s_{i+1}
$$

and $s_{i-\kappa+2}$ is interior to this arc.

Lemma 2: If a p-link-symmetric arc J is not centred at a salient point y, say $s_{i-1} \prec y \prec s_{i}$, then J contains at most one salient point, and $J \subset A_{i}$.

How to use p-link Symmetry

Folding points.

A point is called folding point if it has no neighbourhood in the core $\varliminf_{¿}^{\lim }\left(\left[c_{2}, c_{1}\right], T_{s}\right)$ homeomorphic with a Cantor set of arcs.

Characterisations of folding points:

- x is folding point iff $x_{k} \in \omega(c)$ for all k.
- x is folding point iff there is a sequence of p-points $x^{k} \rightarrow x$ such that $L\left(x^{k}\right) \rightarrow \infty$.
- x is folding point iff there is a sequence of salient points $s_{i_{k}} \rightarrow x$.

Theorem: If $s \in(\sqrt{2}, 2]$ and $h: \varliminf_{\mathrm{Lim}}\left(\left[c_{2}, c_{1}\right], T_{s}\right) \rightarrow$ $\varliminf_{s}\left(\left[c_{2}, c_{1}\right], T_{s}\right)$ is a homeomorphism, then there is R such that for every folding point $x: h(x)=$ $\sigma^{R}(x)$

A typical example of this is when T has a periodic critical point of period 3. The below picture illustrates the resulting inverse limit space; p is the fixed point of \vec{f}.

This representation has a single infinite Wada channel.

