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Unimodal maps

Unimodal maps are maps of the interval with a single critical
point, and increasing/decreasing at the left/right of the critical
point. The best known examples are quadratic (logistic) maps and
tent-maps

Ta : x 7→ 1− a|x |, Qa : x 7→ 1− ax2.

Figure: A tent map and a quadratic map



Lozi and Hénon
A simple way to Ta and Qa them invertible is by introducing a
second coordinate, and thicken the map:

Ta : x 7→ 1− a|x |, La,b : (x , y) 7→ 1− a|x |+ by , x),

Qa : x 7→ 1− ax2, Ha,b : (x , y) 7→ (1− ax2 + by , x),

and obtain the Lozi map and the Hénon map.

Figure: The Lozi and Hénon attractor

The Lozi-attractor (resp. Hénon-attractor) obtained as
∩n≥0Lna,b(U) for some well-chosen, forward invariant open disk U.



Definitions

Let f = Ta or Qa. The critical point is c := 1/2. Write
ck := f k(c). The closed f -invariant interval [c2, c1] is called the
core.

The inverse limit space lim←−([0, 1], f ) is the collection of all
backward orbits

{x = (. . . , x−2, x−1, x0) : f (x−i−1) = x−i ∈ [0, 1] for all i ∈ N0},

equipped with metric d(x , y) =
∑

i≤0 2i |xi − yi |. The map f is
called the bonding map of X := lim←−([0, 1], f ).
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Definitions

The core lim←−([0, 1], f ) is the restriction

{x = (. . . , x−2, x−1, x0) : f (x−i−1) = x−i ∈ [c2, c1] for all i ∈ N0}.

We write X ′ := core lim←−([0, 1], f ).

The difference X \ X ′ is one ray compactifying on X ′.

Define the induced, or shift homeomorphism on lim←− ([0, 1], f ) as

σ(x) := σf (. . . , x−2, x−1, x0) = (. . . , x−2, x−1, x0, f (x0)).

Let πi : lim←−([0, 1], f )→ [0, 1], πi (x) = x−i be the i-th projection
map.



Definitions

The core lim←−([0, 1], f ) is the restriction

{x = (. . . , x−2, x−1, x0) : f (x−i−1) = x−i ∈ [c2, c1] for all i ∈ N0}.

We write X ′ := core lim←−([0, 1], f ).

The difference X \ X ′ is one ray compactifying on X ′.

Define the induced, or shift homeomorphism on lim←− ([0, 1], f ) as

σ(x) := σf (. . . , x−2, x−1, x0) = (. . . , x−2, x−1, x0, f (x0)).

Let πi : lim←−([0, 1], f )→ [0, 1], πi (x) = x−i be the i-th projection
map.



Examples

Figure: The sin 1
x continuum and the Knaster continuum.

Simple examples of such unimodal inverse limit spaces are the
sin 1

x -continuum and the Knaster continuum (bucket handle).

Figure: Maps with sin 1
x continuum and the Knaster continuum as ILs



In 1967, Bob Williams [W] proved that hyperbolic one-dimensional
attractors can be represented as inverse limits of maps on branched
manifolds and that every point has a neighbourhood
homeomorphic to the product of a Cantor set and an open arc.

A standard example of this is the Plykin attractor.



Inverse limits and Hénon attractors

The similarity between a Hénon attractors and the Knaster
continuum may suggest that inverse limit spaces are
homeomorphic to Hénon attractors in some generality, but in fact,
the generality is very limited.

Theorem (Barge & Holte [BH])

If a is such that 0 is a periodic for Qa(x) = 1− ax2, then for |b|
sufficiently small, then the attractor of Ha,b and the inverse limit
space of Qa are homeomorphic.

Barge [B1] showed that under fairly general assumptions, Hénon
attractors (and homoclinic tangle emerging from a homoclinic
bifurcations) are not homeomorphic to unimodal inverse limit
spaces, not even if you allow varying bonding maps.



Embedding ILs in the plane

All unimodal inverse limit spaces are chainable, and all chainable
continua can be embedded in the plane, i.e., there is a continuous
injection h : X → R2 (called embedding) such that h(X ) and X
are homeomorphic.



Embedding ILs in the plane

Definition
A point a ∈ X ⊂ R2 is accessible if there exists an arc
A = [x , y ] ⊂ R2 such that a = x and A ∩ X = {a}.
Unimodal inverse limit spaces can therefore be embedded in the
plane, but in general there are many (in fact uncountably
non-homotopic) ways to do so.

There are two standard ways that yield an embedding very much
like the Lozi-attractor (or Hénon-attractor) with b > 0 (orientation
reversing, making the composant R of the fixed point
p = (. . . , r , r , r) accessible, see [B2]) and b < 0 (orientation
preserving, making the zero-composant accessible, see [BD])
respectively.



Embedding ILs in the plane

The result of Anušić et al. gives an idea how much variety there is
in embeddings:

Theorem ([ABC1])

For every point a in th core UIL X ′ there exists an embedding of X
in the plane such that a is accessible.

As a corollary, there are uncountably many nonequivalent
embeddings of X ′ in the plane.



Folding points

A point x ∈ lim←−{I ,T} is

I “laminar” if it has a neighborhood ' Cantor set of (open)
arcs.

&%
'$

•

&%
'$

•

I a folding point (x ∈ F) if it has no neighborhood ' Cantor
set of arcs.

I endpoint (x ∈ E) if
x ∈ subcontinua A,B implies A ⊂ B or B ⊂ A.

I non-end folding point (x ∈ F \ E) if x ∈ A◦ for some arc.
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Endpoints

Further classification of the end-points E :

I Flat end-points EF : x is the end-point of a non-degenerate
basic arc:

A(x) = largest continuum A 3 x such that π0 : X → [0, 1]

is bijective.

•

•

I Spiral end-points ES : x is the end-point of an arc but not of a
non-degenerate basic arc.

I Nasty (= solitary) end-points EN : x is not contained in any
arc.
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General results

I F 6= ∅ and #F = #ω(c) <∞ if c is (pre-)periodic.

I x ∈ F iff x−n ∈ ω(c) for all n ∈ N0 (Raines 2004).

I If ω(c) is uncountable, then F is uncountable.

If ω(c) is countably infinite, then F can be countable or
uncountable (Good, Knight & Raines 2010).

I E = ∅ iff c is non-recurrent.

Proposition [AABC]: For Y = EF , ES , EN or F \ E holds:

If Y 6= ∅, then Y is dense in F .
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Cutting times and the kneading map

Definition: An iterate n is called a cutting time if the image of
the central branch of T n contains c.
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Denote the cutting times as
1 = S0 < S2 < S3 < S4 < . . .

Lemma: The difference of two consecutive cutting times is a
cutting time.

Therefore define the kneading map Q : N→ N0:

Sk − Sk−1 = SQ(k).
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Properties of E

Definition (Blokh & Lyubich)

The critical point c is reluctantly recurrent if there is ε > 0 and an
arbitrary long (but finite!) backward orbit ȳ = (y−j , . . . , y−1, y) in
ω(c) such that the ε-neighbourhood of y ∈ I has monotone
pull-back along ȳ . Otherwise, c is persistently recurrent.

If Q(k)→∞, then c is persistently recurrent (but this is not
if-and-only-if)

Theorem (F = E)

All folding points are end-points iff c is persistently recurrent.
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Flat end-points EF

Definition: The map T is longbranched (i.e.,
∃δ > 0 ∀n ≥ 0 ∀J branch domain of T n : |T n(J)| ≥ δ).

Equivalently: the kneading map Q is bounded.

Proposition: If T is long-branched and c is recurrent, then E = EF .

Question: Give a necessary and sufficient condition for E = EF .
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Spiral end-points ES

Lemma (E = ES)

If Q(k)→∞ and

Q(k + 1) > Q(Q(k) + 1) + 1 for all sufficiently large k ,

then F = E = ES .

Lemma: If Q(k) 6→ ∞, then F 6= ES .

Conjecture: Q(k)→∞ implies (and is equivalent to?) E = ES .
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Nasty end-points EN
Known: If f is an infinitely renormalizable unimodal (e.g.
quadratic) map, then F = E = EN , but there are no infinitely
renormalizable tent maps.

Theorem (after Barge, Brucks & Diamond 1996)

If {cSk : k ∈ N} is dense in [c2, c1], then every neighbourhood in
lim←−{I ,T} contains a subcontinua homeomorphic to lim←−{I , T̃} for

every tent map T̃ .

Corollary: If {f Sk (c) : k ∈ N} is dense in [c2, c1], then

EN is dense in lim←−{I ,T},

(but so are F \ E , EF and ES).

Question: Give a necessary and sufficient condition for EN 6= ∅ and
E = EN .
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Arc-components and composants

Definition
Let X be a continuum and x ∈ X . The arc-component A(x) of x
is the union of points y such that there is an arc in X connecting x
and y . The composant C (x) of a point x is the union of all proper
subcontinua of X .

For example, if X = [0, 1] then A(0) = [0, 1] but C (0) = [0, 1) (it
doesn’t contain 1 because [0, 1] is not a proper subcontinuum of
X ). Also A(12) = C (12) = [0, 1] because [0, 1] = [0, 12 ] ∪ [12 , 1].

If an indecomposable continuum has uncountably many
composants, which may or may not be arc-components.
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Asymptotic arc-components

Two arc-components A and Ã are asymptotic if there are
parametrizations

ϕ, ϕ̃ : R→ A, Ã such that lim
t→∞

d(ϕ(t), ϕ̃(t)) = 0.

The trivial case when A = Ã is excluded, but A is self-asymptotic if
there is a parametrization ϕ such that

lim
t→∞

d(ϕ(t), ϕ̃(−t)) = 0.

5-fan 3-cycle two linked 2-fans

Figure: Configurations of asymptotic arc-components.



Asymptotic arc-components

Figure 6 give the UIL of a tent map with f 3(c) = c , for which the
fixed composant R is self-asymptotic. There is a single infinite
Wada channel for which the entire shore is equal to R.
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Figure: This representation has a single infinite Wada channel.



Asymptotic arc-components

Theorem (Barge, Diamond & Holton [BDH])

Every UIL with periodic critical point has at least one asymptotic
arc-component.

Proof.
The proof relies on substitution tilings and the fact that these
spaces act as 2-to-1 coverings of inverse limit spaces. In fact, if the
period is N, then there are at least N − 1 and at most 2(N − 1)
“halves” of arc-components asymptotic to some other “halves” of
an arc-components.

Conjecture

The upper bound is in fact 2(N − 2). Given any two “halves” of
arc-components H and H ′, H is asymptotic to or coincides with
σn(H ′) for some n ∈ Z.
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Asymptotic arc-components

If c is non-recurrent, then there are no asymptotic arc-components,
see [B3], but:

Question
What is the situation with asymptotic arc-components when c is
non-periodic but recurrent?



Asymptotic arc-components

ν type periodic tail(s)

1 101 1-cycle 1

2 1001 3-fan 101

3 10001 4-fan 1001
4 10010 3-cycle 101
5 10111 three 2-fans 101110

6 100001 5-fan 10001
7 100010 4-cycle 1001
8 100111 four 2-fans 10010011
9 101110 two linked 3-fans 10, 1

10 1000001 6-fan 100001
11 1000010 5-cycle 10001
12 1000111 five 2-fans 1000100011
13 1000100 four 2-fans (l.i.p.) 10, 1001
14 1001101 four 2-fans 10011010
15 1001110 five 2-fans 10010, 10111
16 1001011 five 2-fans 1001011011



Asymptotic arc-components

17 1011010 5-cycle 10111
18 1011111 five 2-fans 1011111110
19 10000001 7-fan 1000001
20 10000010 6-cycle 100001
21 10000111 six 2-fans 100001110000
22 10000100 five 2-fans 10001, 10010
23 10001101 five 2-fans 1000110100
24 10001110 six 2-fans 100010, 100111

25 10001011 six 2-fans 100010110011
26 10011010 six 2-fans (l.i.p.) 101, 100111
27 10011111 six 2-fans 100111110110
28 10011100 five 2-fans 10010, 10111
29 10010101 five 2-fans 1001010111
30 10010110 six 2-fans (l.i.p.) 100, 101110
31 10110111 three 3-cycles 101101110
32 10111110 two linked 4-fans 101110, 1

(l.i.p = linked in pairs.)



Arc-components

Bandt [B] for the Knaster continuum that every two
arc-components not containing the endpoint are homeomorphic.

Question
Given two arc-components without endpoints, are they
homeomorphic? In particular, can a self-asymptotic arc-component
be homeomorphic to a non-self-asymptotic arc-component?

In contrast, Fokkink (in his thesis and in [F]) showed that among
all matchbox manifolds (i.e., continua that locally look like Cantor
set of open arcs) there are uncountably many non-homeomorphic
arc-components.



Aarts’ Question

Question
Are two lines with irrational slopes wrapping for ever around the
torus be homeomorphic as spaces?

This question is due to Aarts almost half a century ago, but
beyond the fact that if the slopes θ and θ′ have continued fraction
expansion with the same tail then the lines are indeed
homeomorphic, nothing is known.



Thank you for your attention.
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