Li-Yorke chaos for maps on the interval.

Henk Bruin

University of Surrey

(Joint work with Víctor Jiménez-López, Murcia, Spain)

Li-Yorke, distal and asymptotic pairs

Let $f : X \to X$ be a continuous map on a metric space (X, d).

We call the pair (x, y):

Distal: if $\liminf_n d(f^n(x), f^n(y)) > 0$.

Asymptotic: if $\lim_n d(f^n(x), f^n(y)) = 0$.

Li-Yorke: if

$$\liminf_{n} d(f^{n}(x), f^{n}(y)) = 0$$

and

$$\limsup_n d(f^n(x), f^n(y)) > 0.$$

A set *B* is **scrambled** if every pair $x \neq y \in B$ is Li-Yorke, and *f* is **Li-Yorke chaotic** if there is an uncountable scrambled set.

Note: $h_{top}(f) > 0$ implies that (X, f) is Li-Yorke chaotic (Blanchard et al.)

Multimodal maps.

In this talk the interval map $f: I \rightarrow I$ will

- be C^2 or C^3 multimodal (i.e., finite set of critical points: f'(c) = 0);
- have non-flat critical points c:

$$f(x) = f(c) + O(|x - c|^{\ell_c})$$

for $x \approx c$, and critical order $\ell_c \in (1, \infty)$.

 Sometimes we will assume that f is topologically mixing, i.e., every iterate fⁿ has a dense orbit.

C¹ maps gives different results

The are C^1 interval maps that

- have a scrambled set of positive Lebesgue measure, or
- have a scrambled set of full outer measure (but the scrambled set is non-measurable).

These C^1 results are due to Smital '84.

Jímenez-López '91 proved that no C^1 can have a measurable scrambled set of full Lebesgue measure.

What is an Attractor?

For interval maps, the following measure-theoretic definition was introduced by Milnor '85.

The omega-limit set

$$\omega(x) = \cap_n \overline{\cup_{m \ge n} f^m(x)}$$

is the set of limit points of an orbit.

The basin $Bas_{\mathcal{A}} = \{x : \omega(x) \subset \mathcal{A}\}.$

Let λ be Lebesgue measure. \mathcal{A} is an attractor (a la Milnor) if

$$\lambda(\mathsf{Bas}_{\mathcal{A}}) > 0$$

and if $\mathcal{A}' \subset \mathcal{A}$, $\mathcal{A}' \neq \mathcal{A}$, then $\lambda(\mathsf{Bas}_{\mathcal{A}'}) = 0$.

Remark: An attractor is closed and forward invariant.

Classification of attractors of multimodal maps.

Theorem 1 If $f : I \rightarrow I$ is a non-flat C^2 multimodal map, then it has $\leq \#$ Crit attractors, which are of the following types:

- 1. A is an attracting periodic orbit.
- 2. \mathcal{A} is a collection of intervals $\{I_j\}_{j=0}^{N-1}$ permuted cyclically. (Topological mixing \Rightarrow N = 1.)
- 3. A is a minimal Cantor set consisting of the infinite intersection of cykels of intervals as above.
 (solenoidal attractor infinitely renormalizable, Bas_A is of 2nd Baire category.)
- 4. \mathcal{A} is a minimal Cantor set, but not of the above type. (wild attractor - not Lyapunov stable, Bas_{\mathcal{A}} is of 1st Baire category.)

Some references.

The classification of attractors was proved more or less independently by Blokh & Lyubich '91, Keller '90 and by Martens '90.

Milnor '85 posed the question whether wild attractors really exist. This was proved by Bruin, Keller, Nowicki & van Strien ('96) for the Fibonacci unimodal map with very large critical order ℓ . Bruin ('98) extended this to more general combinatorial types.

For the quadratic family, Lyubich ('94) proved that there are no wild attractors (neither for $\ell \leq 2 + \varepsilon$, Keller & Nowicki '95).

These result are the starting point of our 'Li-Yorke chaos classification'.

When attractor $\mathcal{A} = I$.

Theorem 2 If A = I, and $\lambda(B) > 0$. Then

- there are $x \neq y \in B$ such that $f^n(x) = f^n(y)$ for some $n \ge 0$. Hence, there is no scrambled set of positive Lebesgue measure.
- there are $x \neq y \in B$ such that (x, y) is **not** asymptotic. Hence, there is no asymptotic set of positive Lebesgue measure.
- there are n > m ≥ 0 such that λ(fⁿ(B) ∩ f^m(B)) > 0: there are no strongly wandering sets (Blokh & Misiurewicz).
- For all $x \in I$ there is a set C_x of full measure such that for all $y \in C_x$ $\liminf_{n \to \infty} |f^n(x) - f^n(y)| = 0$, and

 $\limsup_{n\to\infty} |f^n(x) - f^n(y)| \ge diam(I)/2.$

so f is Li-Yorke sensitive.

Dense orbits for $f \times f : I^2 \to I^2$.

Proposition 3 Let f be a non-flat C^3 unimodal map, then the following are equivalent:

- 1. f has an invariant prob. measure $\ll \lambda$;
- 2. $\liminf_n \lambda(f^n(A)) > 0$ for every $A \subset I$, $\lambda(A) > 0$.
- 3. $\lim_{n \to \infty} \lambda(f^n(A)) = 1$ for every $A \subset I$, $\lambda(A) > 0$.

In this case two-dimensional λ_2 -a.e. (x, y) has a dense orbit. (cf. μ weak mixing)

Conjecture 4 There exists a top. mixing $f \in C^{\infty}(I)$ such that λ_2 -a.e. (x, y) is Li-Yorke, but does not have a dense orbit. In fact, λ_2 is dissipative, whereas λ is conservative.

When attractor \mathcal{A} is a solenoidal Cantor set.

A point x is **approximately periodic** if $f^n \not\rightarrow$ periodic orbit, but for every $\varepsilon > 0$, there is a periodic point p such that

$$|f^j(x) - f^j(p)| < \varepsilon$$

for all j sufficiently large.

Lemma 5 (Barrio-Blaya, Jiménez-López) $(\omega(x), f)$ is conjugate to some (p_i) -adic adding machine if and only if x is approximately periodic.

Theorem 6 If \mathcal{A} is solenoidal Cantor attractor, then

 $\lambda_2(\text{Distal pairs}) = \lambda_2(\text{Bas}_A \times \text{Bas}_A)$

and there are no Li-Yorke pairs in $Bas_{\mathcal{A}}$.

When \mathcal{A} is wild.

Theorem 7 Let A be a wild attractor (with positive drift and basin of full measure), then we have these possibilities:

- (a) λ_2 (Distal pairs) = 1 and every point in the basin is approximately periodic. (Strange adding machine!)
- (b) λ_2 (Distal pairs) = 1, but no point in the basin is approximately periodic.
- (c) $\lambda_2(LY \text{ pairs}) = 1$.
- (d) λ_2 (Distal pairs) > 0 and λ_2 (LY pairs) > 0.

Each of these cases occurs. In cases (b)-(d) there is $\varepsilon > 0$ such that Bas_A contains uncountable ε -scrambled sets, and f is Li-Yorke sensitive on Bas_A .

Cutting Times for Unimodals

The *n*-th iterate of f has **central branch**

$$f^n: J \to f^n(J) =: D_n \subset f^n(J),$$

where J is a maximal interval adjacent to c on which f^n is monotone.

The number n is a **cutting time** if $c \in f^n(J)$.

Cutting times are denoted as

$$1 = S_0 < S_1 < S_2 < \dots$$

Enumeration Scales

Given the integer sequence

 $\{S_k\}_{k\geq 0} \text{ with } S_0 = 1 \text{ and } S_k \leq 2S_{k-1}$ let

$$\langle n \rangle \in \{0,1\}^{\mathbb{N} \cup \{0\}}$$
 such that $\sum_{k \ge 0} \langle n \rangle_k S_k = n$
be the **greedy** representation of \mathbb{N} .

Let g be 'add one and carry':

 $g: \langle \mathbb{N} \cup \{0\} \rangle \to \langle \mathbb{N} \rangle, \quad g(\langle n \rangle) = \langle n+1 \rangle.$

The extension to the closure

$$g: E := \overline{\langle \mathbb{N} \cup \{\mathbf{0}\} \rangle} \to E$$

is well-defined and continuous, provided there is $\alpha_k \to \infty$ such that

$$S_k = \sum_{j \ge \alpha_k} S_j.$$

13

Factors of Enumeration Scales

Let (E,g) be the enum. scale based on $\{S_k\}_{k\geq 0}$. Let

$$h(x) = x - \text{round}(x) \in [-\frac{1}{2}, \frac{1}{2})$$

be the signed distance to the nearest integer. Assume that there is $\rho \in \mathbb{R} \setminus Q$ such that

$$\sum_{k} k |h(\rho S_k)| < \infty.$$
 (1)

Then

$$\pi_{\rho}: E \to \mathbb{S}^1, \quad \pi(e) = \sum_k e_k h(\rho S_k) \pmod{1}$$

is well-defined, onto and satisfies

$$\pi_{\rho} \circ g = R_{\rho} \circ \pi_{\rho}.$$

14

Idea of Proof part (b).

Assume that (1) holds.

Assume that f has a wild attractor with positive drift.

Define

$$b_n(x) = \max_j \{j : f^j(Z_j(x)) = D_n\}$$

where $Z_j(x)$ is order j cylinder containing x, and

$$\pi_n(x) = -\sum_k h(\rho \langle b_n(x) - n \rangle_k S_k) \pmod{1}.$$

Then $\{\pi_n(x)\}_n$ is Cauchy sequence in \mathbb{S}^1 , defined λ -a.e. x in the basin of $\omega(c)$.

For the limit $\pi = \lim_{n \to \infty} \pi_n$:

$$\pi \circ f = R_{\rho} \circ \pi_{\rho}, \qquad \lambda - -a.e.$$

Existence wild attractors.

Wild attractors exist for unimodal (i.e. one critical point c) maps with specific **Fibonaccilike** combinatorics and sufficiently large critical order ℓ_c .

Idea of proof:

• Construct pairs of symmetric intervals U_k converging to c.

• Use induced map

$$F|_{U_k} = f^{S_k}|_{U_k}$$

and consider its dynamics as random walk:

$$\chi_n(x) = k$$
 if $F^n(x) \in U_k$.

Existence of wild attractors: idea of proof continued:

• If combinatorics are good and ℓ_c is large, then this random walk has **positive drift**:

$$\mathbb{E}(\chi_{n+1} - k | \chi_n = k) \ge \eta > 0$$

w.r.t. λ , uniformly in n and k.

• Then $\chi_n \to \infty \lambda$ -a.s., so $F^n(x) \to c \lambda$ -a.e. and $f^j(x) \to \omega(c) \lambda$ -a.e.