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Li-Yorke, distal and
asymptotic pairs

Let f : X → X be a continuous map on a
metric space (X, d).

We call the pair (x, y):

Distal: if lim infn d(fn(x), fn(y)) > 0.

Asymptotic: if limn d(fn(x), fn(y)) = 0.

Li-Yorke: if

lim inf
n

d(fn(x), fn(y)) = 0

and

lim sup
n

d(fn(x), fn(y)) > 0.

A set B is scrambled if every pair x 6= y ∈
B is Li-Yorke, and f is Li-Yorke chaotic if
there is an uncountable scrambled set.

Note: htop(f) > 0 implies that (X, f) is Li-
Yorke chaotic (Blanchard et al.)
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Multimodal maps.

In this talk the interval map f : I → I will

• be C2 or C3 multimodal (i.e., finite set

of critical points: f ′(c) = 0);

• have non-flat critical points c:

f(x) = f(c) + O(|x− c|`c)

for x ≈ c, and critical order `c ∈ (1,∞).

• Sometimes we will assume that f is topo-

logically mixing, i.e., every iterate fn has

a dense orbit.
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C1 maps gives different
results

The are C1 interval maps that

• have a scrambled set of positive Lebesgue

measure, or

• have a scrambled set of full outer mea-

sure (but the scrambled set is non-measurable).

These C1 results are due to Smital ’84.

J́ımenez-López ’91 proved that no C1 can

have a measurable scrambled set of full Lebesgue

measure.
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What is an Attractor?

For interval maps, the following measure-theoretic

definition was introduced by Milnor ’85.

The omega-limit set

ω(x) = ∩n∪m≥nfm(x)

is the set of limit points of an orbit.

The basin BasA = {x : ω(x) ⊂ A}.

Let λ be Lebesgue measure. A is an at-

tractor (a la Milnor) if

λ(BasA) > 0

and if A′ ⊂ A, A′ 6= A, then λ(BasA′) = 0.

Remark: An attractor is closed and forward

invariant.
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Classification of attractors
of multimodal maps.

Theorem 1 If f : I → I is a non-flat C2 mul-
timodal map, then it has ≤ #Crit attractors,
which are of the following types:

1. A is an attracting periodic orbit.

2. A is a collection of intervals {Ij}N−1
j=0 per-

muted cyclically. (Topological mixing ⇒
N = 1.)

3. A is a minimal Cantor set consisting of
the infinite intersection of cykels of inter-
vals as above.
(solenoidal attractor - infinitely renor-
malizable, BasA is of 2nd Baire category.)

4. A is a minimal Cantor set, but not of the
above type.
(wild attractor - not Lyapunov stable,
BasA is of 1st Baire category.)
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Some references.

The classification of attractors was proved

more or less independently by Blokh & Lyu-

bich ’91, Keller ’90 and by Martens ’90.

Milnor ’85 posed the question whether wild

attractors really exist. This was proved by

Bruin, Keller, Nowicki & van Strien (’96) for

the Fibonacci unimodal map with very large

critical order `. Bruin (’98) extended this to

more general combinatorial types.

For the quadratic family, Lyubich (’94) proved

that there are no wild attractors (neither for

` ≤ 2 + ε, Keller & Nowicki ’95).

These result are the starting point of our ‘Li-

Yorke chaos classification’.
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When attractor A = I.

Theorem 2 If A = I, and λ(B) > 0. Then

• there are x 6= y ∈ B such that fn(x) =
fn(y) for some n ≥ 0.
Hence, there is no scrambled set of pos-
itive Lebesgue measure.

• there are x 6= y ∈ B such that (x, y) is not
asymptotic. Hence, there is no asymp-
totic set of positive Lebesgue measure.

• there are n > m ≥ 0 such that λ(fn(B) ∩
fm(B)) > 0: there are no strongly wan-
dering sets (Blokh & Misiurewicz).

• For all x ∈ I there is a set Cx of full
measure such that for all y ∈ Cx

lim inf
n→∞ |fn(x)− fn(y)| = 0, and

lim sup
n→∞ |fn(x)− fn(y)| ≥ diam(I)/2.

so f is Li-Yorke sensitive.
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Dense orbits for
f × f : I2 → I2.

Proposition 3 Let f be a non-flat C3 uni-
modal map, then the following are equiva-
lent:

1. f has an invariant prob. measure ¿ λ;

2. lim infn λ(fn(A)) > 0 for every A ⊂ I,
λ(A) > 0.

3. limn λ(fn(A)) = 1 for every A ⊂ I, λ(A) >

0.

In this case two-dimensional λ2-a.e. (x, y) has
a dense orbit. (cf. µ weak mixing)

Conjecture 4 There exists a top. mixing f ∈
C∞(I) such that λ2-a.e. (x, y) is Li-Yorke, but
does not have a dense orbit. In fact, λ2 is
dissipative, whereas λ is conservative.
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When attractor A is
a solenoidal Cantor set.

A point x is approximately periodic if fn 6→
periodic orbit, but for every ε > 0, there is a

periodic point p such that

|f j(x)− f j(p)| < ε

for all j sufficiently large.

Lemma 5 (Barrio-Blaya, Jiménez-López )

(ω(x), f) is conjugate to some (pi)-adic adding

machine if and only if x is approximately pe-

riodic.

Theorem 6 If A is solenoidal Cantor attrac-

tor, then

λ2(Distal pairs) = λ2(BasA ×BasA)

and there are no Li-Yorke pairs in BasA.
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When A is wild.

Theorem 7 Let A be a wild attractor (with
positive drift and basin of full measure), then
we have these possibilities:

(a) λ2(Distal pairs) = 1 and every point in
the basin is approximately periodic.
(Strange adding machine!)

(b) λ2(Distal pairs) = 1, but no point in the
basin is approximately periodic.

(c) λ2(LY pairs) = 1.

(d) λ2(Distal pairs) > 0 and

λ2(LY pairs) > 0.

Each of these cases occurs. In cases (b)-
(d) there is ε > 0 such that BasA contains
uncountable ε-scrambled sets, and f is Li-
Yorke sensitive on BasA.
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Cutting Times for Unimodals

The n-th iterate of f has central branch

fn : J → fn(J) =: Dn ⊂ fn(J),

where J is a maximal interval adjacent to c

on which fn is monotone.

The number n is a cutting time if c ∈ fn(J).

Cutting times are denoted as

1 = S0 < S1 < S2 < . . .
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Enumeration Scales

Given the integer sequence

{Sk}k≥0 with S0 = 1 and Sk ≤ 2Sk−1

let

〈n〉 ∈ {0,1}N∪{0} such that
∑

k≥0

〈n〉kSk = n

be the greedy representation of N.

Let g be ‘add one and carry’:

g : 〈N ∪ {0}〉 → 〈N〉, g(〈n〉) = 〈n + 1〉.

The extension to the closure

g : E := 〈N ∪ {0}〉 → E

is well-defined and continuous, provided there

is αk →∞ such that

Sk =
∑

j≥αk

Sj.
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Factors of Enumeration Scales

Let (E, g) be the enum. scale based on {Sk}k≥0.

Let

h(x) = x− round(x) ∈ [−1

2
,
1

2
)

be the signed distance to the nearest integer.

Assume that there is ρ ∈ R \ Q such that
∑

k

k|h(ρSk)| < ∞. (1)

Then

πρ : E → S1, π(e) =
∑

k

ekh(ρSk) (mod 1)

is well-defined, onto and satisfies

πρ ◦ g = Rρ ◦ πρ.
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Idea of Proof part (b).

Assume that (1) holds.

Assume that f has a wild attractor with pos-

itive drift.

Define

bn(x) = max
j
{j : f j(Zj(x)) = Dn}

where Zj(x) is order j cylinder containing x,

and

πn(x) = −
∑

k

h(ρ〈bn(x)− n〉kSk) (mod 1).

Then {πn(x)}n is Cauchy sequence in S1, de-

fined λ-a.e. x in the basin of ω(c).

For the limit π = limn πn:

π ◦ f = Rρ ◦ πρ, λ− -a.e.
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Existence wild attractors.

Wild attractors exist for unimodal (i.e. one
critical point c) maps with specific Fibonacci-

like combinatorics and sufficiently large crit-
ical order `c.

Idea of proof:

• Construct pairs of symmetric intervals Uk

converging to c.

• Use induced map

F |Uk
= fSk|Uk

and consider its dynamics as random walk:

χn(x) = k if Fn(x) ∈ Uk.
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Existence of wild attractors: idea of proof

continued:

• If combinatorics are good and `c is large,

then this random walk has positive drift:

E(χn+1 − k|χn = k) ≥ η > 0

w.r.t. λ, uniformly in n and k.

• Then χn →∞ λ-a.s., so Fn(x) → c λ-a.e.

and f j(x) → ω(c) λ-a.e.
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