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Throughout we consider maps f : I → I of the interval I .

Definitions: A pair of distinct points (x , y) is called:
I distal if lim infn→∞ |f n(y)− f n(x)| > 0;
I asymptotic if limn→∞ |f n(y)− f n(x)| = 0;
I Li-Yorke if

0 = lim inf
n→∞

|f n(y)− f n(x)| < lim sup
n→∞

|f n(y)− f n(x)|.

i.e., neither asymptotic nor distal.
I proximal if lim infn→∞ |f n(y)− f n(x)| = 0.

I A set S ⊂ I is called scrambled if every two distinct x , y ∈ S
form a Li-Yorke pair.

I The map f is called Li-Yorke chaotic if it has an uncountable
scrambled set.
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Some results:

The notion comes from the 1975 Li-Yorke paper: Period 3 implies
chaos.

Kuchta & Smítal: If f : I → I has a Li-Yorke pair then it has a
scrambled Cantor set: One Li-Yorke pair implies Li-Yorke chaos.
(Extended by Ruette & Snoha to graph maps.)

Blanchard et al.: Positive entropy implies Li-Yorke chaos.
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Two points to raise:

1. Are scrambled sets are large in the sense of Lebesgue measure?

Continuous interval maps can have scrambled sets of Leb(S) > 0,
but

Theorem: For C 3 interval maps with non-flat critical points (i.e.,
D`f (c) 6= 0 for some ` ≥ 1), every measurable scrambled set has
Leb(S) = 0.

Still unknown if f has flat critical points.

What about the 2-dim. Lebesgue measure of LY-pairs (x , y) ∈ I 2?
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2. What about Li-Yorke tuples instead of Li-Yorke pairs?

Definitions: A d-tuple x = (x1, . . . , xd) is called:
I asymptotic if limn maxi ,j |f n(xi )− f n(xj)| = 0;
I proximal if lim infn maxi ,j |f .(xi )− f n(xj)| = 0;
I δ-separated if lim supn mini 6=j |f n(xi )− f n(xj)) > δ;

if x is δ-separated for some δ > 0, we call it separated;
I Li-Yorke if it proximal and separated, that is:{

lim infn maxi ,j |f n(xi )− f n(xj)| = 0,

lim supn mini 6=j |f n(xi )− f n(xj)| > 0.

I δ-Li-Yorke for some δ > 0, if x is LY and:

lim sup
n

min
i 6=j
|f n(xi )− f n(xj)| > δ.
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Definition: A set A is a measure-theoretic attractor if
I it is closed and forward invariant;
I the basin Bas(A) = {x : ω(x) ⊂ A} has positive Lebesgue

measure;
I it is minimal w.r.t. these two properties.

Classification measure-theoretic attractors: if f is C 3 multimodal
with negative Schwarzian derivative, then there are four types of
such attractors:

I A (one or two-sided) attracting periodic orbit;
I A finite union of intervals, cyclically permuted by f ;
I A Lyapunov stable Cantor set (infinite renormalization);

�
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A renormalizable map

I A wild attractor - not Lyapunov stable, Bas(A) is a meager set
of positive measure.
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Theorem: Let f : I → I be a C 3 topologically mixing multimodal
map with non-flat critical points, and having no Cantor attractors.
Then the Cartesian product (I 2, Leb2, f × f ) is ergodic and for
every x ∈ I there is a full measure set Hx ⊂ I such that

lim inf
n→∞

|f n(y)− f n(x)| = 0, lim sup
n→∞

|f n(y)− f n(x)| ≥ δ,

for every y ∈ Hx and δ = 1
2diam(I ).

In particular, the set of δ-Li-Yorke pairs has full measure in I 2 for
and f is Li-Yorke sensitive.



Theorem: If f is a C 3 multimodal map with non-flat critical point,
but with a wild attractor, then one of the following occurs:
(a) Lebesgue a.e. pair of points in Bas(A) is distal and no point in

Bas(A) is approximately periodic;
(b) Lebesgue a.e. pair of points in Bas(A) is Li-Yorke;
(c) Both the sets of distal pairs and of Li-Yorke pairs have positive

Lebesgue measure in Bas(A)× Bas(A).
There are examples of polynomial unimodal maps of all above types
so that additionally Bas(A) contains ε-scrambled sets for a fixed
ε > 0 and f is Li-Yorke sensitive on Bas(A).



Recap

2. What about Li-Yorke tuples instead of Li-Yorke pairs?

More specifically:

Does the set of Li-Yorke d-tuples have positive d-dim. Lebesgue
measure?

Can it happen that the Li-Yorke d-tuples have positive d-dim.
Lebesgue measure but the Li-Yorke d + 1-tuples not?
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Definition: Let f : I → I be a non-singular map. Lebesgue measure
is called

I lim sup full if lim supn Leb(f n(A)) = 1 whenever Leb(A) > 0;
I full if limn Leb(T n(A)) = 1 whenever Leb(A) > 0.

Denote by Lebd the d-dimensional Lebesgue measure, and

LYδd = {x = (x1, . . . , xd) : x is δ − Li-Yorke tuple}

Theorem:
1. If Leb is lim sup full then Leb2(LY

δ
2 ) = 1 for every

δ < diam(I )/2,
2. If Leb is full then Lebd(LY δ

d ) = 1 for every
δ < diam(I )/2(d − 1).

The analogon holds for every continuous map on connected space
with a non-sigular measure.
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The Pomeau-Manneville map Tα is defined as

Tα(x) =

{
x(1+ 2αxα) if x ∈ [0, 1

2),

2x − 1 if x ∈ [12 , 1].
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2
, T4 and T15.



Theorem: For the Pomeau-Manneville map Tα, we have
1. Leb2-a.e. pair is 1

3 -Li-Yorke,
2. and for d ≥ 3:

I if α ≤ d−1
d−2 and δ < 1/2(d − 2), then Lebd -a.e. d-tuple is

δ-Li-Yorke;
I if α > d−1

d−2 and ε > 0, then Lebd -a.e. d-tuple is not
ε-separated; in particular Lebd -a.e. d-tuple is not Li-Yorke.

Remark: No matter how large α, a typical d-tuple is never
asymptotic.

For α > 2, the product system is Leb2-dissipative, whence orbits of
typical pairs are not dense in [0, 1]2, however still Leb2-a.e. pair is
LY. (This addresses a question by Bruin & Jiménez-López.)
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Some Questions:

1. What is the situation with Pomeau-Manneville maps with two or
more neutral fixed point (of the same exponent α)?

2. What is the Lebesgue typical situation with LY d-tuples for
smooth multimodal maps; I mean without exploiting neutral
periodic orbits?
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