Dynamics of Selmer's continued fraction algorithm

Henk Bruin

University of Vienna (Austria)
Joint with
Robbert Fokkink \& Cor Kraaikamp
TU Delft (Netherlands)
May 2013

The Euclidean Algorithm

An example from very old Greeks:
Let $x<y$ be positive real numbers.
The Euclidean algorithm to approximate $\frac{x}{y}$ by rationals goes by iterating:

$$
(x, y) \rightarrow \begin{cases}(x, y-x) & \text { if } x<y-x \\ (y-x, x) & \text { if } x>y-x\end{cases}
$$

If we scale the largest coordinate to 1 , we get the Farey map:

$$
f(x)= \begin{cases}\frac{x}{1-x} & \text { if } x<\frac{1}{2} \\ \frac{1-x}{x} & \text { if } x>\frac{1}{2}\end{cases}
$$

The Gauß map

To speed up this algorithm, define

$$
\tau(x)=1+\min \left\{n \geq 0: f^{n}(x) \in\left(\frac{1}{2}, 1\right]\right\}
$$

The induced map $G=f^{\tau}$ is the Gauß map: $G(x)=\frac{1}{x}-\left\lfloor\frac{1}{x}\right\rfloor$

It produces the standard continued fraction of x by $x_{n}=G^{n}(x), a_{n+1}=\left\lfloor\frac{1}{x_{n}}\right\rfloor:$

$$
x=\frac{1}{a_{1}+\frac{1}{a_{2}+\frac{1}{a_{3}+\frac{1}{\ddots}}}}
$$

The Gauß map

The Gauß map G preserves the measure

$$
d \nu=\frac{1}{\log 2} \frac{1}{1+x} d x
$$

which allows us to make statistical prediction of the continued fraction digits a_{n} of Lebesgue typical x.

The Gauß map

The Gauß map G preserves the measure

$$
d \nu=\frac{1}{\log 2} \frac{1}{1+x} d x
$$

which allows us to make statistical prediction of the continued fraction digits a_{n} of Lebesgue typical x.

However ν does not pull back to an f-invariant probability measure.

Instead, the Farey map preserves the infinite density

$$
d \mu=\frac{1}{x} d x
$$

The Lebesgue statistical properties of the Farey map are nevertheless very well understood, e.g. Thaler.

Algorithms in higher dimension.

Let $\vec{x}=\left(x_{1}, \ldots, x_{d}\right)$ be a d-tuple of positive reals. and π a permutation on $\{1, \ldots, d\}$.
Any subtractive algorithm can be composed of basic maps

$$
T_{\pi}(\vec{x})=\pi \circ\left(x_{1}, \ldots, x_{d-1}, x_{d}-x_{1}\right)
$$

and then iterated

$$
T^{n}(\vec{x})=T_{\pi_{n}} \circ T_{\pi_{n-1}} \circ \cdots \circ T_{\pi_{1}},
$$

where the permutations may depend on the argument \vec{x}, (for example, to sort in increasing order).

Algorithms in higher dimension.

$$
T^{n}(\vec{x})=T_{\pi_{n}} \circ T_{\pi_{n-1}} \circ \cdots \circ T_{\pi_{1}},
$$

You can scale to unit size (say $\max x_{j}=1$) at any moment:

$$
f^{n}(\vec{x})=\frac{1}{\max \hat{x}_{j}} \hat{x} \quad \text { for } \hat{x}=T^{n}(\vec{x}) .
$$

Thus f acts on

$$
\Delta_{d}=\left\{\vec{x}=\left(x_{1}, \ldots, x_{d-1}\right): 0 \leq x_{i} \leq 1\right\} .
$$

NB: The boundary $x_{1} \equiv 0$ of Δ_{d} consists of neutral fixed points.

Selmer's Algorithm and Selmer's Generalised Algorithm
Let $a \in \mathbb{N}$ and define:

$$
T(\vec{x})=\operatorname{sort}\left(x_{1}, \ldots, x_{a}, x_{a+1}-x_{1}\right)
$$

Here sort means: rearrange in increasing order.

Selmer's Algorithm and Selmer's Generalised Algorithm

Let $a \in \mathbb{N}$ and define:

$$
T(\vec{x})=\operatorname{sort}\left(x_{1}, \ldots, x_{a}, x_{a+1}-x_{1}\right)
$$

Here sort means: rearrange in increasing order.
Generalise as follows: Let $a, b \in \mathbb{N}, d=a+b$.

$$
T(\vec{x})=\operatorname{sort}\left(x_{1}, \ldots, x_{a}, x_{a+1}-x_{1}, \ldots, x_{d}-x_{1}\right) .
$$

Selmer's Algorithm and Selmer's Generalised Algorithm

Let $a \in \mathbb{N}$ and define:

$$
T(\vec{x})=\operatorname{sort}\left(x_{1}, \ldots, x_{a}, x_{a+1}-x_{1}\right)
$$

Here sort means: rearrange in increasing order.
Generalise as follows: Let $a, b \in \mathbb{N}, d=a+b$.

$$
T(\vec{x})=\operatorname{sort}\left(x_{1}, \ldots, x_{a}, x_{a+1}-x_{1}, \ldots, x_{d}-x_{1}\right) .
$$

Question 1: Is $\lim _{n \rightarrow \infty} T^{n}(\vec{x})=\overrightarrow{0}$?

Selmer's Algorithm and Selmer's Generalised Algorithm

Let $a \in \mathbb{N}$ and define:

$$
T(\vec{x})=\operatorname{sort}\left(x_{1}, \ldots, x_{a}, x_{a+1}-x_{1}\right)
$$

Here sort means: rearrange in increasing order.
Generalise as follows: Let $a, b \in \mathbb{N}, d=a+b$.

$$
T(\vec{x})=\operatorname{sort}\left(x_{1}, \ldots, x_{a}, x_{a+1}-x_{1}, \ldots, x_{d}-x_{1}\right) .
$$

Question 1: Is $\lim _{n \rightarrow \infty} T^{n}(\vec{x})=\overrightarrow{0}$?

That means: typically. If there are rational relations between the coordinates, e.g. $x_{a+1}=x_{1}$, then x_{1} can become zero in finitely many steps, and \vec{x} won't change anymore.

Trapping regions

Rephrase Question 1: Is $\vec{x}^{\infty}:=\lim _{n \rightarrow \infty} T^{n}(\vec{x})=\overrightarrow{0}$?

Trapping regions

Rephrase Question 1: Is $\vec{x}^{\infty}:=\lim _{n \rightarrow \infty} T^{n}(\vec{x})=\overrightarrow{0}$?

For the case $a=1, b=2$, i.e.,

$$
T\left(x_{1}, \ldots x_{3}\right)=\operatorname{sort}\left(x_{1}, x_{2}-x_{1}, x_{3}-x_{1}\right),
$$

the quantity $\eta:=x_{3}-x_{2}-x_{1}$ is preserved, as soon as it is positive.

Trapping regions

Rephrase Question 1: Is $\vec{x}^{\infty}:=\lim _{n \rightarrow \infty} T^{n}(\vec{x})=\overrightarrow{0}$?
For the case $a=1, b=2$, i.e.,

$$
T\left(x_{1}, \ldots x_{3}\right)=\operatorname{sort}\left(x_{1}, x_{2}-x_{1}, x_{3}-x_{1}\right),
$$

the quantity $\eta:=x_{3}-x_{2}-x_{1}$ is preserved, as soon as it is positive.
Therefore, if at some iterate $\eta>0$, then $x_{3}^{\infty}=\eta>0$.
In particular, Lebesgue measure is not ergodic.
We call $\left\{\vec{x} \in \mathbb{R}_{+}^{3}: x_{1}+x_{2}<x_{3}\right\}$ the trapping region.

Trapping Regions

Answer to Question 1: Is $\lim _{n \rightarrow \infty} T^{n}(\vec{x})=\overrightarrow{0}$?

Trapping Regions

Answer to Question 1: Is $\lim _{n \rightarrow \infty} T^{n}(\vec{x})=\overrightarrow{0}$?
For Selmer's Generalised Algorithm we have the following answer:
Trapping Theorem The r-th coordinate of $\vec{x}^{\infty}:=\lim _{n \rightarrow \infty} T^{n}(\vec{x})$ is zero

$$
\begin{cases}\text { almost surely } & \text { if } r \leq a+1, \\ \text { with probability strictly } & \text { if } a+1<r \\ \text { between } 0 \text { and } 1 & \leq \min \{a+b, 2 a\}\end{cases}
$$

Trapping Regions

Answer to Question 1: Is $\lim _{n \rightarrow \infty} T^{n}(\vec{x})=\overrightarrow{0}$?
For Selmer's Generalised Algorithm we have the following answer: Trapping Theorem The r-th coordinate of $\vec{x}^{\infty}:=\lim _{n \rightarrow \infty} T^{n}(\vec{x})$ is zero

$$
\begin{cases}\text { almost surely } & \text { if } r \leq a+1, \\ \text { with probability strictly } & \text { if } a+1<r \\ \text { between } 0 \text { and } 1 & \leq \min \{a+b, 2 a\}\end{cases}
$$

For $r>2 a$ there is no Markov partition. Numerical experiments suggest that the r-th coordinate is positive for Lebesgue-a.e. \vec{x}.

Trapping regions

Recall Selmer's generalised algorithm

$$
\left\{\begin{array}{l}
T(\vec{x})=\operatorname{sort}\left(x_{1}, \ldots, x_{a}, x_{a+1}-x_{1}, \ldots, x_{d}-x_{1}\right), \\
f(\vec{x})=\frac{1}{\hat{x}_{d}} \vec{x} \quad \hat{x}=T(\vec{x}) .
\end{array}\right.
$$

for $a, b \in \mathbb{N}, d=a+b$.

The r-th Trapping Region is

$$
\mathcal{T}_{r}=\left\{\vec{x} \in \Delta_{d}: \frac{1}{r-a} \sum_{j \leq r} x_{j}<x_{r}\right\} .
$$

If $\vec{x} \in \mathcal{T}_{r}$, then x_{1}, \ldots, x_{r-1} combined are too small to pull x_{r} to zero.

Rational Approximations

The map T is piecewise linear; each iterate T^{k} is given by an integer matrix A_{k} that depends on \vec{x}. Its inverse

$$
A_{k}^{-1}=\left(\begin{array}{ccccc}
p_{1, k} & p_{1, k-1} & \cdots & \cdots & p_{1, k-d+1} \\
\vdots & \vdots & & & \vdots \\
\vdots & \vdots & & & \vdots \\
p_{d-1, k} & p_{d-1, k-1} & \cdots & \cdots & p_{d-1, k-d+1} \\
q_{k} & q_{k-1} & \cdots & \cdots & q_{k-d+1}
\end{array}\right)
$$

is also integer and has non-negative entries.
In projective space, the columns of A_{k}^{-1} approximate \vec{x}, provided $T^{k}(\vec{x}) \rightarrow \overrightarrow{0}$.

Rational Approximations

Hence,

$$
\left(\frac{p_{1, k-j}}{q_{k-j}}, \ldots, \frac{p_{d-1, k-j}}{q_{k-j}}\right) \quad \text { for each } 0 \leq j<d
$$

are rational approximations of $\left(\frac{x_{1}}{x_{d}}, \ldots, \frac{x_{d-1}}{x_{d}}\right)$

Rational Approximations

Hence,

$$
\left(\frac{p_{1, k-j}}{q_{k-j}}, \ldots, \frac{p_{d-1, k-j}}{q_{k-j}}\right) \quad \text { for each } 0 \leq j<d
$$

are rational approximations of $\left(\frac{x_{1}}{x_{d}}, \ldots, \frac{x_{d-1}}{x_{d}}\right)$
To see this: Each column of A_{k}^{-1} is orthogonal to all rows of A_{k}, except one. Each column therefore spans the orthogonal complement of $d-1$ rows. If $\lim _{k \rightarrow \infty} A_{k} \vec{x}=\overrightarrow{0}$, then \vec{x} is nearly orthogonal to all rows of A_{k}.

Rational Approximations

Hence,

$$
\left(\frac{p_{1, k-j}}{q_{k-j}}, \ldots, \frac{p_{d-1, k-j}}{q_{k-j}}\right) \quad \text { for each } 0 \leq j<d
$$

are rational approximations of $\left(\frac{x_{1}}{x_{d}}, \ldots, \frac{x_{d-1}}{x_{d}}\right)$
To see this: Each column of A_{k}^{-1} is orthogonal to all rows of A_{k}, except one. Each column therefore spans the orthogonal complement of $d-1$ rows. If $\lim _{k \rightarrow \infty} A_{k} \vec{x}=\overrightarrow{0}$, then \vec{x} is nearly orthogonal to all rows of A_{k}.

Therefore, in projective space, \vec{x} is close to the column vectors of A_{k}^{-1}. The quality of the approximation depends on the rate of convergence of $T^{k}(\vec{x}) \rightarrow \overrightarrow{0}$; if $\lim _{k} T^{k}(\vec{x}) \neq \overrightarrow{0}$, then T gives no approximations at all.

Qualifty of Approximations

Dirichlet's Theorem states that every vector \vec{x} has infinitely many rational approximations \vec{w} of denominator $q=q(\vec{w})$ such that

$$
\begin{equation*}
\|\vec{w}-\vec{x}\| \leq q^{-(1+1 /(d-1))} . \tag{1}
\end{equation*}
$$

(NB: The norm is taken after dividing by the largest coordinate!)

Qualifty of Approximations

Dirichlet's Theorem states that every vector \vec{x} has infinitely many rational approximations \vec{w} of denominator $q=q(\vec{w})$ such that

$$
\begin{equation*}
\|\vec{w}-\vec{x}\| \leq q^{-(1+1 /(d-1))} \tag{1}
\end{equation*}
$$

(NB: The norm is taken after dividing by the largest coordinate!)
The standard continued fraction algorithm in dimension $d-1=1$ achieves this: It finds the best approximants, with $|w-x| \leq q^{-2}$.

Qualifty of Approximations

Dirichlet's Theorem states that every vector \vec{x} has infinitely many rational approximations \vec{w} of denominator $q=q(\vec{w})$ such that

$$
\begin{equation*}
\|\vec{w}-\vec{x}\| \leq q^{-(1+1 /(d-1))} \tag{1}
\end{equation*}
$$

(NB: The norm is taken after dividing by the largest coordinate!)
The standard continued fraction algorithm in dimension $d-1=1$ achieves this: It finds the best approximants, with $|w-x| \leq q^{-2}$.

In higher dimension, there is no known subtractive algorithm that finds all best approximants, or even achieves infinitely many approximants satisfying (1).

Qualifty of Approximations

Following Lagarias '93, let

$$
\eta(\vec{w}, \vec{x})=\frac{-\log \|\vec{w}-\vec{x}\|}{\log q}
$$

Qualifty of Approximations

Following Lagarias '93, let

$$
\eta(\vec{w}, \vec{x})=\frac{-\log \|\vec{w}-\vec{x}\|}{\log q}
$$

The best approximation exponent is

$$
\eta(\vec{x})=\limsup _{k \rightarrow \infty} \sup _{0 \leq i<d} \eta\left(\vec{w}_{k, i}, \vec{x}\right)
$$

The uniform approximation exponent is

$$
\eta^{*}(\vec{x})=\inf _{k} \frac{\min _{0 \leq i<d}-\log \left\|\vec{w}_{k, i}-\vec{x}\right\|}{\max _{0 \leq i<d} \log q_{k-i}} .
$$

Qualifty of Approximations

These are chosen such that we can conclude

$$
\left\|\vec{w}_{k, i}-\vec{x}\right\| \leq \begin{cases}q_{k-i}^{-\eta(\vec{x})} & \text { infinitely often } \\ q_{k-i}^{-\eta^{*}(\vec{x})} & \text { for all } k, i\end{cases}
$$

Qualifty of Approximations

These are chosen such that we can conclude

$$
\left\|\vec{w}_{k, i}-\vec{x}\right\| \leq \begin{cases}q_{k-i}^{-\eta(\vec{x})} & \text { infinitely often } \\ q_{k-i}^{-\eta^{*}(\vec{x})} & \text { for all } k, i\end{cases}
$$

Thus Dirichlet's Theorem states that

$$
\eta(\vec{x}) \geq 1+1 /(d-1)
$$

for every \vec{x}, provided the algorithm finds infinitely many of the best approximations.

Qualifty of Approximations

Main Theorem: For Selmer's Generalised Algorithm with $a \geq \max \{2, b\}$, Lebesgue-a.e. vector $\vec{x} \in \mathcal{V}_{d}$ satisfies

$$
\eta(\vec{x})=\eta^{*}(\vec{x})=1-\frac{\lambda_{2}}{\lambda_{1}}>1,
$$

where $\lambda_{1}>0>\lambda_{2}$ are the largest two typical Lyapunov exponents of the cocycle A_{k}^{-1}.

Qualifty of Approximations

Main Theorem: For Selmer's Generalised Algorithm with $a \geq \max \{2, b\}$, Lebesgue-a.e. vector $\vec{x} \in \mathcal{V}_{d}$ satisfies

$$
\eta(\vec{x})=\eta^{*}(\vec{x})=1-\frac{\lambda_{2}}{\lambda_{1}}>1
$$

where $\lambda_{1}>0>\lambda_{2}$ are the largest two typical Lyapunov exponents of the cocycle A_{k}^{-1}.

Remark: If all negative Lyapunov exponents are equal, then

$$
1-\frac{\lambda_{2}}{\lambda_{1}}=1+1 /(d-1)
$$

Finding an algorithm with this equality of Lyapunov exponents is extremely unlikely.

Qualifty of Approximations

Remarks on the Proof:

The Main Theorem follows from the work of Lagarias '93, based on Oseledec' Theorem on Lyapunov exponents of matrix-valued cocycles (here A_{k}^{-1}).

We need:

Qualifty of Approximations

Remarks on the Proof:

The Main Theorem follows from the work of Lagarias '93, based on Oseledec' Theorem on Lyapunov exponents of matrix-valued cocycles (here A_{k}^{-1}).

We need:

- an invariant measure μ (despite the neutral fixed points, a finite μ exists when $a \geq \max \{2, b\}$);

Qualifty of Approximations

Remarks on the Proof:

The Main Theorem follows from the work of Lagarias '93, based on Oseledec' Theorem on Lyapunov exponents of matrix-valued cocycles (here A_{k}^{-1}).

We need:

- an invariant measure μ (despite the neutral fixed points, a finite μ exists when $a \geq \max \{2, b\}$);
- postive acceleration: consider f^{R} so that A_{R}^{-1} is strictly positive (can be done μ-a.e.);

Qualifty of Approximations

Remarks on the Proof:

The Main Theorem follows from the work of Lagarias '93, based on Oseledec' Theorem on Lyapunov exponents of matrix-valued cocycles (here A_{k}^{-1}).

We need:

- an invariant measure μ (despite the neutral fixed points, a finite μ exists when $a \geq \max \{2, b\}$);
- postive acceleration: consider f^{R} so that A_{R}^{-1} is strictly positive (can be done μ-a.e.);
- tail estimates on R;

Qualifty of Approximations

Remarks on the Proof:

The Main Theorem follows from the work of Lagarias '93, based on Oseledec' Theorem on Lyapunov exponents of matrix-valued cocycles (here A_{k}^{-1}).

We need:

- an invariant measure μ (despite the neutral fixed points, a finite μ exists when $a \geq \max \{2, b\}$);
- postive acceleration: consider f^{R} so that A_{R}^{-1} is strictly positive (can be done μ-a.e.);
- tail estimates on R;
- Challenge: Estimate λ_{1} and λ_{2};

Qualifty of Approximations

Remarks on the Proof:

The Main Theorem follows from the work of Lagarias '93, based on Oseledec' Theorem on Lyapunov exponents of matrix-valued cocycles (here A_{k}^{-1}).

We need:

- an invariant measure μ (despite the neutral fixed points, a finite μ exists when $a \geq \max \{2, b\}$);
- postive acceleration: consider f^{R} so that A_{R}^{-1} is strictly positive (can be done μ-a.e.);
- tail estimates on R;
- Challenge: Estimate λ_{1} and λ_{2};
- Challenge: What about non-typical \vec{x} ?

References

- H. Bruin, R. Fokkink, C. Kraaikamp, The convergence of the generalised Selmer algorithm, Preprint 2013
- V. Brun, Musikk og euklidiske algoritmer, Nord. Mat. Tidskr. 9 (1961), 29-36.
- R. Fokkink, C. Kraaikamp, H. Nakada, On Schweiger's conjectures on fully subtractive algorithms, Israel J. Math. 186 (2011), 285-296.
- J. C. Lagarias, The quality of the Diophantine approximations found by the Jacobi-Perron algorithm and related algorithms, Monatsh. Math. 115 (1993), 299-328.
- E. S. Selmer, Om Flerdimensjonaler Kjedebrøk, Nord. Mat. Tidskr. 9 (1961), 37-43.
- M. Thaler, Transformations on $[0,1]$ with infinite invariant measures, Israel J. Math. 46 (1983), 67-96.

