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The Euclidean Algorithm
An example from very old Greeks:

Let x < y be positive real numbers.

The Euclidean algorithm to approximate x
y by rationals goes by

iterating:

(x , y)→
{

(x , y − x) if x < y − x ,
(y − x , x) if x > y − x .

If we scale the largest coordinate to 1, we get the Farey map:
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The Gauß map

To speed up this algorithm, define

τ(x) = 1 + min{n ≥ 0 : f n(x) ∈ (
1
2
, 1]}.

The induced map G = f τ is the Gauß map: G (x) = 1
x − b

1
x c

It produces the standard
continued fraction of x by
xn = Gn(x), an+1 = b 1

xn
c:
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The Gauß map

The Gauß map G preserves the measure

dν =
1

log 2
1

1 + x
dx ,

which allows us to make statistical prediction of the continued
fraction digits an of Lebesgue typical x .

However ν does not pull back to an f -invariant probability
measure.

Instead, the Farey map preserves the infinite density

dµ =
1
x
dx

The Lebesgue statistical properties of the Farey map are
nevertheless very well understood, e.g. Thaler.
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Algorithms in higher dimension.

Let ~x = (x1, . . . , xd ) be a d -tuple of positive reals. and π a
permutation on {1, . . . , d}.
Any subtractive algorithm can be composed of basic maps

Tπ(~x) = π ◦ (x1, . . . , xd−1, xd − x1)

and then iterated

T n(~x) = Tπn ◦ Tπn−1 ◦ · · · ◦ Tπ1 ,

where the permutations may depend on the argument ~x , (for
example, to sort in increasing order).



Algorithms in higher dimension.

T n(~x) = Tπn ◦ Tπn−1 ◦ · · · ◦ Tπ1 ,

You can scale to unit size (say max xj = 1) at any moment:

f n(~x) =
1

max x̂j
x̂ for x̂ = T n(~x).

Thus f acts on

∆d = {~x = (x1, . . . , xd−1) : 0 ≤ xi ≤ 1}.

NB: The boundary x1 ≡ 0 of ∆d consists of neutral fixed points.



Selmer’s Algorithm and Selmer’s Generalised Algorithm

Let a ∈ N and define:

T (~x) = sort(x1, . . . , xa, xa+1 − x1)

Here sort means: rearrange in increasing order.

Generalise as follows: Let a, b ∈ N, d = a + b.

T (~x) = sort(x1, . . . , xa, xa+1 − x1, . . . , xd − x1).

Question 1: Is limn→∞ T n(~x) = ~0?

That means: typically. If there are rational relations between the
coordinates, e.g. xa+1 = x1, then x1 can become zero in finitely
many steps, and ~x won’t change anymore.
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Trapping regions

Rephrase Question 1: Is ~x∞ := limn→∞ T n(~x) = ~0?

For the case a = 1, b = 2, i.e.,

T (x1, . . . x3) = sort(x1, x2 − x1, x3 − x1),

the quantity η := x3 − x2 − x1 is preserved, as soon as it is positive.

Therefore, if at some iterate η > 0, then x∞3 = η > 0.

In particular, Lebesgue measure is not ergodic.

We call {~x ∈ R3
+ : x1 + x2 < x3} the trapping region.
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Trapping Regions

Answer to Question 1: Is limn→∞ T n(~x) = ~0?

For Selmer’s Generalised Algorithm we have the following answer:
Trapping Theorem The r -th coordinate of ~x∞ := limn→∞ T n(~x) is
zero 

almost surely if r ≤ a + 1,

with probability strictly if a + 1 < r
between 0 and 1 ≤ min{a + b, 2a}.

For r > 2a there is no Markov partition. Numerical experiments
suggest that the r -th coordinate is positive for Lebesgue-a.e. ~x .
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Trapping regions

Recall Selmer’s generalised algorithm{
T (~x) = sort(x1, . . . , xa, xa+1 − x1, . . . , xd − x1),

f (~x) = 1
x̂d
~x x̂ = T (~x).

for a, b ∈ N, d = a + b.

The r-th Trapping Region is

Tr = {~x ∈ ∆d :
1

r − a

∑
j≤r

xj < xr}.

If ~x ∈ Tr , then x1, . . . , xr−1 combined are too small to pull xr to
zero.



Rational Approximations

The map T is piecewise linear; each iterate T k is given by an
integer matrix Ak that depends on ~x . Its inverse

A−1
k =


p1,k p1,k−1 . . . . . . p1,k−d+1
...

...
...

...
...

...
pd−1,k pd−1,k−1 . . . . . . pd−1,k−d+1
qk qk−1 . . . . . . qk−d+1

 .

is also integer and has non-negative entries.

In projective space, the columns of A−1
k approximate ~x , provided

T k(~x)→ ~0.



Rational Approximations

Hence, (
p1,k−j

qk−j
, . . . ,

pd−1,k−j

qk−j

)
for each 0 ≤ j < d ,

are rational approximations of
(

x1
xd
, . . . ,

xd−1
xd

)

To see this: Each column of A−1
k is orthogonal to all rows of Ak ,

except one. Each column therefore spans the orthogonal
complement of d − 1 rows. If limk→∞ Ak~x = ~0, then ~x is nearly
orthogonal to all rows of Ak .

Therefore, in projective space, ~x is close to the column vectors of
A−1

k . The quality of the approximation depends on the rate of
convergence of T k(~x)→ ~0; if limk T k(~x) 6= ~0, then T gives no
approximations at all.
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Qualifty of Approximations

Dirichlet’s Theorem states that every vector ~x has infinitely many
rational approximations ~w of denominator q = q(~w) such that

‖~w − ~x‖ ≤ q−(1+1/(d−1)). (1)

(NB: The norm is taken after dividing by the largest coordinate!)

The standard continued fraction algorithm in dimension d − 1 = 1
achieves this: It finds the best approximants, with |w − x | ≤ q−2.

In higher dimension, there is no known subtractive algorithm that
finds all best approximants, or even achieves infinitely many
approximants satisfying (1).
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Qualifty of Approximations

Following Lagarias ’93, let

η(~w ,~x) =
− log ‖~w − ~x‖

log q

The best approximation exponent is

η(~x) = lim sup
k→∞

sup
0≤i<d

η(~wk,i ,~x)

The uniform approximation exponent is

η∗(~x) = inf
k

min0≤i<d − log ‖~wk,i − ~x‖
max0≤i<d log qk−i

.
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Qualifty of Approximations

These are chosen such that we can conclude

‖~wk,i − ~x‖ ≤


q−η(~x)k−i infinitely often

q−η
∗(~x)

k−i for all k , i .

Thus Dirichlet’s Theorem states that

η(~x) ≥ 1 + 1/(d − 1)

for every ~x , provided the algorithm finds infinitely many of the best
approximations.
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Qualifty of Approximations

Main Theorem: For Selmer’s Generalised Algorithm with
a ≥ max{2, b}, Lebesgue-a.e. vector ~x ∈ Vd satisfies

η(~x) = η∗(~x) = 1− λ2

λ1
> 1,

where λ1 > 0 > λ2 are the largest two typical Lyapunov exponents
of the cocycle A−1

k .

Remark: If all negative Lyapunov exponents are equal, then

1− λ2

λ1
= 1 + 1/(d − 1).

Finding an algorithm with this equality of Lyapunov exponents is
extremely unlikely.



Qualifty of Approximations

Main Theorem: For Selmer’s Generalised Algorithm with
a ≥ max{2, b}, Lebesgue-a.e. vector ~x ∈ Vd satisfies

η(~x) = η∗(~x) = 1− λ2

λ1
> 1,

where λ1 > 0 > λ2 are the largest two typical Lyapunov exponents
of the cocycle A−1

k .

Remark: If all negative Lyapunov exponents are equal, then

1− λ2

λ1
= 1 + 1/(d − 1).

Finding an algorithm with this equality of Lyapunov exponents is
extremely unlikely.



Qualifty of Approximations

Remarks on the Proof:

The Main Theorem follows from the work of Lagarias ’93, based on
Oseledec’ Theorem on Lyapunov exponents of matrix-valued
cocycles (here A−1

k ).

We need:

I an invariant measure µ (despite the neutral fixed points, a
finite µ exists when a ≥ max{2, b});

I postive acceleration: consider f R so that A−1
R is strictly

positive (can be done µ-a.e.);
I tail estimates on R ;

I Challenge: Estimate λ1 and λ2;
I Challenge: What about non-typical ~x?
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