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The Euclidean Algorithm

An example from very old Greeks:
Let x < y be positive real numbers.

The Euclidean algorithm to approximate § by rationals goes by
iterating:

(x,y — x) if x <y—x,
(X7Y)_>{(y—x7x) if x>y —x.

If we scale the largest coordinate to 1, we get the Farey map:
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The Gaull map

To speed up this algorithm, define

A(x) = 1+min{n>0: f(x) € (%, 1.

The induced map G = f7 is the GauR map: G(x) =% — |1]

X

It produces the standard
continued fraction of x by

Xo = G"(x), an1 = | L :




The Gaull map

The Gaull map G preserves the measure

1 1
V_Iog2 1+ x

X,

which allows us to make statistical prediction of the continued
fraction digits a,, of Lebesgue typical x.
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The Gaull map G preserves the measure

1 1
V_Iog2 1+ x

X,

which allows us to make statistical prediction of the continued
fraction digits a,, of Lebesgue typical x.

However v does not pull back to an f-invariant probability
measure.

Instead, the Farey map preserves the infinite density

1
dp == dx
b
The Lebesgue statistical properties of the Farey map are

nevertheless very well understood, e.g. Thaler.



Algorithms in higher dimension.

Let X = (x1,...,xq) be a d-tuple of positive reals. and 7 a
permutation on {1,...,d}.
Any subtractive algorithm can be composed of basic maps

To(X) =mo (X1, ., Xg_1,Xqd — X1)
and then iterated
T"(X)=Tr,0Tr, 0 -0 Tr,

where the permutations may depend on the argument X, (for
example, to sort in increasing order).



Algorithms in higher dimension.

T"(X)=Tr,0Tr, 0 -0 Try,
You can scale to unit size (say max x; = 1) at any moment:

1

max X;

F1(%) = % forx = TN(R).

Thus f acts on
Ag={X=(x1,...,x4-1) : 0 < x; < 1}.

NB: The boundary x; = 0 of Ay consists of neutral fixed points.



Selmer’s Algorithm and Selmer’s Generalised Algorithm

Let a € N and define:

T(X) = sort(xi, ..., Xa, Xar1 — X1)

Here sort means: rearrange in increasing order.
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Selmer’s Algorithm and Selmer’s Generalised Algorithm

Let a € N and define:

T(X) = sort(xi, ..., Xa, Xar1 — X1)

Here sort means: rearrange in increasing order.

Generalise as follows: Let a,b€ N, d = a+ b.

T(X) = sort(X1, ..., Xay Xat1l — X1y .-y Xd — X1).

Question 1: Is lim, s T"(X) = 07

That means: typically. If there are rational relations between the
coordinates, e.g. x,11 = x1, then x; can become zero in finitely
many steps, and X won't change anymore.



Trapping regions

Rephrase Question 1: Is X*° := lim,_o T"(X) = 0?



Trapping regions

—

Rephrase Question 1: Is X*° := limp_o T"(X) = 07
For thecase a=1,b=2, i.e,
T(Xl, c X3) = SOI’t(Xl,Xz — X1,X3 — X1)7

the quantity 17 := x3 — xo — x7 is preserved, as soon as it is positive.



Trapping regions

—,
—

Rephrase Question 1: Is X*° := limp_o T"(X) = 07
For thecase a=1,b=2, i.e,
T(Xl, c X3) = SOI’t(Xl,XQ — X1,X3 — X1)7

the quantity 17 := x3 — xo — x7 is preserved, as soon as it is positive.

Therefore, if at some iterate 7 > 0, then x3° =7 > 0.

In particular, Lebesgue measure is not ergodic.

We call {x € Ri : X1 + x2 < x3} the trapping region.
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For Selmer’s Generalised Algorithm we have the following answer:
Trapping Theorem The r-th coordinate of X*° := lim,_o, T"(X) is
zero

almost surely ifr<a+1,

with probability strictly ifa+1<r
between 0 and 1 < min{a + b, 2a}.



Trapping Regions

Answer to Question 1: Is lim,_ o T"(X) = 0?

For Selmer’s Generalised Algorithm we have the following answer:
Trapping Theorem The r-th coordinate of X*° := lim,_o, T"(X) is
zero

almost surely ifr<a+1,

with probability strictly ifa+1<r
between 0 and 1 < min{a + b, 2a}.

For r > 2a there is no Markov partition. Numerical experiments
suggest that the r-th coordinate is positive for Lebesgue-a.e. X.



Trapping regions

Recall Selmer’s generalised algorithm

T(X) = sort(X1,...,Xay Xat1 — X1y -« Xd — X1),
f(X) = id X %= T(X).

X

fora,beN,d=a+b.

The r-th Trapping Region is
. 1
ﬂ:{XeAdr_a;Xj<Xr}
JSr

If X € T,, then x1,...,x,_1 combined are too small to pull x, to
zero.



Rational Approximations

The map T is piecewise linear; each iterate T is given by an
integer matrix Ay that depends on X. Its inverse

P1 K P1k—1 - .. P1,k—d+1
-1 _
Ak =
Pd—1,k Pd-1k-1 ~--- -+ Pd—1k—d+1
qk k-1 cee e Gk—d+1

is also integer and has non-negative entries.

In projective space, the columns of A;l approximate X, provided
TK(X) — 0.



Rational Approximations

Hence,

(pl’kj, cee pdl’kj> foreach 0 <j < d,
qk—j qk—j

: : : x1 Xd—1
are rational approximations of (Z’ el T)
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Rational Approximations

Hence,
(pl’kJ . pdl’k1> for each 0 < j < d,
qk—j qk—j
are rational approximations of (i—l, el E)
d Xd

To see this: Each column of A;l is orthogonal to all rows of Ay,
except one. Each column therefore spans the orthogonal
complement of d — 1 rows. If limg_, AcX = 0, then X is nearly
orthogonal to all rows of Ay.

Therefore, in projective space, X is close to the column vectors of
A;l. The quality of the approximation depends on the rate of
convergence of TK(X) — 0; if lim, TX(X) # 0, then T gives no
approximations at all.
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Dirichlet's Theorem states that every vector X has infinitely many
rational approximations w of denominator g = q(w) such that
| — 7| < @/, (1)
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Qualifty of Approximations

Dirichlet's Theorem states that every vector X has infinitely many
rational approximations w of denominator g = q(w) such that

IW — 2| < g~ CH/E=D), (1)

(NB: The norm is taken after dividing by the largest coordinate!)

The standard continued fraction algorithm in dimension d — 1 =1

achieves this: It finds the best approximants, with |w — x| < q~2.

In higher dimension, there is no known subtractive algorithm that
finds all best approximants, or even achieves infinitely many
approximants satisfying (1).



Qualifty of Approximations

Following Lagarias '93, let



Qualifty of Approximations

Following Lagarias '93, let

— log [|w — X]|

n(w,x) = log g

The best approximation exponent is

n(X) = limsup sup n(w i, X)
k—oo 0<i<d

The uniform approximation exponent is

() = inf Mino<j<q — log [|Wy,; — X||

k mMaXo<i<d l0g qi—i
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These are chosen such that we can conclude

q;fg)?) infinitely often
IWi,i = X|| <

q;j;(z) for all k,i.



Qualifty of Approximations

These are chosen such that we can conclude

g% infinitely often

s — %] < )
q;ji(x) for all k,i.

Thus Dirichlet’'s Theorem states that
n(x)>1+1/(d-1)

for every X, provided the algorithm finds infinitely many of the best
approximations.



Qualifty of Approximations

Main Theorem: For Selmer’'s Generalised Algorithm with
a > max{2, b}, Lebesgue-a.e. vector X € V, satisfies

where A1 > 0 > ), are the largest two typical Lyapunov exponents
of the cocycle A;l.
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Main Theorem: For Selmer’'s Generalised Algorithm with
a > max{2, b}, Lebesgue-a.e. vector X € V, satisfies

where A1 > 0 > ), are the largest two typical Lyapunov exponents
of the cocycle A;l.

Remark: If all negative Lyapunov exponents are equal, then

Finding an algorithm with this equality of Lyapunov exponents is
extremely unlikely.
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Qualifty of Approximations

Remarks on the Proof:

The Main Theorem follows from the work of Lagarias '93, based on
Oseledec” Theorem on Lyapunov exponents of matrix-valued
cocycles (here A;l).

We need:

» an invariant measure 1 (despite the neutral fixed points, a
finite p exists when a > max{2, b});

» postive acceleration: consider R so that AEl is strictly
positive (can be done p-a.e.);

» tail estimates on R;

» Challenge: Estimate A1 and \y;
» Challenge: What about non-typical X7
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