Piecewise Contractions

are Asymptotically Periodic

Henk Bruin

Joint work with Jonathan Deane

Department of Mathematics University of Surrey Guildford, Surrey, GU2 7XH United Kingdom
e-mail: H.Bruin@surrey.ac.uk,
J.Deane@surrey.ac.uk
web page: http://www.maths.surrey.ac.uk/

Piecewise Isometries on the Plane

Partition \mathbb{C} into $\left\{X_{k}\right\}_{k=1}^{K} . \operatorname{Fix}\left|\lambda_{k}\right|=1$.
$G(z):=G_{k}(z)=\lambda_{k} z+\left(1-\lambda_{k}\right) w_{k} \quad$ if $z \in X_{k}$.

Example: A Goetz map:

$$
\begin{array}{lll}
X_{1}= \begin{cases}\text { Re } z<0\end{cases} & w_{1}=1 & \lambda_{1}=e^{0.7 i} \\
X_{2}= \begin{cases}\text { Re } z>0\end{cases} & w_{2}=-1+2 i & \lambda_{2}=e^{0.7 i}
\end{array}
$$

Contraction (left) and Isometry (right).

Piecewise Isometries: Take $\left|\lambda_{k}\right|<1$.

Motivation

Electronic Circuits with Dissipation.

- A Buck converter leads to the Goetz map.
- A $\Sigma-\Delta$ modulator (digital circuit).

The bandpass $\Sigma-\Delta$ modulator is a one-bit analogue to digital converter with desirable noise characteristics. The voltage at time interval n is described by a delay equation:

$$
x_{n+1}=F\left(x_{n}, x_{n-1}\right)
$$

The Z-transform description in the zeroinput and unity gain case leads to a piecewise isometry f_{s} (contraction if there is dissipation) of the plane (cf. Feely and Fitzgerald):

$$
\begin{aligned}
\binom{w_{n+1}}{t_{n+1}}= & \left(\begin{array}{cc}
0 & 1 \\
-1 & 2 \cos \theta
\end{array}\right)\binom{w_{n}}{t_{n}} \\
& +\binom{0}{\operatorname{sign} w_{n}-2 \cos \theta \operatorname{sign} t_{n} .}
\end{aligned}
$$

The invariant set for this PWI is as follows:

Left: the invariant set $M=P \cup Q \cup R \cup S$ on which the mapping f_{s} is invertible. Right: the effect of f_{s} on each of P, Q, R and S leaves their union M unchanged.

Main Result

There exists R such that $B_{R}=\{|z| \leq R\}$ is forward invariant and attracts every orbit.

$$
S=\cup_{k} \partial X_{k} \cap B_{R}
$$

is a finite set of (rectifiable) arcs.
The exceptional set \mathcal{E} is

$$
\mathcal{E}_{n}=\cup_{0 \leq i \leq n} G^{-i}(S) \cap B_{R}
$$

and

$$
\mathcal{E}=\overline{\cup_{n \geq 0} \mathcal{E}_{n}} .
$$

Theorem 1. For all $\lambda \in \mathbb{D}^{K}$ and Lebesgue a.e. $w \in \mathbb{C}^{K}$, the following hold:

- There exists a finite N such that $\mathcal{E}=\mathcal{E}_{N}$.
- There is a finite number of attracting periodic orbits,
- Every point is attracted to one of them.

Ideas of Proof

Step 1: I_{n} are itineraries of length n. $\# I_{n}$ increases subexponentially (zero entropy).

Step 2: The ‘multivalued’ omega-limit set

$$
\widetilde{\omega}(z)=\cap_{m} \overline{\cup_{n \geq m} \widetilde{G^{n}}(z)} .
$$

for

$$
\widetilde{G_{n}}(z)=\bigcup_{e_{0} \ldots e_{n-1} \in I_{n}}\left\{G_{e_{n-1}} \circ \cdots \circ G_{e_{0}}(z)\right\} .
$$

is the same for every $z \in B_{R}$. It is covered by $\# I_{n}$ discs of radius $\lambda_{\text {max }}^{n}$.

Hence $\operatorname{dim}_{H}(\widetilde{\omega}(z)=0$.

Ideas of Proof (continued)

Step 3: $\operatorname{dim}_{H}(S)=1$ so for typical $w \in \mathbb{C}^{K}$,

$$
S \cap \widetilde{\omega}(z)=\emptyset .
$$

(Use Lebesgue Density Theorem to show that

$$
B_{\varepsilon}\left(\widetilde{G}_{n}(0)\right) \cap S=\emptyset
$$

for n large and most w.)

Lemma 2. If $\widetilde{\omega}(0) \cap S=\emptyset$, then there exists $N \in \mathbb{N}$ such that $\mathcal{E}_{N}=\mathcal{E}$.

Step 4: Each component Y of $B_{R} \backslash \mathcal{E}_{N}$ intersects at most one periodic orbit, which attracts Y.
O. Feely and D. Fitzgerald, Non-ideal and chaotic behaviour in bandpass sigma-delta modulators, Proceedings of NDES 1996, Sevilla, Spain, pp. 399-404 (1996)
O. Feely, Nonlinear dynamics of bandpass sigmadelta modulation, Proceedings of NDES, Dublin, pp 33-36 (1995)

