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Setting:

Let f : I → I be a C2 unimodal map, with critical

point c and critical order 1 < ` ≤ ∞. Let cn =

fn(c).

Assume that c2 < c1 and c2 ≤ c3. Scale I such

that I = [c2, c1]. Let q ∈ [c, c1] be the fixed point.

An acip µ is an invariant probability measure

that is absolutely continuous w.r.t. Lebesgue.

An aci σ µ is an infinite σ-finite invariant mea-

sure that is absolutely continuous w.r.t. Lebesgue.
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Attractors:

An attractor A is one of the following:

1. a periodic orbit.

2. a periodic interval (period 1 is possible; in this

case A = I)

3. ω(c), when f is infinitely renormalizable.

4. ω(c) but not infinitely renormalizable: the wild

attractor. orb(x) → ω(c) for Lebesgue a.e.

point, but a 2nd Baire category behaves as in

case 2.

Case 4. does not occur for ` = 2 [Lyub], but

does for ` sufficiently large.

For C2 maps there are no wadering intervals H ,

i.e., fn|H is monotone for every n, but fn(H) 6→
orb(p).
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Ergodicity and conservativity of Lebesgue

measure:

Legesgue measure is

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




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



ergodic except in case 1.

conservative if f is nonrenormalizable

(and exact)

dissipative if f is finitely renormalizable

totally if f is infinitely renormalizable

dissipative or has a wild attractor

If f is (in)finitely renormalizable, then f is not

exact. If f has a wild attractor, then f may be

exact or not. (E.g. the Fibonacci map with wild

attractor is not exact.)

If Lebesgue measure is totally dissipative, then

there is no acip, but there is a dissipative aci σ.
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Existence of acips (finite):

Historically, acips were found for

• f(x) = 4x(1 − x), [NU].

• if c /∈ ω(c), [Mis], provided ` < ∞.

• if |Dfn(c1)| ≥ Cλn (λ > 1), [CE], provided

` < ∞. (Already [Jak] for |Dfn(c1)| ≥ Cλ
√

n.)

• if
∑

n |Dfn(c1)|−1/` < ∞, [NvS].

• if lim infn |Dfn(c1)| ≥ K = K(`), [BSS03]

and dµ
dx

∈ Lp for 1 ≤ `/(` − 1), [BRSS].
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Non-existence of acips:

The existence of acips is prevented if (there is)

(a) Cascade of Johnson boxes [John].

(b) Cascade of almost saddle nodes (almost tan-

gencies), [Br94].

(c) ` = “sufficiently” ∞, [BeMi, Thun]

(d) ` � 2 and Fibonacci-like combinatorics, [BKNS,

Br98a].

The existence of an acip is not a topological prop-

erty, even if ` ≡ 2, [Br98b].

If there is no acip, there is still a range of pos-

sible physical measures, e.g. Dirac measure δq,

[HK90].
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Existence of aci σs:

• Constructions by Hofbauer & Keller, Bruin

• If ω(c) is nowhere dense, then there exists an

acip or acia, σ with µ(J) < ∞ for any compact

interval in I \ ω(c).

• If ω(c) = I and µ(I) = ∞, then µ(J) = ∞
for every non-degenerate interval J .

• If there is a wild attractor, then there is a dis-

sipative aci σ, [Mar, BH01]

• If f is infinitely renormalizable, then there is a

dissipative aci σ, [BH01]

• ∃f , ω(c) = I , ∃ aci σ. Sets of finite µ-measure

are certain Cantor sets.

• If f is only C1, then the absence of an aci σ,

[BH01] and [Quas].
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Fibonacci-like maps and aci σs:

For Fibonacci-like maps, ω(c) is a minimal Cantor

set, with strong recurrence properties, and f |ω(c)

is uniquely ergodic, [BSS06].
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The proof of the existence of Cantor attractors

for Fibonacci maps depends on an induced map

similar to this:

F (x) = fSk−1 for x ∈ (zk−1, zk) ∪ (ẑk, ẑk−1)

where zk and ẑk are the closest points toc that are

mapped to c by fSk(zk), and cutting times satisfy

S0 = 1, Sk = Sk−1 + SQ(k).
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To evade the effects of non-linearity of the in-

duced map we create a countable piecewise lin-

ear map such that the induced map has linear

branches.

Let kneading map Q, εk = |zk − zk−1| and slopes

κk = |Df(|zk − zk−1)| satisfy:

Q(k + 1) > Q(Q2(k) + 1)

κ0 :=
1

2ε0
and κ1 :=

1

ε1

∑

i≥1

εi =
1
2
− ε0

ε1
.

κj :=

{ sj

κ0

κj−1

sj−1
if Q(j − 1) = 0,

sj ·κj−1

sj−1·sQ(j−1)·sQ2(j−1)+1
if Q(j − 1) > 0.

and using notation: xf := f(x)

sj

κj
|cf − zf

j | =
sj

κj

∞
∑

i=j+1

κiεi ≤ εQ(j),

sj

κj
|cf − zf

j | =
sj

κj

∞
∑

i=j+1

κiεi ≤
εQ2(j)+1

sQ(j)

Proposition 1 If f is a unimodal map satisfy-

ing the above, then the induced map F is lin-

ear on each set (zk−1, zk) and (ẑk, ẑk−1) and the

slopes slopes satisfy

sj := |DF |(zk−1,zk) | =
1

εj

∑

i≥Q(j)+1

εi.
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Theorem 2 Let Q be the Fibonacci kneading

map: Q(k) = max(0, k − 2). Let

λ ∈ (0, 1) and εj =
1 − λ

2
λj.

Then the corresponding countably piecewise lin-

ear unimodal map f satisfies:

• The critical order

` = 3 +
2 log(1 − λ)

log λ
.

• If λ ∈ (1
2
, 1), i.e. ` > 5, then f has a wild

attractor

• If λ ∈ ( 2
3+

√
5
, 1

2), i.e. 4 < ` < 5, then f has

no wild attractor, but an absolutely contin-

uous infinite σ-finite invariant measure.

• If λ ∈ (0, 2
3+

√
5
), i.e. ` < 4, then f has

an absolutely continuous invariant probabil-

ity measure.
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Write

ϕn = k if F n(x) ∈ (zk−1, zk) ∪ (ẑk, ẑk−1).

The drift at state k is E(ϕn − k | ϕn−1 = k).

For the Fibonacci map, we compute:

E(ϕn − k | ϕn−1 = k) =

∑

i≥k−1 iεi
∑

i≥k−1 εi
− k

=
λ

(1 − λ)
− 1.

Proposition 3 If the drift > 0 for all k suffi-

ciently large, then f has a wild attractor.

For the Fibonacci map, this happens for λ > 1
2
.
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The transition matric of the induced system is

(pi,j)i,j = (1 − λ)



















1 λ λ2 λ3 λ4 . . . . . .

1 λ λ2 λ3 λ4 . . . . . .

0 1 λ λ2 λ3 λ4 . . .

0 0 1 λ λ2 λ3 . . .
... ... 0 1 λ λ2 . . .
... ... ... ... ... ... . . .



















It has a left eigenvalue v for eigenvalue 1 with

|v|1 = 1 and vn = κnρ
n,

where

ρ ∈ (0, 1) for λ <
1

2
and

1

n
log κn → 0.

Proposition 4 If
∑

k

Skvk < ∞

then f has a acip. Otherwise, f has an aciσ.

For the Fibonacci map, we get














λ > 1
2 ∃ wild attractor, dissipative aci σ.

2
3+

√
5

< λ < 1
2 ∃ conservative aci σ.

λ < 2
3+

√
5

∃ acip
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