σ -invariant measures for interval maps

Henk Bruin

University of Surrey

Setting:

Let $f: I \to I$ be a C^2 unimodal map, with critical point c and critical order $1 < \ell \leq \infty$. Let $c_n = f^n(c)$.

Assume that $c_2 < c_1$ and $c_2 \leq c_3$. Scale I such that $I = [c_2, c_1]$. Let $q \in [c, c_1]$ be the fixed point.

An acip μ is an invariant probability measure that is absolutely continuous w.r.t. Lebesgue.

An aci $\sigma \mu$ is an infinite σ -finite invariant measure that is absolutely continuous w.r.t. Lebesgue.

Attractors:

An attractor A is one of the following:

- 1. a periodic orbit.
- 2. a periodic interval (period 1 is possible; in this case A = I)
- 3. $\omega(c)$, when f is infinitely renormalizable.
- 4. $\omega(c)$ but not infinitely renormalizable: the wild attractor. $\operatorname{orb}(x) \to \omega(c)$ for Lebesgue a.e. point, but a 2nd Baire category behaves as in case 2.

Case 4. does not occur for $\ell = 2$ [Lyub], but does for ℓ sufficiently large.

For C^2 maps there are no wadering intervals H, i.e., $f^n|H$ is monotone for every n, but $f^n(H) \not\rightarrow$ orb(p).

Ergodicity and conservativity of Lebesgue measure:

Legesgue measure is

ergodic	except in case 1.
conservative (and exact)	if f is nonrenormalizable
dissipative	if f is finitely renormalizable
totally dissipative	if f is infinitely renormalizable or has a wild attractor

If f is (in)finitely renormalizable, then f is not exact. If f has a wild attractor, then f may be exact or not. (E.g. the Fibonacci map with wild attractor is not exact.)

If Lebesgue measure is totally dissipative, then there is no acip, but there is a dissipative aci σ .

Existence of acips (finite):

Historically, acips were found for

- $f(x) = 4x(1-x), [\mathbf{NU}].$
- if $c \notin \omega(c)$, [**Mis**], provided $\ell < \infty$.
- if $|Df^n(c_1)| \ge C\lambda^n$ $(\lambda > 1)$, [**CE**], provided $\ell < \infty$. (Already [**Jak**] for $|Df^n(c_1)| \ge C\lambda^{\sqrt{n}}$.)
- if $\sum_{n} |Df^{n}(c_1)|^{-1/\ell} < \infty$, $[\mathbf{NvS}]$.
- if $\liminf_n |Df^n(c_1)| \ge K = K(\ell)$, [**BSS03**] and $\frac{d\mu}{dx} \in L^p$ for $1 \le \ell/(\ell - 1)$, [**BRSS**].

Non-existence of acips:

The existence of acips is prevented if (there is)

- (a) Cascade of Johnson boxes [**John**].
- (b) Cascade of almost saddle nodes (almost tangencies), [**Br94**].
- (c) $\ell =$ "sufficiently" ∞ , [**BeMi**, **Thun**]
- (d) $\ell \gg 2$ and Fibonacci-like combinatorics, [**BKNS**, **Br98a**].

The existence of an acip is not a topological property, even if $\ell \equiv 2$, [**Br98b**].

If there is no acip, there is still a range of possible physical measures, e.g. Dirac measure δ_q , [**HK90**].

Existence of $aci \sigma s$:

- Constructions by Hofbauer & Keller, Bruin
- If $\omega(c)$ is nowhere dense, then there exists an acip or acia, σ with $\mu(J) < \infty$ for any compact interval in $I \setminus \omega(c)$.
- If $\omega(c) = I$ and $\mu(I) = \infty$, then $\mu(J) = \infty$ for every non-degenerate interval J.
- If there is a wild attractor, then there is a dissipative aci σ , [Mar, BH01]
- If f is infinitely renormalizable, then there is a dissipative aci σ , [**BH01**]
- $\exists f, \, \omega(c) = I, \, \exists \, \text{aci} \, \sigma$. Sets of finite μ -measure are certain Cantor sets.
- If f is only C^1 , then the absence of an aci σ , [**BH01**] and [**Quas**].

Fibonacci-like maps and aci σ s:

For Fibonacci-like maps, $\omega(c)$ is a minimal Cantor set, with strong recurrence properties, and $f|\omega(c)$ is uniquely ergodic, [**BSS06**]. The proof of the existence of Cantor attractors for Fibonacci maps depends on an induced map similar to this:

$$F(x) = f^{S_{k-1}}$$
 for $x \in (z_{k-1}, z_k) \cup (\hat{z}_k, \hat{z}_{k-1})$

where z_k and \hat{z}_k are the closest points to c that are mapped to c by $f^{S_k}(z_k)$, and cutting times satisfy

$$S_0 = 1, \quad S_k = S_{k-1} + S_{Q(k)}.$$

To evade the effects of non-linearity of the induced map we create a countable piecewise linear map such that the induced map has linear branches.

Let kneading map Q, $\varepsilon_k = |z_k - z_{k-1}|$ and slopes $\kappa_k = |Df(|z_k - z_{k-1})|$ satisfy:

$$Q(k+1) > Q(Q^{2}(k)+1)$$

$$\kappa_{0} := \frac{1}{2\varepsilon_{0}} \text{ and } \kappa_{1} := \frac{1}{\varepsilon_{1}} \sum_{i \ge 1} \varepsilon_{i} = \frac{\frac{1}{2} - \varepsilon_{0}}{\varepsilon_{1}}.$$

$$\kappa_{j} := \begin{cases} \frac{s_{j} \kappa_{j-1}}{\kappa_{0} s_{j-1}} & \text{if } Q(j-1) = 0, \\ \frac{s_{j} \cdot \kappa_{j-1}}{s_{j-1} \cdot s_{Q(j-1)} \cdot s_{Q^{2}(j-1)+1}} & \text{if } Q(j-1) > 0. \end{cases}$$

and using notation: $x^f := f(x)$

$$\frac{s_j}{\kappa_j} |c^f - z_j^f| = \frac{s_j}{\kappa_j} \sum_{i=j+1}^{\infty} \kappa_i \varepsilon_i \le \varepsilon_{Q(j)},$$
$$\frac{s_j}{\kappa_j} |c^f - z_j^f| = \frac{s_j}{\kappa_j} \sum_{i=j+1}^{\infty} \kappa_i \varepsilon_i \le \frac{\varepsilon_{Q^2(j)+1}}{s_{Q(j)}}$$

Proposition 1 If f is a unimodal map satisfying the above, then the induced map F is linear on each set (z_{k-1}, z_k) and $(\hat{z}_k, \hat{z}_{k-1})$ and the slopes slopes satisfy

$$s_j := |DF|_{(z_{k-1}, z_k)}| = \frac{1}{\varepsilon_j} \sum_{i \ge Q(j)+1} \varepsilon_i.$$

Theorem 2 Let Q be the Fibonacci kneading map: $Q(k) = \max(0, k - 2)$. Let

$$\lambda \in (0,1)$$
 and $\varepsilon_j = \frac{1-\lambda}{2}\lambda^j$.

Then the corresponding countably piecewise linear unimodal map f satisfies:

• The critical order

$$\ell = 3 + \frac{2\log(1-\lambda)}{\log\lambda}$$

- If $\lambda \in (\frac{1}{2}, 1)$, i.e. $\ell > 5$, then f has a wild attractor
- If $\lambda \in (\frac{2}{3+\sqrt{5}}, \frac{1}{2})$, i.e. $4 < \ell < 5$, then f has no wild attractor, but an absolutely continuous infinite σ -finite invariant measure.
- If $\lambda \in (0, \frac{2}{3+\sqrt{5}})$, i.e. $\ell < 4$, then f has an absolutely continuous invariant probability measure.

Write

$$\varphi_n = k$$
 if $F^n(x) \in (z_{k-1}, z_k) \cup (\hat{z}_k, \hat{z}_{k-1}).$
The **drift** at state k is $\mathbf{E}(\varphi_n - k \mid \varphi_{n-1} = k).$
For the Fibonacci map, we compute:

For the Fibonacci map, we compute:

$$\mathbf{E}(\varphi_n - k \mid \varphi_{n-1} = k) = \frac{\sum_{i \ge k-1} i\varepsilon_i}{\sum_{i \ge k-1} \varepsilon_i} - k$$
$$= \frac{\lambda}{(1-\lambda)} - 1.$$

Proposition 3 If the drift > 0 for all k sufficiently large, then f has a wild attractor. For the Fibonacci map, this happens for $\lambda > \frac{1}{2}$. The transition matric of the induced system is

$$(p_{i,j})_{i,j} = (1-\lambda) \begin{pmatrix} 1 & \lambda & \lambda^2 & \lambda^3 & \lambda^4 & \dots & \dots \\ 1 & \lambda & \lambda^2 & \lambda^3 & \lambda^4 & \dots & \dots \\ 0 & 1 & \lambda & \lambda^2 & \lambda^3 & \lambda^4 & \dots \\ 0 & 0 & 1 & \lambda & \lambda^2 & \lambda^3 & \dots \\ \vdots & \vdots & 0 & 1 & \lambda & \lambda^2 & \dots \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \ddots \end{pmatrix}$$

It has a left eigenvalue v for eigenvalue 1 with

 $|v|_1 = 1$ and $v_n = \kappa_n \rho^n$,

where

$$\rho \in (0,1) \quad \text{for} \quad \lambda < \frac{1}{2} \quad \text{and} \quad \frac{1}{n} \log \kappa_n \to 0.$$

Proposition 4 If

$$\sum_k S_k v_k < \infty$$

then f has a acip. Otherwise, f has an aci σ . For the Fibonacci map, we get

 $\left\{ \begin{array}{ll} \lambda > \frac{1}{2} & \exists \ wild \ attractor, \ dissipative \ aci\sigma. \\ \frac{2}{3+\sqrt{5}} < \lambda < \frac{1}{2} \ \exists \ conservative \ aci\sigma. \\ \lambda < \frac{2}{3+\sqrt{5}} & \exists \ acip \end{array} \right.$

References

[BeMi]	M. Benedicks, M. Misiurewicz, Absolutely continuous in- variant measures for maps with flat tops, Inst. Hautes Etudes Sci. Publ. Math. 69 (1989), 203–213.
[Br94]	H. Bruin, Invariant measures of interval maps, Thesis Delft (1994).
[Br98a]	H. Bruin, Topological conditions for the existence of absorbing Cantor sets, Trans. Amer. Math. Soc. 350 (1998) 2229–2263.
[Br98b]	H. Bruin, The existence of absolutely continuous invariant measures is not a topological invariant for unimodal maps, Ergod. Th. & Dynam. Sys. 18 (1998), 555–565.
[BH98]	H. Bruin, J. Hawkins, Examples of expanding C^1 maps having no σ -finite invariant measure equivalent to Lebesgue, Israel J. Math. 108 (1998), 83–107.
[BH01]	H. Bruin, J. Hawkins, <i>Exactness and maximal automorphic factors of unimodal interval maps</i> , Ergod. Th. & Dynam. Sys. 21 (2001) 1009–1034.
[BKNS]	H. Bruin, G. Keller, T. Nowicki, S. van Strien, <i>Wild Cantor Attractors exist</i> , Ann. Math. 143 (1996) 97-130
[BSS03]	 H. Bruin, W. Shen, S. Sebastian van Strien, Invariant measures exist without a growth condition, Commun. Math. Phys. 241 (2003) 287-306 2
[BSS06]	H. Bruin, W. Shen, S. Sebastian van Strien, <i>Existence of unique SRB-measures is typical for real unicritical polynomial families</i> , Ann. Sci. Ecole Norm. Sup. 39 (2006) 381–414.
[BRSS]	H. Bruin, J. Rivera-Letelier, W. Shen, S. Sebastian van Strien, Large derivatives, backward contraction and invari- ant densities for interval maps, (2007).
[CE]	P. Collet, JP. Eckmann, <i>Positive Liapunov exponents</i> and absolute continuity for maps of the interval, Ergod. Th. & Dynam. Sys. 3 (1983) 13–46.
$[\mathbf{GS}]$	P. Góra, B. Schmitt, Un exemple de transformation dila- tante et C^1 par morceaux de l'intervalle, sans probabilité absolument continue invariante, Ergod. Th. & Dyn. Sys. 9 (1989) 101-113.
[HK90]	F. Hofbauer, G. Keller, <i>Quadratic maps without asymptotic measure</i> , Commun. Math. Phys. 127 (1990) 319-337.

[Jak]	M. V. Jakobson, Absolutely continuous invariant mea- sures for one-parameter families of one-dimensional maps, Commun. Math. Phys. 81 (1981) 39-88.
[John]	S. Johnson, Singular measures without restrictive intervals, Commun. Math. Phys. 110 (1987) 185–190.
[Lyub]	M. Lyubich, Combinatorics, geometry and attractors of quasi-quadratic maps, Ann. of Math. 140 (1994) 347–404 and Erratum Manuscript (2000).
[Mar]	M. Martens, The existence of σ -finite measures, applications to real one-dimensional dynamics, Preprint IMPA (1991)
[Mis]	M. Misiurewicz, Absolutely continuous measures for cer- tain maps of an interval, Inst. Hautes Etudes Sci. Publ. Math. 53 (1981), 17–51.
[NU]	J. von Neumann, S. Ulam, On the combinaotrics of stochastic and deterministic processes, Bull. A.M.S. 53 (1947) 1120-
[NvS]	T. Nowicki, S. van Strien, Invariant measures exist under a summability condition for unimodal maps, Invent. Math. 105 (1991) 123–136.
[Thun]	H. Thunberg, Positive exponent in families with flat critical point, Ergod. Th. & Dynam. Sys. 19 (1999), 767–807.
[Quas]	A. Quas, Non-ergodicity for C^1 expanding maps and g- measures, Ergod. Th. & Dyn. Sys. 16 (1996) 531-542.
$[\mathbf{Zwei}]$	R. Zweimller, <i>S</i> -unimodal Misiurewicz maps with flat crit- ical points, Fund. Math. 181 (2004) 1–25.