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Setting:

Let f : I — I be a C? unimodal map, with critical
point ¢ and critical order 1 < ¢ < 0. Let ¢, =
f(c).

Assume that ¢» < ¢ and ¢y < ¢3. Scale I such
that I = [co, c1]. Let ¢ € [c, ¢1] be the fixed point.

An acip p is an invariant probability measure
that is absolutely continuous w.r.t. Lebesgue.

An acio p is an infinite o-finite invariant mea-
sure that is absolutely continuous w.r.t. Lebesgue.



Attractors:

An attractor A is one of the following:
1. a periodic orbit.

2. a periodic interval (period 1 is possible; in this
case A =1)

3. w(c), when f is infinitely renormalizable.

4. w(c) but not infinitely renormalizable: the wild
attractor. orb(z) — w(c) for Lebesgue a.e.
point, but a 2nd Baire category behaves as in
case 2.

Case 4. does not occur for £ = 2 [Lyub], but
does for ¢ sufficiently large.

For C? maps there are no wadering intervals H
i.e., f"|H is monotone for every n, but f"(H) 4
orb(p).



Ergodicity and conservativity of Lebesgue
measure:

Legesgue measure is
7 . .
ergodic except in case 1.

conservative if f is nonrenormalizable
(and exact)

dissipative  if f is finitely renormalizable

totally if f is infinitely renormalizable

| dissipative  or has a wild attractor

If f is (in)finitely renormalizable, then f is not
exact. If f has a wild attractor, then f may be
exact or not. (E.g. the Fibonacci map with wild
attractor is not exact.)

If Lebesgue measure is totally dissipative, then
there is no acip, but there is a dissipative acio.



Existence of acips (finite):

Historically, acips were found for
o f(x)=4x(1 —x), [NU].
o if ¢ ¢ w(c), [Mis], provided ¢ < oc.

o if [Df"(c;)] > CA" (A > 1), [CE], provided
{ < oco. (Already [Jak] for | D f"(c;)| > CAV™)

o if > [Df"(c))|7V! < oo, [NVS].

o if liminf, |Df"(c;)| > K = K({), [BSS03]
and % € LP for 1 < (/(¢— 1), [BRSS].



Non-existence of acips:

The existence of acips is prevented if (there is)
(a) Cascade of Johnson boxes [John].

(b) Cascade of almost saddle nodes (almost tan-
gencies), [Br94.

(c) £ = “sufficiently” oo, [BeMi, Thun]

(d) £ > 2 and Fibonacci-like combinatorics, [ BKIN'S,
Br98a).

The existence of an acip is not a topological prop-
erty, even if £ = 2, [Br98b].

If there is no acip, there is still a range of pos-
sible physical measures, e.g. Dirac measure 0y,

HK90).



Existence of acios:
e Constructions by Hofbauer & Keller, Bruin

o If w(c) is nowhere dense, then there exists an
acip or acia, o with u(J) < oo for any compact
interval in I\ w(c).

o If wic) =1 and u(I) = oo, then u(J) = oo
for every non-degenerate interval J.

o [f there is a wild attractor, then there is a dis-
sipative aci o, [Mar, BHO1]

e If f is infinitely renormalizable, then there is a
dissipative acio, [BHO1]

e If w(c) =1, Jacio. Sets of finite p-measure
are certain Cantor sets.

o If f is only C', then the absence of an acio,
[BHO1| and [Quas].



Fibonacci-like maps and acios:

For Fibonacci-like maps, w(c) is a minimal Cantor
set, with strong recurrence properties, and f|w(c)
is uniquely ergodic, [BSS06.



The proof of the existence of Cantor attractors
for Fibonacci maps depends on an induced map
similar to this:

F(x) = fo%1 for x€ (zh_1,2) U (3, Zrt)

where z;. and Z;. are the closest points toc that are
mapped to ¢ by f%(z;), and cutting times satisfy

So=1, Sp =51+ SQ(k).



To evade the effects of non-linearity of the in-
duced map we create a countable piecewise lin-
ear map such that the induced map has linear
branches.

Let kneading map @, € = |2 — 2zx—1| and slopes
= |Df(|zr — 2k-1)] satisfy:

Qk+1) > Q(Q*(k) +1)
1 1 1_ €0
= — and N =2 2
Ko 280 and ki - 81 ;8 )
j — SjRj—1 f - 1 O
%I=1Q>-1)"PQ2(j-1)+1 : Q(] ) ~

and using notation: z/ = f(x)

S S
J‘C —Zf|— = ZKJ@SZS&Q()
]7, =j+1

el — 2| = 2 Z ey < 2
1=7+1 5Q0)
Proposition 1 If f is a unimodal map satisfy-
ing the above, then the induced map F s lin-
ear on each set (zx_1,z;) and (Zx, Zk—1) and the
slopes slopes satisfy

sj=|DF|._ .| = Z ez

2>Q
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Theorem 2 Let () be the Fibonacct kneading
map: Q(k) = max(0,k — 2). Let
1—A
2
Then the corresponding countably piecewise lin-

Ae(0,1) and e = M.

ear unimodal map f satisfies:

e The critical order
2log(1 — A)

(=3
i log A

o If )\ € (%,1), i.e. £ > 05, then f has a wild
attractor

o If )\ € (?j—ﬁ,%), i.e. 4 <l <5, then f has
no wild attractor, but an absolutely contin-

uous infinite o-finite invariant measure.

o I[f \ € (O,ﬁ), i.e. £ < 4, then f has
an absolutely continuous imvariant probabil-

1ty measure.
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Write
o, =k if Fn(£U> S (Zk—h Zk) U (2]{, ZA’k_l).
The drift at state k is E(p, — k | pn_1 = k).

For the Fibonacci map, we compute:

D isho1 1€
E(pn — k| pn1=k) = = —k
Zizk—l &

(1=2)

Proposition 3 If the drift > 0 for all k suffi-
ciently large, then f has a wild attractor.

For the Fibonacci map, this happens for A > %
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The transition matric of the induced system is

AAZ N3N \

A A2 N3

1A A2 A3 2

0 1 X A2 23 ...
0 1 A A ...

[t has a left eigenvalue v for eigenvalue 1 with

1
1
0
(pij)ij=(1—=A) 0

wi =1 and v, = kyp",

where

1 1
pe(0,1) for )\<§ and —logk, — 0.
n

Proposition 4 If
Z Skvk < 0
k

then f has a acip. Otherwise, f has an acio.

For the Fibonacct map, we get

( . . . . .
A > % 3 wild attractor, dissipative acio.
{ %\/5 < A< i 3 conservative acio.
\ A< ﬁ 3 acip
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