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Marek Zdun

Overlap with this talk and the work of Marek Zdun revolves around
the question:

When is a diffeomorphism f embeddable in a flow of a
vector field? That is, when is f equal to the time-1 map
of a flow ϕt?

Globally on an entire manifold, this is seldom the case.

But local solutions are often useful too. In bifurcation theory and
in this talk.
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Statistical Laws

Let (X , f ) be a chaotic dynamical systems, and v : X → R an
observable.

Due to the chaos, precise predictions of Vn := v ◦ f n are impossible.

If there is a “good” f -invariant measure µ, one can hope to prove
statistical laws:



Statistical Laws

I Central Limit Theorem (CLT):∑n−1
j=0 (Vj − E(v))

√
n

⇒d N (0, σ2)

provided E(|v |2) <∞ and E(|v |) <∞.

I Stable laws, i.e., analog of CLT in case E(|v |2) or even E(|v |)
are infinite.

I Mixing, i.e., convergence of the correlation coefficients

ρn =

∫
v · w ◦ f n dµ

converges to zero, when centered and/or scaled appropriately.
The rate of this convergence is called the rate of mixing.

I Many further laws, with fancy names and acronyms: (LIL,
WIP, ASIP, LLT, return time statistics, extremal value
statistics,....)
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Mixing rates
I For finite-measured hyperbolic systems, we expect “good”

(= physically relevant) measures with exponential mixing.
I This is, roughly speaking, the strongest property to expect:

other statistical laws tend to follow from this.

I Dynamical systems with intermittency (specifically: neutral
fixed points) tend to exhibit polynomial mixing.

I The standard tool to prove this is an inducing scheme

F = f τ : Y ⊂ X → Y ,

to accelerated the dynamics to a hyperbolic system. The tail
of this inducing scheme predicts the rate of mixing.

I Upper bounds for mixing are relatively easy. Lower bounds
(i.e., upper bounds are sharp) are much harder, and require
precise estimates (often regular variation) of the tails

µ(y ∈ Y : τ(y) ≥ n) ∼ n−β`(n),

where `(n) is a slowly varying function (e.g. constant,
logarithmic).
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Intermittent Maps
The Pomeau-Manneville map f : [0, 1]→ [0, 1] is defined as

f (x) =

{
x(1 + (2x)α) x ∈ [0, 1

2 ];

2x − 1 x ∈ ( 1
2 , 1].

α > 0.

There is a finite resp. infinite absolutely continuous measure (acim)
if α < 1 resp. α ≥ 1. Due to the neutral fixed point at 0, the
density dµ

d Leb is always unbounded.

τ = 1
τ = 2

τ = 3

Figure: The Pomeau-Manneville map and its first return to Y = [ 1
2 , 1].
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Intermittent Maps

The Pomeau-Manneville map has tail estimates:

Leb({τ ≥ n}) ∼ C n−β + O(n−β+1 log n) β = 1/α,

which is the key estimates for e.g. mixing rates:

ρn(v ,w)∫
v
∫

w
=

1 + 1
E(τ)

∑
j>n µ(τ > j) + O(dn) β > 1

(d1nβ−1 + · · ·+ dqnq(β−1)) + O(dn) β ∈ ( 1
2 , 1),

for known d1, . . . , dq, q = b2β−1
2−2β c, and error terms

dn = dn(β, ‖v‖, ‖w‖), and for sufficiently regular observables v ,w
supported on Y = [ 1

2 , 1].
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Intermittent Maps

An almost Anosov map is an Anosov map (such as Arnol’d’s
catmap)

Figure: Catmap with matrix

(
2 1
1 1

)

with a neutral fixed point.



Intermittent Maps

Assume this neutral fixed point p = (0, 0) is in the interior of an
element P0 of the Markov partition:

Using a local surgery, we can give it local formula:

f

(
x
y

)
=

(
x(1 + a0xκ + a2yκ + O(|(x , y)|κ+1))
y(1− b0xκ − b2yκ + O(|(x , y)|κ+1))

)
for a0, a2, b0, b2 ≥ 0, ∆ := a2b0 − a0b2 6= 0, κ ≥ 1.



Intermittent Maps

The task is to estimate the measure of the strips {τ = n}, n ≥ 2.

xζ0 ζ1

y

η0

η1

{τ = n}

F ({τ = n})

F = f τ

Q

W u

f−1(W u)

W s

f (W s )

∗

∗

∗

∗

∗

∗

Figure: The first quadrant Q of the rectangle P0, with stable and unstabe
foliations drawn vertically and horizontally, respectively.
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Strategy

I Find a vector field X(
ẋ
ẏ

)
= X

(
x
y

)
=

(
x(a0xκ + a2yκ + O(|(x , y)|κ+1))
−y(b0xκ + b2yκ + O(|(x , y)|κ+1))

)
such that f is the time-1 map of its flow ϕt , see [DRR81].

I Find a first integral

L(x , y) =

{
xuy v (a0

v xκ + b2
u yκ) if ∆ > 0;

x−uy−v (a0
v xκ + b2

u yκ)−1 if ∆ < 0.

where u = κb2
∆ (a0 + b0), v = κa0

∆ (a2 + b2), for the truncated
vector field:

Xtrunc

(
x
y

)
=

(
x(a0xκ + a2yκ)
−y(b0xκ + b2yκ)

)
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Strategy

I Use a new coordinate M = y/x to rewrite the system to{
L̇ = 0

Ṁ = −M(c0 + c2Mκ)xκ
ci = ai + bi . (1)

I Solve x from

L(x , y) = xuy v (
a0

v
xκ+

b2

u
yκ) = ξuηv (

a0

v
ξκ+

b2

u
ηκ) = L(ξ, η)

to find an approximate solution to (1)



Strategy

Let (ξ(T ), η0) and (ζ0, ω(T )) be the entry and exit point of a
flow-line that takes exactly time T to pass through Q.

x

y

(ξ(T ), η0)•

(ζ0, ω(T ))•

η0

ζ0

Q



Strategy

Theorem
There are functions ξ0(η), ω0(η), ξ1(η), ω1(η) > 0 independent of
T such that

ξ(η,T ) = ξ0(η)T−β2

(
1− ξ1(η)T−1 + O(T−2,T−κβ2)

)
and

ω(η,T ) = ω0(η)T−β0

(
1− ω1(η)T−1 + O(T−2,T−κβ0)

)
.

for β0 := a0+b0
κa0

and β2 := a2+b2
κb2

.



Strategy

I Estimate the effects of the extra error terms O(|(x , y)|κ+1))
in the vector field X on L and the eventual solution.

Theorem
For the non-truncated vector field, we obtain

ξ(η,T ) = ξ0(η)T−β2

(
1 + O(max{n−β∗ ,T−1 log T )}

)
,

where β∗ = 1
κ min

{
1, a2

b2
, b0
a0

}
and an analogous formula for

ω(η,T ).

The tails of the original system (w.r.t. the SRB-measure) follow.
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