Properties of Fibonacci-like Inverse Limit Spaces

Henk Bruin

University of Surrey

Throughout, unimodal maps $T: I \rightarrow I$ are restricted to the core $I=\left[c_{2}, c_{1}\right], c_{n}=T^{n}(c)$ where c is the critical point.

Definition: The inverse limit space is

$$
\begin{aligned}
X:= & (I, T) \\
= & \left\{\left(\ldots x_{-3}, x_{-2}, x_{-1}, x_{0}\right):\right. \\
& \left.\quad x_{i}=T\left(x_{i+1}\right) \in I \text { for all } i<0\right\} .
\end{aligned}
$$

equipped with product topology. Let

$$
\pi_{n}: X \rightarrow I, \quad \pi_{n}(x)=x_{n}
$$

be the n-th projection.
The induced homeomorphism is

$$
\begin{aligned}
& \hat{T}\left(\ldots x_{-3}, x_{-2}, x_{-1}, x_{0}\right) \mapsto \\
& \quad\left(\ldots x_{-3}, x_{-2}, x_{-1}, x_{0}, T\left(x_{0}\right)\right)
\end{aligned}
$$

Basic question (Ingram):

If T and \tilde{T} are non-conjugate, are X and \tilde{X} non-homeomorphic?

The classification of X when $\operatorname{orb}(c)$ is finite is complete.
(Barge \& Diamond '95, Swanson \& Volkmer '98, Bruin '00, Kailhofer '03, Stimac̄ '04, Block et al. '05).

What if orb(c) is infinite?

At least uncountably many non-homeomorphic inverse limits.
(Barge \& Diamond '98, Brucks \& Bruin '99, Raines '04).

Abundance of subcontinua (sometimes very exotic, with "self-similarity"). (Barge, Brucks \& Diamond '96, Brucks \& Bruin '99)

The Inverse Limit

heigth is coded by backward itinerary
$\ldots e_{-3} e_{-2} e_{-1} e_{0} \in\{0,1\}^{Z_{-}}$
width is $\left[c_{L}, c_{R}\right]$
where

$$
\quad \begin{aligned}
& R \\
& \bullet
\end{aligned}=\sup \left\{n>0: e_{-n+1} \ldots e_{0}=\nu_{1} \ldots \nu_{n}\right.
$$

$$
\left.\# \text { of } 1 s \text { in } \nu_{1} \ldots \nu_{n} \text { is } \begin{array}{c}
\text { even } \\
\text { odd }
\end{array}\right\}
$$

where

$$
\nu=\nu_{1} \nu_{2} \nu_{3} \nu_{4} \cdots \in\{0,1\}^{\mathbf{N}}
$$

is the kneading sequence.

Cutting Times

The kneading sequence is

$$
\nu=\nu_{1} \nu_{2} \nu_{3} \nu_{4} \cdots \in\{0,1\}^{\mathbf{N}}
$$

Define the cutting times by

$$
S_{0}=1, \quad S_{k}=\min \left\{j>S_{k-1}: \nu_{j} \neq \nu_{j-S_{k-1}}\right\}
$$

There is a map (called kneading map)

$$
Q: \mathbf{N} \rightarrow \mathbf{N} \cup\{0\}
$$

such that

$$
S_{k}-S_{k-1}=S_{Q(k)}
$$

Examples:

The Feigenbaum-Coullet-Tresser map:

$$
Q(k)=k-1, S_{k}=2^{k} .
$$

Its inverse limit is known (Barge \& Ingram).
The Fibonacci map:

$$
Q(k)=\max \{0, k-2\} .
$$

The S_{k} are the Fibonacci numbers.
Fibonacci-like maps:

$$
Q(k)=\max \{0, k-d\},
$$

This implies:
-
$\omega(c)$ is minimal Cantor set.

$$
\left|c_{L}-c_{R}\right| \rightarrow 0 \text { as } L \text { or } R \rightarrow \infty .
$$

Theorem 1 The inverse limit of a Fibonaccilike map has

- a Cantor set of endpoints.
- countably many disjoint non-arc subcontinua, all of which are
$\sin \frac{1}{x}$-curves
arranged in $d-1 \widehat{T}$-orbits.
- conjecture: and no asymptotic composants.

Conjecture: If Q is eventually injective $(Q(k) \neq Q(l)$ for all $k \neq l$ suff. large), then there are no asymptotic composants.

Construction of the Tree

1. Start with

2. Define

$$
\beta(n)=n-\max \left\{S_{k}<n\right\}
$$

and attach

$$
\text { for } n=3,4,5, \ldots
$$

3. $\bullet_{n} \longrightarrow m$ is shorter as $|b-a|$ is larger. (Analogous to p-adic topology.)

Tree of the Fibonacci map.

How to Walk the Tree?

- ν is public key;
$e=\ldots e_{-3} e_{-2} e_{-1} e_{0}$ is personal key.
- $\quad \begin{aligned} & R \\ & L\end{aligned}=\sup \left\{n>0: e_{-n+1} \ldots e_{0}=\nu_{1} \ldots \nu_{n}\right.$, \# of $1 s$ in $\nu_{1} \ldots \nu_{n}$ is $\left.\begin{array}{c}\text { even } \\ \text { odd }\end{array}\right\}$
- 1. Compute R, move to node R and swap entry e_{-R}.

2. Compute L, move to node L and swap entry e_{-L}.
3. Goto 1.

- R or $L=\infty$ corresponds to endpoints.

Properties of a Walk.

Let $\left\{F_{j}\right\}_{j \in \mathrm{Z}}$ be the values $\ldots R L R L \cdot R L R L R L \ldots$ of a walk.

- The walk is invertible. No merging composants.
- $\left|F_{j}-F_{j-1}\right|=S_{k_{j}}$ is a cutting time.
- If $F_{j}<F_{j+1}<F_{j-1}$ then $k_{j}=Q\left(k_{j+1}\right)$.
- If $F_{j-1}<F_{j}<F_{j+1}$ then $Q\left(k_{j}+1\right) \geq$ $Q\left(k_{j+1}+1\right)$.
- If $F_{i}=F_{j}$, then there is $i<a<j$ such that $F_{a}>F_{i}$.

A typical example of this is when T has a periodic critical point of period 3. The below picture illustrates the resulting inverse limit space; p is the fixed point of \hat{f}.

This representation has a single infinite Wada channel.

