Properties of Fibonacci-like Inverse Limit Spaces

Henk Bruin University of Surrey

Throughout, unimodal maps $T : I \rightarrow I$ are restricted to the **core** $I = [c_2, c_1]$, $c_n = T^n(c)$ where c is the **critical point**.

Definition: The inverse limit space is

$$X := (I,T)$$

= {(...x_{-3}, x_{-2}, x_{-1}, x_0) :
 $x_i = T(x_{i+1}) \in I \text{ for all } i < 0$ }.

equipped with product topology. Let

$$\pi_n: X \to I, \quad \pi_n(x) = x_n$$

be the *n*-th projection.

The induced homeomorphism is

$$\hat{T}(\dots x_{-3}, x_{-2}, x_{-1}, x_0) \mapsto (\dots x_{-3}, x_{-2}, x_{-1}, x_0, T(x_0))$$

Basic question (Ingram):

If T and \tilde{T} are non-conjugate, are X and \tilde{X} non-homeomorphic?

The classification of X when orb(c) is finite is complete.

(Barge & Diamond '95, Swanson & Volkmer '98, Bruin '00, Kailhofer '03, Stimač '04, Block et al. '05).

What if orb(c) is infinite?

At least uncountably many non-homeomorphic inverse limits.

(Barge & Diamond '98, Brucks & Bruin '99, Raines '04).

Abundance of subcontinua (sometimes very exotic, with "self-similarity"). (Barge, Brucks & Diamond '96, Brucks & Bruin '99)

The Inverse Limit

width is $[c_L, c_R]$

where

•
$$\begin{aligned} \frac{R}{L} &= \sup\{n > 0 : e_{-n+1} \dots e_0 = \nu_1 \dots \nu_n, \\ & \# \text{ of } 1s \text{ in } \nu_1 \dots \nu_n \text{ is } \frac{\text{even}}{\text{odd}} \end{aligned}$$

where

$$\nu = \nu_1 \nu_2 \nu_3 \nu_4 \dots \in \{0, 1\}^N$$

is the kneading sequence.

Cutting Times

The kneading sequence is

$$\nu = \nu_1 \nu_2 \nu_3 \nu_4 \dots \in \{0, 1\}^{\mathbb{N}}$$

Define the cutting times by

$$S_0 = 1, \quad S_k = \min\{j > S_{k-1} : \nu_j \neq \nu_{j-S_{k-1}}\}.$$

There is a map (called **kneading map**) $Q:\mathbf{N}\to\mathbf{N}\cup\{\mathbf{0}\}$

such that

$$S_k - S_{k-1} = S_{Q(k)}.$$

Examples:

The Feigenbaum-Coullet-Tresser map:

$$Q(k) = k - 1, S_k = 2^k.$$

Its inverse limit is known (Barge & Ingram).

The Fibonacci map:

$$Q(k) = \max\{0, k-2\}.$$

The S_k are the Fibonacci numbers.

Fibonacci-like maps:

$$Q(k) = \max\{0, k - d\},\$$

This implies:

- $\omega(c)$ is minimal Cantor set.
- $|c_L c_R| \to 0$ as L or $R \to \infty$.

Theorem 1 The inverse limit of a Fibonaccilike map has

- a Cantor set of endpoints.
- countably many disjoint non-arc subcontinua, all of which are

$$\sin\frac{1}{x}$$
-curves

arranged in d-1 \hat{T} -orbits.

• conjecture: and no asymptotic composants.

Conjecture: If Q is eventually injective $(Q(k) \neq Q(l) \text{ for all } k \neq l \text{ suff. large}),$ then there are no asymptotic composants.

Construction of the Tree

- 1. Start with $\bullet_2 \cdots \bullet_1$
- 2. Define

$$\beta(n) = n - \max\{S_k < n\}$$

and attach

$$\bullet_n - - - - \bullet_{\beta(n)}$$

for $n = 3, 4, 5, \dots$

3. $\bullet_n \longrightarrow \bullet_m$ is shorter as |b - a| is larger. (Analogous to *p*-adic topology.)

Tree of the Fibonacci map.

How to Walk the Tree?

• ν is public key; $e = \dots e_{-3}e_{-2}e_{-1}e_0$ is personal key.

•
$$\frac{R}{L} = \sup\{n > 0 : e_{-n+1} \dots e_0 = \nu_1 \dots \nu_n,$$
$$\# \text{ of } 1s \text{ in } \nu_1 \dots \nu_n \text{ is } \frac{\text{even}}{\text{odd}}\}$$

- 1. Compute R, move to node R and swap entry e_{-R}.
 - 2. Compute *L*, move to node *L* and swap entry e_{-L} .
 - 3. Goto 1.
- R or $L = \infty$ corresponds to endpoints.

Properties of a Walk.

Let $\{F_j\}_{j \in \mathbb{Z}}$ be the values $\dots RLRL \cdot RLRLRL$... of a walk.

- The walk is invertible. No merging composants.
- $|F_j F_{j-1}| = S_{k_j}$ is a cutting time.
- If $F_j < F_{j+1} < F_{j-1}$ then $k_j = Q(k_{j+1})$.
- If $F_{j-1} < F_j < F_{j+1}$ then $Q(k_j + 1) \ge Q(k_{j+1} + 1)$.
- If $F_i = F_j$, then there is i < a < j such that $F_a > F_i$.

A typical example of this is when T has a periodic critical point of period 3. The below picture illustrates the resulting inverse limit space; p is the fixed point of \hat{f} .

This representation has a single infinite Wada channel.