Equilibrium states for multimodal maps

Henk Bruin

University of Surrey

(Joint work with Mike Todd, Porto)

Multimodal maps.

In this talk the interval map $f: I \to I$ will

- be C^2 multimodal (i.e., critical set $Cr = \{c : f'(c) = 0\}$ is finite);
- have non-flat critical points c:

$$f(x) = f(c) + O(|x - c|^{\ell_c})$$

for $x \approx c$, and critical order $\ell_c \in (1, \infty)$. Take $\ell_{max} = max\{\ell_c\}$.

• be transitive.

Equilibrium states.

First fix the potential

 $\varphi_t = -t \log |Df|.$

The **pressure** is sup of free energies:

$$\underbrace{P(\varphi_t)}_{\text{pressure}} = \sup_{\nu \in \mathcal{M}_{erg}} \underbrace{h_{\nu}(f) + \int \varphi_t d\nu}_{\text{free energy}}$$

A measure μ with free energy = $P(\varphi_t)$ is an equilibrium state. Also take

$$\mathcal{M}_{+} = \{ \nu \in \mathcal{M}_{erg} : \underbrace{\lambda(\nu)}_{\text{Lyap. exp.}} > 0, \nu(\text{orb}(\text{Cr})) = 0 \}$$

Questions to ask:

- Existence and uniqueness of equilibrium states?
- How smooth is $t \mapsto P(\varphi_t)$? Are there **phase transitions**?

Basic idea: Take the (unique) equilibrium state of inducing scheme. Project it to original system, and show that it is still an equilibrium state.

Basic problems:

- How to construct an inducing scheme?
- How to analyse potential on inducing scheme? Answer: Use induced shifted potential and thermodynamics on infinite alphabet shift (Sarig).
- Can different inducing schemes may give different answers?
- Is the equilibrium state global? Could there be equilibrium states that are not compatible to any inducing scheme?

Non-Collet-Eckmann case.

Theorem 1 Suppose that for some $t_0 \in (0, 1)$, C > 0 and $\beta > \ell_{max}(1 + \frac{1}{t_0}) - 1$,

 $|Df^n(f(c))| \ge Cn^{\beta} \quad \forall \ c \in Cr, \ n \ge 1.$

Then there exists $t_1 \in (t_0, 1)$ such that:

- for every $t \in (t_1, 1]$, (I, f, φ_t) has an equilibrium state $\mu_{\varphi_t} \in \mathcal{M}_+$;
- for $t_1 < t < 1$, μ_{φ_t} is the unique equilibrium state in \mathcal{M}_{erg} and compatible to an inducing scheme with exponential tails;
- for t = 1 there may be other equilibrium states in $\mathcal{M}_{erg} \setminus \mathcal{M}_+$. However, $\mu_{\varphi_1} \in \mathcal{M}_+$ is compatible to an inducing scheme with polynomial tails;
- (Unimodal case:) $t \mapsto P(\varphi_t)$ is analytic on $(t_1, 1)$.

Collet-Eckmann case.

Theorem 2 Suppose that for some $C, \alpha > 0$,

 $|Df^n(f(c))| \ge Ce^{\alpha n} \quad \forall \ c \in Cr, \ n \ge 1.$ Then there exist $t_1 < 1 < t_2$ such that for $t \in (t_1, t_2)$

- f has a unique equilibrium state μ_{φ_t} ;
- $\mu_{\varphi_t} \in \mathcal{M}_+;$
- μ_{φ_t} is compatible to an inducing scheme with exponential tails;
- $t \mapsto P(\varphi_t)$ is analytic on (t_1, t_2) .

Potentials with summable variations

Let \mathcal{P} be the partition induced by Cr and $\mathcal{P}_n = \bigvee_{k=0}^{n-1} T^{-k}(\mathcal{P}_1).$

The *n*-th variation of $\varphi : X \to \mathbb{R}$ is

$$V_n(\varphi) = \sup_{C \in \mathcal{P}_n} \sup_{x,y \in C} |\varphi(x) - \varphi(y)|.$$

For $C \in \mathcal{P}_1$ set

$$Z_n(\varphi, C) = \sum_{T^n(x) = x \in C} e^{\varphi_n(x)},$$

where $\varphi_n(x) = \sum_{k=0}^{n-1} \varphi \circ T^k(x)$.

The Gurevic pressure is

$$P_G(\varphi) = \lim(\sup)_{n \to \infty} \frac{1}{n} \log Z_n(\varphi, C).$$

The potential φ is **recurrent** if

$$\sum_n \lambda^{-n} Z_n(\varphi, C) = \infty,$$
 for $\lambda = \exp P_G(\varphi).$

7

Theorem Let $\varphi : I \to \mathbb{R}$ be a recurrent potential with Gurevic pressure $P_G(\varphi) < \infty$ and

$$\sum_n n V_n(\varphi) < \infty.$$

Then there is at most one equilibrium state μ_{φ} within \mathcal{M}_+ . If in addition

$$\sup \varphi - \inf \varphi < h_{top}(f),$$

then φ is indeed recurrent, and there exists a unique equilibrium state μ_{φ} in \mathcal{M}_+ , and $t \mapsto P(t\varphi)$ is analytic on [-1, 1].

Remarks:

• Similar results by Hofbauer & Keller and Paccaut using transfer operators.

• Condition $\sup \varphi - \inf \varphi < h_{top}(f)$ or at least $\sup \varphi < P(\varphi)$ essential for uniqueness. (Counter-example for MP map.)

• $t \mapsto P(-t \log |Df|)$ is analytic on $(-\varepsilon, \varepsilon)$.

Inducing schemes.

An *inducing scheme* (X, F, τ) consists of:

- $X \supset \bigcup_i X_i$ such that F maps each interval X_i diffeomorphically onto X.
- $F|_{X_i} = f^{\tau_i}$ for some $\tau_i \in \mathbb{N} := \{1, 2, 3...\}.$

 $\tau : \cup_i X_i \to \mathbb{N}$ is the *inducing time*. It may or may not be the first return time to X.

Compatible measures.

A measure μ compatible is to (X, F, τ) if

- $\mu(X) > 0$ and $\mu(X \setminus \cap_n F^{-n}(\cup_i X_i)) = 0$, and
- there exists a measure μ_F which projects to μ via

$$\mu(A) = \frac{1}{\Lambda} \sum_{i} \sum_{k=0}^{\tau_i - 1} \mu_F(X_i \cap f^{-k}(A)),$$

where $\Lambda := \int_X \tau \ d\mu_F < \infty$.

Inducing schemes exist.

Theorem 3 $\mu \in \mathcal{M}_+$ if and only if there exists an inducing scheme to which μ is compatible.

The scheme can be chosen to

- be a first return map on the Hofbauer tower, and
- have uniformly bounded distortion on its branches.

However, there is no inducing scheme to which all $\mu \in \mathcal{M}_+$ are compatible.

Symbolic maps with BIP property:

Theorem (Due to Omri Sarig) If (X,T) is topologically mixing and

$$\sum_{n\geq 1}V_n(\Phi)<\infty,$$

then Φ has an invariant Gibbs measure if and only if A has the BIP property and $P_G(\Phi) < \infty$. Moreover the Gibbs measure μ has the following properties

(a) If $h_{\mu}(T) < \infty$ or $\int \Phi d\mu < \infty$ then μ is the unique equilibrium state (in particular, $P(\Phi) = h_{\mu}(T) + \int_{X} \Phi \ d\mu$);

(b) The Variational Principal holds, i.e.,

$$P_G(\Phi) = P(\Phi)$$

The induced map is a **first** return map on the Hofbauer tower.

All its branches have the same big image, so the **B**ig **I**mage and **P**reimage property holds.

Thus the following lemma applies:

Lemma (Sarig)

Let (X, F) be topologically mixing with potential Φ . Let $X' := X_i$ be an arbitrary 1cylinder, and let (F', X', Φ') be the first return system to X' where

$$\Phi'(x) = \sum_{k=0}^{\tau(x)-1} \Phi(x)$$

is the induced potential.

If both Φ and Φ' have summable variations, then Φ is recurrent and $P_G(\Phi) = 0$ if and only if Φ' is recurrent and $P_G(\Phi') = 0$.

The global existence of equilibrium states

• a first return maps (\hat{X}, \hat{F}) in the Hofbauer tower has a unique equilibrium state $\hat{\mu}_{\hat{X}}$.

• $\hat{\mu}_{\hat{X}}$ has positive Lyapunov exponent and is Gibbs; hence it gives positive mass to open sets.

• the Hofbauer tower is transitive; so $(\hat{X}, \hat{F}, \hat{\mu})$ 'communicates' with any other inducing scheme that Theorem 3 applies to.

• A fortiori: every inducing scheme is compatible to the equilibrium state:

Lemma 4 If μ_{φ} is an equilibrium state, compatible to an inducing scheme (X, F) then it is also is compatible to any other 'natural' inducing scheme (X', F').