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Entropy for quadratic maps

Let fa : [0, 1]→ [0, 1], x 7→ ax(1− x) be the quadratic family.
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The entropy map a 7→ htop(fa) is:

• Continuous

- but what is the modulus of continuity?

• Monotone - but not strictly.
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Multimodal Maps

What about entropy for multimodal maps,
i.e., maps with several critical points?
Especially for the families of cubic, quartic,
quintic, ... polynomials.

We use the following setting:

Pd is the set of degree d + 1 polynomials f : [0, 1]→ [0, 1] s. t.

f has d distinct critical points, all lying in [0, 1].

f (0) = 0 and f (1) ∈ {0, 1}.

The dimension of parameter A space is d .
Monotonicity means: all isentropes

Lh := {a ∈ A : htop(fa) = h}

are connected.



Multimodal Maps

What about entropy for multimodal maps,
i.e., maps with several critical points?
Especially for the families of cubic, quartic,
quintic, ... polynomials.

We use the following setting:

Pd is the set of degree d + 1 polynomials f : [0, 1]→ [0, 1] s. t.

f has d distinct critical points, all lying in [0, 1].

f (0) = 0 and f (1) ∈ {0, 1}.

The dimension of parameter A space is d .
Monotonicity means: all isentropes

Lh := {a ∈ A : htop(fa) = h}

are connected.



Multimodal Maps

What about entropy for multimodal maps,
i.e., maps with several critical points?
Especially for the families of cubic, quartic,
quintic, ... polynomials.

We use the following setting:

Pd is the set of degree d + 1 polynomials f : [0, 1]→ [0, 1] s. t.

f has d distinct critical points, all lying in [0, 1].

f (0) = 0 and f (1) ∈ {0, 1}.

The dimension of parameter A space is d .
Monotonicity means: all isentropes

Lh := {a ∈ A : htop(fa) = h}

are connected.



Entropy in the cubic family
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The cubic family
x 7→ x3 − ax + b.

Isentropes in blue colour:

The general cubic family

x 7→ x3 − ax + b.

One can also parametrize the family by the
height of the two critical values, see top right.

Level sets of the entropy (isentropes) are complicated.
Entropy is not monotone as function of single critical values.



Monotonicity of for degree d Polynomials

The unimodal case is by now standard:

Theorem (Milnor & Thurston 1970s, Douady & Hubbard 1980s)

a 7→ htop(fa) is monotone increasing.

The break-through for the cubic case is the result:

Theorem (Milnor & Tresser 2000)

Isentropes are connected in the cubic family.

The general result:

Theorem (Bruin and van Strien, 2009)

Isentropes in Pd are connected.
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The Shape of Isentropes

Monotonicity doesn’t mean that isentropes are simple sets. We
know that:

For many values of the entropy h, Lh is not locally connected.

Entropy is not a monotone function of each single critical
values.

Question (Milnor): Are the isentropes contractible?

Question (Thurston): Is there a dense set of h ∈ [0, log d ] such
that hyperbolic maps are dense in Lh?
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The Shape of Isentropes

The following is based on a result by Friedman & Tresser, showing
that the “boundary of chaos” for circle endomorphisms is not
locally connected.

Theorem (Bruin & van Strien, 2013)

For any d ≥ 4, there is a dense set H ⊂ [0, log(d − 1)] such that
for each h ∈ H, the isentrope Lh of Pd is not locally connected.



Sketch of Proofs

fa is a parameterised family of maps in Pd , d ≥ 4, unfolding a
saddle node bifurcation.

@@I
funnel

@@I
fixed point

Figure: Unfolding a saddle node bifurcation. When the fixed point
disappears, a funnel is left. Points take a long time to iterate
through the funnel.

d − 2 critical points are attracted to periodic points.

2 critical points cη and cη+1 belong to in interval J that under
iteration of f passes along the funnel.
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Sketch of Proofs

There is a sequence ak → a∞ such that f N+k(J) ⊂ J. For all
these ak ,

htop(fak ) = h∗ is constant.

Interspersed is a sequence bk → a∞ such that f N+k(J) 6⊂ J,
and

htop(fbk ) > h∗.

The result is a comb structure of isentrope Lh∗ : Lh∗ is not locally
connected.
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Non-monotonicity of entropy in single critical value.

We can prove in the case d ≥ 3 that the entropy is not monotone
on slices in parameter space. Below, the second critical value in
the cubic map x 7→ x3 − ax + b is fixed, the first, i.e., b, varies.
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Non-monotonicity of entropy in single critical value.

Theorem (Non-monotonicity w.r.t. natural parameters)

Let fv ∈ Pd denote the polynomial map with critical values
v = (v1, . . . , vd). For d ≥ 2, there are fixed values of v2, . . . , vb
such that the map

v1 7→ htop(fv )

is not monotone.
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