Self-repairing discontinuities for interval maps

Henk Bruin (University of Vienna)

joint with Carlo Carminati (University of Pisa)

explaining observations in a paper by

V. Botella-Soler, J. A. Oteo, J. Ros, and P. Glendinning

Richmond, March 2014

β -transformations

The β -transformation is defined as

$$x \mapsto \beta x \pmod{1}$$

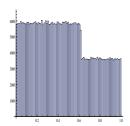
For $|\beta| > 1$, T_{β} has an acip μ .

β -transformations

The β -transformation is defined as

$$x \mapsto \beta x \pmod{1}$$

For $|\beta| > 1$, T_{β} has an acip μ .



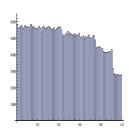


Figure: Density $\frac{d\mu}{dx}$ for $\beta = \frac{1}{2}(\sqrt{5} + 1)$ and $\beta = \sqrt[3]{7}$.

The density is only locally constant, if there is a Markov partition.

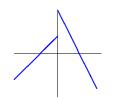
The map T_{β}

$$T_{eta}(x) = egin{cases} T_{eta}^{-}(x) = x + 2 & ext{if } x \leq 0, \ T_{eta}^{+}(x) = eta - 2x & ext{if } x \geq 0. \end{cases}$$

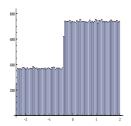
 T_{β} preserves the $[\beta - \max\{2, \beta\}, \max\{2, \beta\}]$ and some iterate is uniformly expanding. Therefore T_{β} admits an acip.

The map T_{β}

$$T_{\beta}(x) = \begin{cases} T_{\beta}^{-}(x) = x + 2 & \text{if } x \leq 0, \\ T_{\beta}^{+}(x) = \beta - 2x & \text{if } x \geq 0. \end{cases}$$



 T_{β} preserves the $[\beta - \max\{2, \beta\}, \max\{2, \beta\}]$ and some iterate is uniformly expanding. Therefore T_{β} admits an acip.



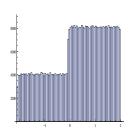


Figure: Invariant density for the T_{β} : left $\beta = \frac{1}{2}(\sqrt{5} + 1)$ right: $\beta = \sqrt[3]{7}$.

The interval partition $\{P_i\}$ is a Markov partition for T if $T(P_i) \cap P_j \neq \emptyset \text{ implies } T(P_i) \supset P_j.$

The interval partition $\{P_i\}$ is a Markov partition for T if

$$T(P_i) \cap P_j \neq \emptyset$$
 implies $T(P_i) \supset P_j$.

The transition matrix $\Pi = \Pi_{i,j}$ is defined as:

$$\Pi_{i,j} = \begin{cases} 1 & \text{if } T(P_i) \supset P_j, \\ 0 & \text{if } P_j \cap T(P_i) = \emptyset, \\ \text{No other possibility, because } \{P_i\} \text{ is Markov} \end{cases}$$

The interval partition $\{P_i\}$ is a Markov partition for T if

$$T(P_i) \cap P_j \neq \emptyset$$
 implies $T(P_i) \supset P_j$.

The transition matrix $\Pi = \Pi_{i,j}$ is defined as:

$$\Pi_{i,j} = \begin{cases} 1 & \text{if } T(P_i) \supset P_j, \\ 0 & \text{if } P_j \cap T(P_i) = \emptyset, \\ \text{No other possibility, because } \{P_i\} \text{ is Markov} \end{cases}$$

The topological entropy is

$$h_{top}(T) = \log \sigma$$

for σ the leading eigenvalue of Π .

Scale Π by the slopes $t_i = |DT_{|P_i}|$ to obtain a matrix

$$A_{i,j} = \frac{1}{t_i} \Pi_{i,j}.$$

Then $\ell_i = |P_i|$ and $ho_i = rac{d\mu}{dx}_{|P_i|}$ satisfy $\sum_i
ho_i \ell_i = 1$ and

$$\begin{pmatrix} \rho_1 \\ \vdots \\ \rho_N \end{pmatrix}^T A = \begin{pmatrix} \rho_1 \\ \vdots \\ \rho_N \end{pmatrix}^T \quad \text{and} \quad A \begin{pmatrix} \ell_1 \\ \vdots \\ \ell_N \end{pmatrix} = \begin{pmatrix} \ell_1 \\ \vdots \\ \ell_N \end{pmatrix}$$

Scale Π by the slopes $t_i = |DT_{|P_i}|$ to obtain a matrix

$$A_{i,j} = \frac{1}{t_i} \Pi_{i,j}.$$

Then $\ell_i = |P_i|$ and $ho_i = rac{d\mu}{dx}_{|P_i|}$ satisfy $\sum_i
ho_i \ell_i = 1$ and

$$\begin{pmatrix} \rho_1 \\ \vdots \\ \rho_N \end{pmatrix}^T A = \begin{pmatrix} \rho_1 \\ \vdots \\ \rho_N \end{pmatrix}^T \quad \text{and} \quad A \begin{pmatrix} \ell_1 \\ \vdots \\ \ell_N \end{pmatrix} = \begin{pmatrix} \ell_1 \\ \vdots \\ \ell_N \end{pmatrix}$$

Rokhlin's formula gives the metric entropy:

$$h_{\mu}(T) = \sum_{i=1}^{N} \max\{\log(t_i), 0\} \mu(P_i)$$

Not Markov but Matching

For the family T_{β} , there is no Markov partition in general, but something called matching takes can occur:

Definition: There is matching if there are iterates $\kappa_{\pm} > 0$ such that

$$T^{\kappa_-}(0^-)=T^{\kappa_+}(0^+)$$
 and derivatives $DT^{\kappa_-}(0^-)=DT^{\kappa_+}(0^+)$

Not Markov but Matching

For the family T_{β} , there is no Markov partition in general, but something called matching takes can occur:

Definition: There is matching if there are iterates $\kappa_{\pm} > 0$ such that

$$T^{\kappa_-}(0^-)=T^{\kappa_+}(0^+)$$
 and derivatives $DT^{\kappa_-}(0^-)=DT^{\kappa_+}(0^+)$

The pre-matching partition plays the role of Markov partition:

$$\{T^{j}(0^{-})\}_{j=0}^{\kappa_{-}-1}\} \cup \{T^{j}(0^{+})\}_{j=0}^{\kappa_{+}-1}\};$$

Not Markov but Matching

For the family T_{β} , there is no Markov partition in general, but something called matching takes can occur:

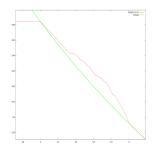
Definition: There is matching if there are iterates $\kappa_{\pm} > 0$ such that

$$T^{\kappa_-}(0^-)=T^{\kappa_+}(0^+)$$
 and derivatives $DT^{\kappa_-}(0^-)=DT^{\kappa_+}(0^+)$

The pre-matching partition plays the role of Markov partition:

$$\{T^{j}(0^{-})\}_{j=0}^{\kappa_{-}-1}\} \cup \{T^{j}(0^{+})\}_{j=0}^{\kappa_{+}-1}\};$$

Theorem: If T has matching, then $\rho = \frac{d\mu}{dx}$ is constant on each element of the pre-matching partition.



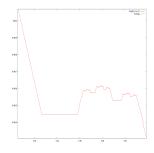
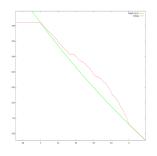


Figure: Entropy $h_{\mu}(T_{\beta})$ for $\beta \in [4.6, 6]$ (I) and $\beta \in [5.29, 5.33]$ (r).



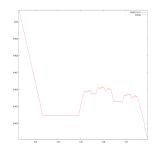
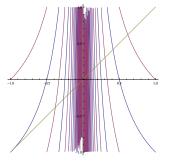


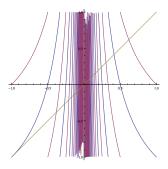
Figure: Entropy $h_{\mu}(T_{\beta})$ for $\beta \in [4.6, 6]$ (I) and $\beta \in [5.29, 5.33]$ (r).

Definition: The matching is neutral if $\kappa_- = \kappa_+$.

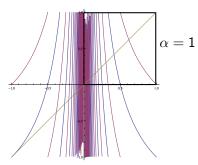
Theorem: On every parameter interval where matching occurs, topological and metric entropy are monotone, and constant if the matching is neutral.



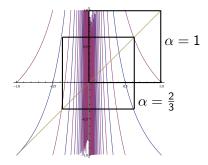
branches:
$$\left|\frac{1}{x}\right| + n$$
, $n \in \mathbb{Z}$, on $[-1, 1]$



$$\begin{array}{ll} \text{branches: } |\frac{1}{x}|+n, \\ n \in \mathbb{Z}, \text{ on } [-1,1] \end{array}$$



branches:
$$\left|\frac{1}{x}\right| + n$$
, $n \in \mathbb{Z}$, on $[-1, 1]$



A generalization of the Gauß map stems from Nakada (and Natsui).

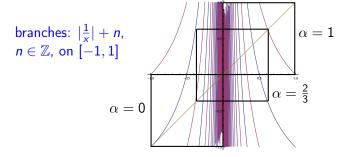


Figure:
$$T_{\alpha}: [\alpha - 1, \alpha] \to [\alpha - 1, \alpha], x \mapsto \left|\frac{1}{x}\right| - \left\lfloor\frac{1}{x} + 1 - \alpha\right\rfloor.$$

All of them have invariant densities (infinite if $\alpha = 0$).

A generalization of the Gauß map stems from Nakada (and Natsui).

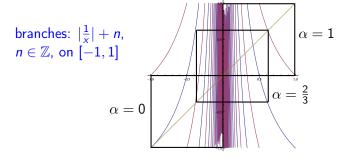


Figure:
$$T_{\alpha}: [\alpha - 1, \alpha] \to [\alpha - 1, \alpha], x \mapsto \left|\frac{1}{x}\right| - \left\lfloor\frac{1}{x} + 1 - \alpha\right\rfloor.$$

All of them have invariant densities (infinite if $\alpha=0$). Matching of the orbits of α and $\alpha-1$ occurs for a.e. $\alpha\in[0,1]$.

α -continued fractions and the Mandelbrot set

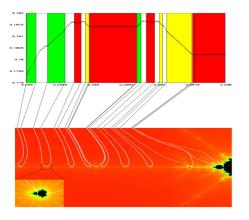


Figure: From a paper by Bonanno, Carminati, Isola and Tiozzo: The non-matching set and the real antenna of Mandelbrot set

Theorem: T_{β} has matching for For Lebesgue-a.e. β

Theorem: T_{β} has matching for For Lebesgue-a.e. β

Observations towards the proof:

▶ Let $r_n(x) = \#\{0 \le i < n : T^n(x) > 0\}$. If $r_m(0^-) = r_n(0^+)$ then $T^m(0^-) - T^n(0^+)$ are a multiple of 2 apart.

Theorem: T_{β} has matching for For Lebesgue-a.e. β

Observations towards the proof:

- ▶ Let $r_n(x) = \#\{0 \le i < n : T^n(x) > 0\}$. If $r_m(0^-) = r_n(0^+)$ then $T^m(0^-) T^n(0^+)$ are a multiple of 2 apart.
- Let $J_{\beta}=[rac{eta-2}{2},2].$ For $x\in J_{eta}$, both x and $T_{eta}(x)\in (0,2].$
- ▶ Of any two successive returns to $(0, \infty)$, at least one is in (0, 2].

Theorem: T_{β} has matching for For Lebesgue-a.e. β

Observations towards the proof:

- ▶ Let $r_n(x) = \#\{0 \le i < n : T^n(x) > 0\}$. If $r_m(0^-) = r_n(0^+)$ then $T^m(0^-) T^n(0^+)$ are a multiple of 2 apart.
- Let $J_{\beta}=[rac{eta-2}{2},2].$ For $x\in J_{eta},$ both x and $T_{eta}(x)\in(0,2].$
- ▶ Of any two successive returns to $(0, \infty)$, at least one is in (0, 2].
- ► Therefore, if $T^m(0^-) \in J_\beta$, either $T^m(0^-)$ or $T^{m+1}(0^-)$ will match with $orb(0^+)$.

Theorem: T_{β} has matching for For Lebesgue-a.e. β

Observations towards the proof:

- ▶ Let $r_n(x) = \#\{0 \le i < n : T^n(x) > 0\}$. If $r_m(0^-) = r_n(0^+)$ then $T^m(0^-) T^n(0^+)$ are a multiple of 2 apart.
- Let $J_{\beta}=[\frac{\beta-2}{2},2]$. For $x\in J_{\beta}$, both x and $T_{\beta}(x)\in(0,2]$.
- ▶ Of any two successive returns to $(0, \infty)$, at least one is in (0, 2].
- ► Therefore, if $T^m(0^-) \in J_\beta$, either $T^m(0^-)$ or $T^{m+1}(0^-)$ will match with $orb(0^+)$.
- ▶ Hence we need to estimate the measure of the set of β such that orb(0⁻) avoids J_{β} , and in particular is not dense.

On the proof of "Matching is Lebesgue typical"

Proof by	The critical orbit is	for the family of
Brucks & Misurewicz	dense a.s.	tents
Schmeling	Birkhoff typical a.s.	eta-transformations
Bruin	Birkhoff typical a.s.	tents
Benedics & Carleson	Birkhoff typical	logistic maps
	for positive measure	
Faller	Birkhoff typical a.s.	shifted eta -transformations
Schnellman	Birkhoff typical a.s.	expanding maps

On the proof of "Matching is Lebesgue typical"

Proof by	The critical orbit is	for the family of
Brucks & Misurewicz	dense a.s.	tents
Schmeling	Birkhoff typical a.s.	eta-transformations
Bruin	Birkhoff typical a.s.	tents
Benedics & Carleson	Birkhoff typical	logistic maps
	for positive measure	
Faller	Birkhoff typical a.s.	shifted β -transformations
Schnellman	Birkhoff typical a.s.	expanding maps
Bruin & Carminati	dense a.s.	\mathcal{T}_{eta}

Question: Is there always matching?

Question: Is there always matching?

No, for $\beta=5$, $\beta=4\frac{11}{12}$ and $\beta=4\frac{15}{16}$, there is no matching.

Question: Is there always matching?

No, for $\beta=5$, $\beta=4\frac{11}{12}$ and $\beta=4\frac{15}{16}$, there is no matching.

Here 0^- and 0^+ eventually map to the same point, but "out-of-phase", so the derivatives don't match.

Question: Is there always matching?

No, for $\beta=$ 5, $\beta=4\frac{11}{12}$ and $\beta=4\frac{15}{16}$, there is no matching.

Here 0^- and 0^+ eventually map to the same point, but "out-of-phase", so the derivatives don't match.

Theorem: The non-matching set E has Hausdorff dimension 1. The left neighborhood of $\beta=6$ is responsible for this:

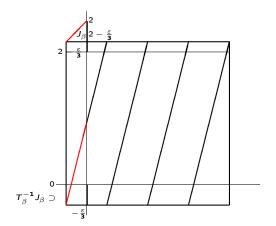
$$\dim_H(E \setminus (6-\varepsilon,6)) < 1$$
 for every $\varepsilon > 0$.

Hausdorff dimension proof

Let $\beta=6-\varepsilon$ and $F:[-\frac{\varepsilon}{3},2-\frac{\varepsilon}{3}]\to[-\frac{\varepsilon}{3},2]$ the first entrance map.

Hausdorff dimension proof

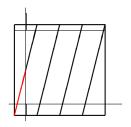
Let $\beta = 6 - \varepsilon$ and $F : [-\frac{\varepsilon}{3}, 2 - \frac{\varepsilon}{3}] \to [-\frac{\varepsilon}{3}, 2]$ the first entrance map.



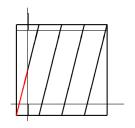
Up to the interval $\left[-\frac{\varepsilon}{3},0\right]$ which maps directly into J_{β} , this is a quadrupling map.

Hausdorff dimension proof

Let K_{ε} be the set of points that remain in $[0, 2 - \frac{\varepsilon}{3}]$ for all iterates of F.

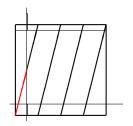


Let K_{ε} be the set of points that remain in $[0, 2 - \frac{\varepsilon}{3}]$ for all iterates of F.



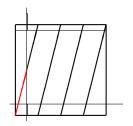
• $\dim_H(K_{\varepsilon}) \to 1$ as $\varepsilon \to 0$.

Let K_{ε} be the set of points that remain in $[0, 2 - \frac{\varepsilon}{3}]$ for all iterates of F.



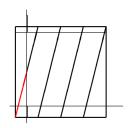
- ▶ $\dim_H(K_{\varepsilon}) \to 1$ as $\varepsilon \to 0$.
- ▶ If $orb(0^{\pm})$ remain in K_{ε} , then there is no matching.

Let K_{ε} be the set of points that remain in $[0, 2 - \frac{\varepsilon}{3}]$ for all iterates of F.



- ▶ $\dim_H(K_{\varepsilon}) \to 1$ as $\varepsilon \to 0$.
- ▶ If $orb(0^{\pm})$ remain in K_{ε} , then there is no matching.
- ▶ In fact, $orb(0^+) \subset K_{\varepsilon}$ iff $orb(0^+) \subset K_{\varepsilon}$.

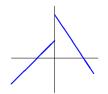
Let K_{ε} be the set of points that remain in $[0, 2 - \frac{\varepsilon}{3}]$ for all iterates of F.



- ▶ $\dim_H(K_{\varepsilon}) \to 1$ as $\varepsilon \to 0$.
- ▶ If $orb(0^{\pm})$ remain in K_{ε} , then there is no matching.
- ▶ In fact, $orb(0^+) \subset K_{\varepsilon}$ iff $orb(0^+) \subset K_{\varepsilon}$.
- ▶ $\dim_H\{\beta : \operatorname{orb}(0^-) \in K_{\varepsilon}\} = \dim_H(K_{\varepsilon}) \to 1 \text{ as } \varepsilon \to 0.$

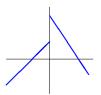
Generalize to slope s

$$T_{\beta}(x) = \begin{cases} T_{\beta}^{-}(x) = x + \mathbf{s} & \text{if } x \leq 0, \\ T_{\beta}^{+}(x) = \beta - \mathbf{s}x & \text{if } x \geq 0. \end{cases}$$

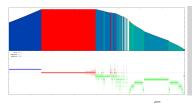


Generalize to slope s

$$T_{\beta}(x) = \begin{cases} T_{\beta}^{-}(x) = x + s & \text{if } x \leq 0, \\ T_{\beta}^{+}(x) = \beta - sx & \text{if } x \geq 0. \end{cases}$$



For $s = \frac{1}{2}(\sqrt{5} + 1)$ and $\sqrt{2} + 1$ and some other, large intervals of matching has been observed.



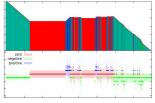
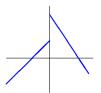


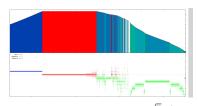
Figure: $h_{\mu}(T_{\beta})$ for $s = \frac{\sqrt{5}+1}{2}$, $\beta \in [4.6, 6]$ (I) and $\beta \in [5.29, 5.33]$ (r).

Generalize to slope s

$$T_{\beta}(x) = \begin{cases} T_{\beta}^{-}(x) = x + s & \text{if } x \leq 0, \\ T_{\beta}^{+}(x) = \beta - sx & \text{if } x \geq 0. \end{cases}$$



For $s = \frac{1}{2}(\sqrt{5} + 1)$ and $\sqrt{2} + 1$ and some other, large intervals of matching has been observed.



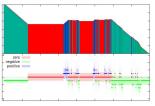


Figure: $h_{\mu}(T_{\beta})$ for $s = \frac{\sqrt{5}+1}{2}$, $\beta \in [4.6, 6]$ (I) and $\beta \in [5.29, 5.33]$ (r).

Note that these slopes are quadratic Pisot numbers.

This is no coincidence.

This is no coincidence. T_{β} preserves the ring $H = \mathbb{Z}[\beta, \beta s, s]$.

This is no coincidence. T_{β} preserves the ring $H = \mathbb{Z}[\beta, \beta s, s]$. For matching, we need

$$\#\{0 \le i < \kappa^- : T^i(0^-) > 0\} = \#\{0 \le i < \kappa^- : T^i(0^-) > 0\},\$$

so we look at the first return map F:

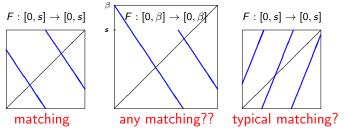


Figure: Return map *F* for $\beta < s$, $s < \beta < 3 + \sqrt{5}$, and $\beta > 3 + \sqrt{5}$.

This is no coincidence. T_{β} preserves the ring $H = \mathbb{Z}[\beta, \beta s, s]$. For matching, we need

$$\#\{0 \le i < \kappa^- : T^i(0^-) > 0\} = \#\{0 \le i < \kappa^- : T^i(0^-) > 0\},\$$

so we look at the first return map F:

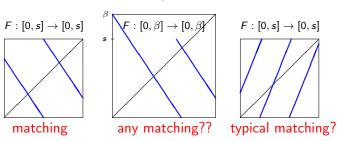


Figure: Return map *F* for $\beta < s$, $s < \beta < 3 + \sqrt{5}$, and $\beta > 3 + \sqrt{5}$.

F act affinely on H. Restricted to $orb(0^{\pm})$, we need to iterate

$$\begin{pmatrix} a \\ b \end{pmatrix} \mapsto \begin{pmatrix} 0 & -1 \\ -1 & -1 \end{pmatrix} \begin{pmatrix} a \\ b \end{pmatrix} + \begin{pmatrix} \tau_n \\ 0 \\ 0 \end{pmatrix} + \begin{pmatrix}$$

F act affinely on H. Restricted to $orb(0^{\pm})$, we need to iterate

$$\begin{pmatrix} a_{n+1} \\ b_{n+1} \end{pmatrix} = \begin{pmatrix} 0 & -1 \\ -1 & -1 \end{pmatrix} \begin{pmatrix} a_n \\ b_n \end{pmatrix} + \begin{pmatrix} \tau_n(0^{\pm}) \\ 0 \end{pmatrix},$$

where $\tau_n(0^{\pm})$ is the branch number containing $F^n(0^{\pm})$, starting with

$$\begin{pmatrix} a_0 \\ b_0 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \ \text{for} \ 0^- \qquad \begin{pmatrix} a_0 \\ b_0 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \ \text{for} \ 0^+$$

F act affinely on H. Restricted to $orb(0^{\pm})$, we need to iterate

$$\begin{pmatrix} a_{n+1} \\ b_{n+1} \end{pmatrix} = \begin{pmatrix} 0 & -1 \\ -1 & -1 \end{pmatrix} \begin{pmatrix} a_n \\ b_n \end{pmatrix} + \begin{pmatrix} \tau_n(0^{\pm}) \\ 0 \end{pmatrix},$$

where $\tau_n(0^{\pm})$ is the branch number containing $F^n(0^{\pm})$, starting with

$$\begin{pmatrix} a_0 \\ b_0 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \ \text{for} \ 0^- \qquad \begin{pmatrix} a_0 \\ b_0 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \ \text{for} \ 0^+$$

Matching occurs if there is *n* such that:

$$\begin{pmatrix} a_n(0^-) \\ b_n(0^-) \end{pmatrix} = \begin{pmatrix} a_n(0^+) \\ b_n(0^+) \end{pmatrix}$$

F act affinely on H. Restricted to $orb(0^{\pm})$, we need to iterate

$$\begin{pmatrix} a_{n+1} \\ b_{n+1} \end{pmatrix} = \begin{pmatrix} 0 & -1 \\ -1 & -1 \end{pmatrix} \begin{pmatrix} a_n \\ b_n \end{pmatrix} + \begin{pmatrix} \tau_n(0^{\pm}) \\ 0 \end{pmatrix},$$

where $\tau_n(0^{\pm})$ is the branch number containing $F^n(0^{\pm})$, starting with

$$\begin{pmatrix} a_0 \\ b_0 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \text{ for } 0^- \qquad \begin{pmatrix} a_0 \\ b_0 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \text{ for } 0^+$$

Matching occurs if there is *n* such that:

$$\begin{pmatrix} a_n(0^-) \\ b_n(0^-) \end{pmatrix} = \begin{pmatrix} a_n(0^+) \\ b_n(0^+) \end{pmatrix}$$

Question: Does this happen Lebesgue typically for $s = \frac{\sqrt{5}+1}{2}$?

- C. Bonanno, C. Carminati, S. Isola, G. Tiozzo, *Dynamics of continued fractions and kneading sequences of unimodal maps*, Discrete Contin. Dyn. Syst. **33** (2013), no. 4, 1313–1332.
- V. Botella-Soler, J. A. Oteo, J. Ros, P. Glendinning, Families of piecewise linear maps with constant Lyapunov exponents, J. Phys. A: Math. Theor. **46** 125101
- C. Carminati, G. Tiozzo, *Tuning and plateaux for the entropy* of α -continued fractions, Nonlinearity **26** (2013), no. 4, 1049–1070.
- H. Nakada, Metrical theory for a class of continued fraction transformations and their natural extensions, Tokyo J. Math. 4 (1981), 399–426
- H. Nakada, R. Natsui, *The non-monotonicity of the entropy of* α -continued fraction transformations, Nonlinearity, **21** (2008), 1207–1225.