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Translated β-transformations
The translated β-transformation is defined as














Tβ,α : x 7→ βx + α (mod 1)

We fix |β| > 1. Then Tα : S1 → S1 has an acip µ for every α.
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The density is only? locally constant, if there is a Markov partition.
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Not Markov but Matching

For the family Tα, there is no Markov partition in general, but
something called matching can occur:

Definition: There is matching if there is an iterate κ > 0 such that

lim
x↑0

Tκ
α (x) = lim

x↓0
Tκ
α (x)

The pre-matching partition consists of the complementary intervals
of:

{T j
α(0−)}κ−1

j=0 ∪ {T
j
α(0+)}κ−1

j=0 .

Theorem: If Tα has matching, then ρ = dµ
dx is constant on each

element of the pre-matching partition.

This is a general theorem: If a piecewise affine expanding interval
map T : [0, 1]→ [0, 1] has matching at all its discontinuity points,
then dµ

dx is constant on each element of the pre-matching partition.
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Matching and piecewise constant densities
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Sketch of proof:

I Take a nice interval J disjoint from the matching set. (nice
means that orb(∂J) ∩ J◦ = ∅).

I Consider the first return map R to J; it has only onto linear
(or Möbius) branches.

I Hence the R-invariant denstity is constant (or Möbius).
I The T -invariant density coincides with T -invariant density (up

to a scaling factor).



Typical matching for Tα: Quadratic Pisot Numbers

Conjecture: If the slope β is Pisot (i.e., all its algebraic conjugates
are inside the unit circle), then matching holds for Lebesgue-a.e.
translation.

The quadratic Pisot numbers are those β > 1 satisfying

β2 − kβ ± d = 0 with

{
k > d + 1 if d > 0,
k > d − 1 if d < 0.

Theorem: If β is quadratic Pisot, then dimH(Aβ) = log d
log β .

Hence dimH(Aβ) = 0 if d = ±1 (quadratic Pisot units). We
conjecture that this is the only situation where dimH(Aβ) = 0.
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Proof: Matching for quadratic Pisot slope Tα

There are integers aj , bj (depending on n) such that

T n
α(0) = (βn−1 + · · ·+ 1)α− an−2β

n−2 − · · · − a1β − a0,

T n
α(1) = (βn−1 + · · ·+ 1)α + βn − bn−1β

n−1 − · · · − b1β − b0.

Therefore matching at (minimal) iterate n requires

0 = T n
α(1)− T n

α(0) = βn +
n−1∑
j=0

βj(bj − aj).

Hence β has to be an algebraic integer.

The integers bj , aj depend on α, but change only at a finite set.
Hence, if matching occurs, it occurs on an entire interval.
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Proof: Matching for quadratic Pisot-slope Tα

Since β is an algebraic integer of order n, we can write

T j
α(0)− T j

α(1) =
n∑

k=1

ek(j)

βk
ek(j) ∈ Z.

The α-dependence is only in the integers ek(j) = ek(j , α)

Lemma (Sample Lemma)
If |T j

α(0)− T j
α(1)| = 1/β, then there is matching in one iterate.

Proof.
If |T j

α(0)− T j
α(1)| = 1/β, then T j

α(0) and T j
α(1) belong to

neighbouring branch-domains of Tα, and their images are the
same.
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Proof: Matching for quadratic Pisot slope Tα

Sketch of proof for β2 − kβ − d = 0, k ∈ N, so k − 1 < β < k and
Tα has k or k + 1 branches.

Lemma: If α ∈ [k − β, 1), then Tα has k + 1 branches, but there is
matching after two steps.

Hence, take α ∈ [0, k − β) and call the domains of the branches
∆0, . . . ,∆k . Compute

Tα(1) = β + α︸︷︷︸
=T (0)

−(k − 1) = Tα(0) + β − (k − 1)︸ ︷︷ ︸
γ

.

Lemma: If T `(0) ∈ ∆i and T `(1) ∈ ∆i+(k−1)−d for
1 ≤ ` < n, i = i(`), then

T n(1)− T n(0) = γ.
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Proof: Matching for quadratic Pisot slope Tα

Lemma: If T n−1(0) ∈ ∆i and T n−1(1) ∈ ∆i+k−d then the
distance |T n(1)− T n(0)| = d

β and there is matching in 2 steps.

Hence, to avoid matching, T `(0) has to avoid the sets

Vi := {x ∈ ∆(i) : x + γ ∈ ∆(i + k − d)}

=
[ i + k − d − α

βk
− γ , i + 1− α

βk

)
.

Lemma: If
T n(0) ∈ V = ∪d−1

i=0 Vi

then there is matching in two steps.
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Proof: Matching for quadratic Pisot slope Tα
Lemma: The map gα : [0, 1− β]→ [0, 1− β],

gα(x) :=

{
k − β if x ∈ V ,

Tα(x) otherwise.

is a non-decreasing degree d circle endomorpism, and gn(0) ∈ V
for some n > 1 precisely if k − β is periodic.
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Proof: Matching for quadratic Pisot slope Tα

Recall that V is the union of plateaux of the map

gα(x) :=

{
k − β if x ∈ V ,

Tα(x) otherwise.

Lemma: Define

Xα = {x ∈ S1 : gn
α(x) /∈ V for all n ≥ 0}.

If there is no matching, then dimH(Xα) = log d
log β .

Idea of Proof.
For each n, we cover Xα by O(dn) intervals of length β−n.
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Proof: Matching for quadratic-Pisot-slope Tα

Proof for β2 − kβ − d = 0.

I The task is to transfer the previous lemma from dynamical to
parameter space.

I Use that α 7→ T n(α) is piecewise linear with slope βn−1
β−1 .

I On the other hand, the intervals U in the cover of the previous
lemma move with fixed speed (independent of n).

I Therefore, for each n, the set Aα can be covered by O(dn)
intervals of length O(β−n).
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Matching for non-Pisot Units

The examples we have of prevalent matching all relate to β being a
Pisot unit. However, matching can occur at non-Pisot units, e.g.,
the quartic Salem number satisfying

β4 − β3 − β2 − β + 1 = 0

has matching at some non-trivial intervals.

Numerical simulations give the following table

β minimal polynomial dimB(Eβ)

tribonacci β3 − β2 − β − 1 = 0 0.66...
tetrabonacci β4 − β3 − β2 − β − 1 = 0 0.76...

plastic β3 − β − 1 = 0 0.93...
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Matching for non-Quadratic Pisot Units

There is another frequently used class of Pisot units, namely
leading solutions βk of

βk − βk−1 − βk−2 − · · · − 1 = 0.

for k ≥ 3.

Theorem (Non-Quadratic Pisot Units)
For β3, there is prevalent matching. For the non-matching set
dimH(Aβ) ∈ (0, 1).

We expect the same result for βk , k ≥ 4, but at the moment, we
have no proof.
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Lemma: For every k ≥ 2 and j ≥ 0 we have

|T j
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β
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Figure: The transition graph for the tribonacci number β3. The red
numbers indicate the difference in branch between T j

α(0) and T j
α(1).
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Matching for non-Quadratic Pisot Units
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0

I The diagram expresses only a the “fiber part” of a
skew-product. So it is more complicated than a SFT.

I There are linked non-trivial loops that give a Cantor set of
positive Hausdorff dimension inside the bifurcation set.

I Abundancy of paths to matching gives upper bound < 1.
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Figure: The transition graph for the Pisot number β4 is similar but too
complicated to handle.



References

H. Bruin, C. Carminati, C. Kalle, Matching for generalised
β-transformations, Indagationes Mathematicae, 28 (2017), no. 1,
55-73.

H. Bruin, C. Carminati, S. Marmi, A. Profeti, Matching in a family
of piecewise affine interval maps, Preprint July 2016

K. Dajani, C. Kalle, Invariant measures, matching and the frequency
of 0 for signed binary expansions, Preprint 2017, arXiv:1703.06335.


