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Figure: Density Z—i‘ for 8 = %(\/E—i- 1) and 8 = V7.

The density is only? locally constant, if there is a Markov partition.
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Not Markov but Matching

For the family T,, there is no Markov partition in general, but
something called matching can occur:

Definition: There is matching if there is an iterate x > 0 such that

lim T5(x) — lim T#
lim Ta(x) = lim T&,(x)
The pre-matching partition consists of the complementary intervals
of:
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Theorem: If T, has matching, then p = % is constant on each
element of the pre-matching partition.

This is a general theorem: If a piecewise affine expanding interval
map T :[0,1] — [0, 1] has matching at all its discontinuity points,

then % is constant on each element of the pre-matching partition.



Matching and piecewise constant densities

Sketch of proof:

J

» Take a nice interval J disjoint from the matching set. (nice
means that orb(9J) N J° = 0).

» Consider the first return map R to J; it has only onto linear
(or M&bius) branches.

» Hence the R-invariant denstity is constant (or M&bius).

» The T-invariant density coincides with T-invariant density (up
to a scaling factor).
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Theorem: If 3 is quadratic Pisot, then dimy(Az)

Hence dimy(Ag) = 0 if d = 1 (quadratic Pisot units). We
conjecture that this is the only situation where dimy(Ag) = 0.
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Therefore matching at (minimal) iterate n requires

n—1
0=TJ(1)— T(0)=B"+>_ B(b— a).
j=0

Hence 8 has to be an algebraic integer.

The integers b;, a; depend on «, but change only at a finite set
Hence, if matching occurs, it occurs on an entire interval.
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Proof: Matching for quadratic Pisot-slope T,

Since [ is an algebraic integer of order n, we can write

TJ

ek(j) € Z.

The a-dependence is only in the integers ex(j) = ex(Jj, @)
Lemma (Sample Lemma)

If | T2(0) — T4(1)| = 1/8, then there is matching in one iterate.
Proof. _ _ _

If | T4(0) — T4(1)| = 1/B, then T%(0) and TZ(1) belong to

neighbouring branch-domains of T,, and their images are the
same.
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Proof: Matching for quadratic Pisot slope T,

Sketch of proof for 32 — k3 —d =0, k€N, so k —1 < 3 < k and
T, has k or k + 1 branches.

Lemma: If a € [k — 3,1), then T, has k + 1 branches, but there is
matching after two steps.

Hence, take ae € [0, k — /3) and call the domains of the branches
Ao, ..., Ar. Compute

To(1) =6+ o —(k—1) = Ta(0) + § — (k- 1).
—770) T

Lemma: If T4(0) € A; and T%(1) € Ajy(k—1)—g for
1<?¢<n,i=i(f), then

T7(1) — T"(0) = 7.
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Lemma: If T"71(0) € A; and T"(1) € A x_q then the
distance |T"(1) — T"(0)| = % and there is matching in 2 steps.

Hence, to avoid matching, T(0) has to avoid the sets

Vi = {xeA@i):x+yeA(i+k—d)}
B i+k—dfoz_ i+lfoz>
B B T TR, '
Lemma: If

n d—1
T"(0) e V=U_,V;

then there is matching in two steps.
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Recall that V/ is the union of plateaux of the map

£l) i {k—ﬁ if x €V,

Ta(x)  otherwise.

Lemma: Define

Xo={xeS": g"(x)¢ V forall n>0}.

If there is no matching, then dimy(X,) = :ggg.

|dea of Proof.
For each n, we cover X, by O(d") intervals of length 5~".
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Proof:

Matching for quadratic-Pisot-slope T,

Proof for 2 — k3 — d = 0.

>

The task is to transfer the previous lemma from dynamical to
parameter space.

Use that o — T"(«) is piecewise linear with slope %
On the other hand, the intervals U in the cover of the previous
lemma move with fixed speed (independent of n).

Therefore, for each n, the set A, can be covered by O(d")
intervals of length O(3™").
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The examples we have of prevalent matching all relate to 5 being a
Pisot unit. However, matching can occur at non-Pisot units, e.g.,
the quartic Salem number satisfying
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has matching at some non-trivial intervals.



Matching for non-Pisot Units

The examples we have of prevalent matching all relate to 5 being a
Pisot unit. However, matching can occur at non-Pisot units, e.g.,
the quartic Salem number satisfying

B3 - - f+1=0

has matching at some non-trivial intervals.
Numerical simulations give the following table

64 minimal polynomial | dimg(&3)
tribonacci B3—p2—3—-1=0]0.66...
tetrabonacci | f* — 3 — B2 -3 —-1=00.76...
plastic p2—pB3—-1=010.93...
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There is another frequently used class of Pisot units, namely
leading solutions S5y of

pl—pt—p?—...—1=0

for k > 3.

Theorem (Non-Quadratic Pisot Units)

For 33, there is prevalent matching. For the non-matching set
dimH(Ag) S (0, 1).

We expect the same result for 8, k > 4, but at the moment, we
have no proof.
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Lemma: For every k > 2 and j > 0 we have

; ; e S €
T5O) - Tl e {F+ 5+ +

3B @161,'--,%6{0,1}}.
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e
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]

o1 J———=[110]

Figure: The transition graph for the tribonacci number (3. The red
numbers indicate the difference in branch between TZ(0) and T (1).
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» The diagram expresses only a the “fiber part” of a
skew-product. So it is more complicated than a SFT.

» There are linked non-trivial loops that give a Cantor set of
positive Hausdorff dimension inside the bifurcation set.

» Abundancy of paths to matching gives upper bound < 1.
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Figure: The transition graph for the Pisot number (34 is similar but too
complicated to handle.
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