Matching for translated β-transformations.

Henk Bruin (University of Vienna) joint with

Carlo Carminati (University of Pisa)
Charlene Kalle (University of Leiden)

Auburn, March 2018

Translated β-transformations

The translated β-transformation is defined as

$$
T_{\beta, \alpha}: x \mapsto \beta x+\alpha(\bmod 1)
$$

We fix $|\beta|>1$. Then $T_{\alpha}: \mathbb{S}^{1} \rightarrow \mathbb{S}^{1}$ has an acip μ for every α.

Translated β-transformations

The translated β-transformation is defined as

$$
T_{\beta, \alpha}: x \mapsto \beta x+\alpha(\bmod 1)
$$

We fix $|\beta|>1$. Then $T_{\alpha}: \mathbb{S}^{1} \rightarrow \mathbb{S}^{1}$ has an acip μ for every α.

Figure: Density $\frac{d \mu}{d x}$ for $\beta=\frac{1}{2}(\sqrt{5}+1)$ and $\beta=\sqrt[3]{7}$.

The density is only? locally constant, if there is a Markov partition.

Not Markov but Matching

For the family T_{α}, there is no Markov partition in general, but something called matching can occur:

Definition: There is matching if there is an iterate $\kappa>0$ such that

$$
\lim _{x \uparrow 0} T_{\alpha}^{\kappa}(x)=\lim _{x \downarrow 0} T_{\alpha}^{\kappa}(x)
$$

Not Markov but Matching

For the family T_{α}, there is no Markov partition in general, but something called matching can occur:

Definition: There is matching if there is an iterate $\kappa>0$ such that

$$
\lim _{x \uparrow 0} T_{\alpha}^{\kappa}(x)=\lim _{x \downarrow 0} T_{\alpha}^{\kappa}(x)
$$

The pre-matching partition consists of the complementary intervals of:

$$
\left\{T_{\alpha}^{j}\left(0^{-}\right)\right\}_{j=0}^{\kappa-1} \cup\left\{T_{\alpha}^{j}\left(0^{+}\right)\right\}_{j=0}^{\kappa-1}
$$

Not Markov but Matching

For the family T_{α}, there is no Markov partition in general, but something called matching can occur:

Definition: There is matching if there is an iterate $\kappa>0$ such that

$$
\lim _{x \uparrow 0} T_{\alpha}^{\kappa}(x)=\lim _{x \downarrow 0} T_{\alpha}^{\kappa}(x)
$$

The pre-matching partition consists of the complementary intervals of:

$$
\left\{T_{\alpha}^{j}\left(0^{-}\right)\right\}_{j=0}^{\kappa-1} \cup\left\{T_{\alpha}^{j}\left(0^{+}\right)\right\}_{j=0}^{\kappa-1}
$$

Theorem: If T_{α} has matching, then $\rho=\frac{d \mu}{d x}$ is constant on each element of the pre-matching partition.

Not Markov but Matching

For the family T_{α}, there is no Markov partition in general, but something called matching can occur:

Definition: There is matching if there is an iterate $\kappa>0$ such that

$$
\lim _{x \uparrow 0} T_{\alpha}^{\kappa}(x)=\lim _{x \downarrow 0} T_{\alpha}^{\kappa}(x)
$$

The pre-matching partition consists of the complementary intervals of:

$$
\left\{T_{\alpha}^{j}\left(0^{-}\right)\right\}_{j=0}^{\kappa-1} \cup\left\{T_{\alpha}^{j}\left(0^{+}\right)\right\}_{j=0}^{\kappa-1}
$$

Theorem: If T_{α} has matching, then $\rho=\frac{d \mu}{d x}$ is constant on each element of the pre-matching partition.

This is a general theorem: If a piecewise affine expanding interval $\operatorname{map} T:[0,1] \rightarrow[0,1]$ has matching at all its discontinuity points, then $\frac{d \mu}{d x}$ is constant on each element of the pre-matching partition.

Matching and piecewise constant densities

Sketch of proof:

- Take a nice interval J disjoint from the matching set. (nice means that $\left.\operatorname{orb}(\partial J) \cap J^{\circ}=\emptyset\right)$.
- Consider the first return map R to J; it has only onto linear (or Möbius) branches.
- Hence the R-invariant denstity is constant (or Möbius).
- The T-invariant density coincides with T-invariant density (up to a scaling factor).

Typical matching for T_{α} : Quadratic Pisot Numbers

Conjecture: If the slope β is Pisot (i.e., all its algebraic conjugates are inside the unit circle), then matching holds for Lebesgue-a.e. translation.

Typical matching for T_{α} : Quadratic Pisot Numbers

Conjecture: If the slope β is Pisot (i.e., all its algebraic conjugates are inside the unit circle), then matching holds for Lebesgue-a.e. translation.

The quadratic Pisot numbers are those $\beta>1$ satisfying

$$
\beta^{2}-k \beta \pm d=0 \quad \text { with } \begin{cases}k>d+1 & \text { if } d>0 \\ k>d-1 & \text { if } d<0\end{cases}
$$

Theorem: If β is quadratic Pisot, then $\operatorname{dim}_{H}\left(A_{\beta}\right)=\frac{\log d}{\log \beta}$.

Typical matching for T_{α} : Quadratic Pisot Numbers

Conjecture: If the slope β is Pisot (i.e., all its algebraic conjugates are inside the unit circle), then matching holds for Lebesgue-a.e. translation.

The quadratic Pisot numbers are those $\beta>1$ satisfying

$$
\beta^{2}-k \beta \pm d=0 \quad \text { with } \begin{cases}k>d+1 & \text { if } d>0 \\ k>d-1 & \text { if } d<0\end{cases}
$$

Theorem: If β is quadratic Pisot, then $\operatorname{dim}_{H}\left(A_{\beta}\right)=\frac{\log d}{\log \beta}$.
Hence $\operatorname{dim}_{H}\left(A_{\beta}\right)=0$ if $d= \pm 1$ (quadratic Pisot units). We conjecture that this is the only situation where $\operatorname{dim}_{H}\left(A_{\beta}\right)=0$.

Proof: Matching for quadratic Pisot slope T_{α}

There are integers a_{j}, b_{j} (depending on n) such that

$$
\begin{aligned}
& T_{\alpha}^{n}(0)=\left(\beta^{n-1}+\cdots+1\right) \alpha-a_{n-2} \beta^{n-2}-\cdots-a_{1} \beta-a_{0}, \\
& T_{\alpha}^{n}(1)=\left(\beta^{n-1}+\cdots+1\right) \alpha+\beta^{n}-b_{n-1} \beta^{n-1}-\cdots-b_{1} \beta-b_{0} .
\end{aligned}
$$

Therefore matching at (minimal) iterate n requires

$$
0=T_{\alpha}^{n}(1)-T_{\alpha}^{n}(0)=\beta^{n}+\sum_{j=0}^{n-1} \beta^{j}\left(b_{j}-a_{j}\right) .
$$

Hence β has to be an algebraic integer.

Proof: Matching for quadratic Pisot slope T_{α}

There are integers a_{j}, b_{j} (depending on n) such that

$$
\begin{aligned}
& T_{\alpha}^{n}(0)=\left(\beta^{n-1}+\cdots+1\right) \alpha-a_{n-2} \beta^{n-2}-\cdots-a_{1} \beta-a_{0}, \\
& T_{\alpha}^{n}(1)=\left(\beta^{n-1}+\cdots+1\right) \alpha+\beta^{n}-b_{n-1} \beta^{n-1}-\cdots-b_{1} \beta-b_{0} .
\end{aligned}
$$

Therefore matching at (minimal) iterate n requires

$$
0=T_{\alpha}^{n}(1)-T_{\alpha}^{n}(0)=\beta^{n}+\sum_{j=0}^{n-1} \beta^{j}\left(b_{j}-a_{j}\right) .
$$

Hence β has to be an algebraic integer.
The integers b_{j}, a_{j} depend on α, but change only at a finite set. Hence, if matching occurs, it occurs on an entire interval.

Proof: Matching for quadratic Pisot-slope T_{α}

Since β is an algebraic integer of order n, we can write

$$
T_{\alpha}^{j}(0)-T_{\alpha}^{j}(1)=\sum_{k=1}^{n} \frac{e_{k}(j)}{\beta^{k}} \quad e_{k}(j) \in \mathbb{Z}
$$

The α-dependence is only in the integers $e_{k}(j)=e_{k}(j, \alpha)$

Proof: Matching for quadratic Pisot-slope T_{α}

Since β is an algebraic integer of order n, we can write

$$
T_{\alpha}^{j}(0)-T_{\alpha}^{j}(1)=\sum_{k=1}^{n} \frac{e_{k}(j)}{\beta^{k}} \quad e_{k}(j) \in \mathbb{Z}
$$

The α-dependence is only in the integers $e_{k}(j)=e_{k}(j, \alpha)$
Lemma (Sample Lemma)
If $\left|T_{\alpha}^{j}(0)-T_{\alpha}^{j}(1)\right|=1 / \beta$, then there is matching in one iterate.

Proof: Matching for quadratic Pisot-slope T_{α}

Since β is an algebraic integer of order n, we can write

$$
T_{\alpha}^{j}(0)-T_{\alpha}^{j}(1)=\sum_{k=1}^{n} \frac{e_{k}(j)}{\beta^{k}} \quad e_{k}(j) \in \mathbb{Z}
$$

The α-dependence is only in the integers $e_{k}(j)=e_{k}(j, \alpha)$
Lemma (Sample Lemma)
If $\left|T_{\alpha}^{j}(0)-T_{\alpha}^{j}(1)\right|=1 / \beta$, then there is matching in one iterate.
Proof.
If $\left|T_{\alpha}^{j}(0)-T_{\alpha}^{j}(1)\right|=1 / \beta$, then $T_{\alpha}^{j}(0)$ and $T_{\alpha}^{j}(1)$ belong to neighbouring branch-domains of T_{α}, and their images are the same.

Proof: Matching for quadratic Pisot slope T_{α}
Sketch of proof for $\beta^{2}-k \beta-d=0, k \in \mathbb{N}$, so $k-1<\beta<k$ and T_{α} has k or $k+1$ branches.

Proof: Matching for quadratic Pisot slope T_{α}

Sketch of proof for $\beta^{2}-k \beta-d=0, k \in \mathbb{N}$, so $k-1<\beta<k$ and T_{α} has k or $k+1$ branches.

Lemma: If $\alpha \in[k-\beta, 1)$, then T_{α} has $k+1$ branches, but there is matching after two steps.

Proof: Matching for quadratic Pisot slope T_{α}

Sketch of proof for $\beta^{2}-k \beta-d=0, k \in \mathbb{N}$, so $k-1<\beta<k$ and T_{α} has k or $k+1$ branches.

Lemma: If $\alpha \in[k-\beta, 1)$, then T_{α} has $k+1$ branches, but there is matching after two steps.

Hence, take $\alpha \in[0, k-\beta)$ and call the domains of the branches $\Delta_{0}, \ldots, \Delta_{k}$. Compute

$$
T_{\alpha}(1)=\beta+\underbrace{\alpha}_{=T(0)}-(k-1)=T_{\alpha}(0)+\underbrace{\beta-(k-1)}_{\gamma} .
$$

Proof: Matching for quadratic Pisot slope T_{α}

Sketch of proof for $\beta^{2}-k \beta-d=0, k \in \mathbb{N}$, so $k-1<\beta<k$ and T_{α} has k or $k+1$ branches.

Lemma: If $\alpha \in[k-\beta, 1)$, then T_{α} has $k+1$ branches, but there is matching after two steps.

Hence, take $\alpha \in[0, k-\beta)$ and call the domains of the branches $\Delta_{0}, \ldots, \Delta_{k}$. Compute

$$
T_{\alpha}(1)=\beta+\underbrace{\alpha}_{=T(0)}-(k-1)=T_{\alpha}(0)+\underbrace{\beta-(k-1)}_{\gamma} .
$$

Lemma: If $T^{\ell}(0) \in \Delta_{i}$ and $T^{\ell}(1) \in \Delta_{i+(k-1)-d}$ for $1 \leq \ell<n, i=i(\ell)$, then

$$
T^{n}(1)-T^{n}(0)=\gamma
$$

Proof: Matching for quadratic Pisot slope T_{α}

Lemma: If $T^{n-1}(0) \in \Delta_{i}$ and $T^{n-1}(1) \in \Delta_{i+k-d}$ then the distance $\left|T^{n}(1)-T^{n}(0)\right|=\frac{d}{\beta}$ and there is matching in 2 steps.

Proof: Matching for quadratic Pisot slope T_{α}

Lemma: If $T^{n-1}(0) \in \Delta_{i}$ and $T^{n-1}(1) \in \Delta_{i+k-d}$ then the distance $\left|T^{n}(1)-T^{n}(0)\right|=\frac{d}{\beta}$ and there is matching in 2 steps.

Hence, to avoid matching, $T^{\ell}(0)$ has to avoid the sets

$$
\begin{aligned}
V_{i} & :=\{x \in \Delta(i): x+\gamma \in \Delta(i+k-d)\} \\
& =\left[\frac{i+k-d-\alpha}{\beta_{k}}-\gamma, \frac{i+1-\alpha}{\beta_{k}}\right) .
\end{aligned}
$$

Proof: Matching for quadratic Pisot slope T_{α}

Lemma: If $T^{n-1}(0) \in \Delta_{i}$ and $T^{n-1}(1) \in \Delta_{i+k-d}$ then the distance $\left|T^{n}(1)-T^{n}(0)\right|=\frac{d}{\beta}$ and there is matching in 2 steps.

Hence, to avoid matching, $T^{\ell}(0)$ has to avoid the sets

$$
\begin{aligned}
V_{i} & :=\{x \in \Delta(i): x+\gamma \in \Delta(i+k-d)\} \\
& =\left[\frac{i+k-d-\alpha}{\beta_{k}}-\gamma, \frac{i+1-\alpha}{\beta_{k}}\right) .
\end{aligned}
$$

Lemma: If

$$
T^{n}(0) \in V=\cup_{i=0}^{d-1} V_{i}
$$

then there is matching in two steps.

Proof: Matching for quadratic Pisot slope T_{α}

Lemma: The map $g_{\alpha}:[0,1-\beta] \rightarrow[0,1-\beta]$,

$$
g_{\alpha}(x):= \begin{cases}k-\beta & \text { if } x \in V \\ T_{\alpha}(x) & \text { otherwise }\end{cases}
$$

is a non-decreasing degree d circle endomorpism, and $g^{n}(0) \in V$ for some $n>1$ precisely if $k-\beta$ is periodic.

Proof: Matching for quadratic Pisot slope T_{α}

Lemma: The map $g_{\alpha}:[0,1-\beta] \rightarrow[0,1-\beta]$,

$$
g_{\alpha}(x):= \begin{cases}k-\beta & \text { if } x \in V \\ T_{\alpha}(x) & \text { otherwise }\end{cases}
$$

is a non-decreasing degree d circle endomorpism, and $g^{n}(0) \in V$ for some $n>1$ precisely if $k-\beta$ is periodic.

The map T_{α}

Proof: Matching for quadratic Pisot slope T_{α}

Lemma: The map $g_{\alpha}:[0,1-\beta] \rightarrow[0,1-\beta]$,

$$
g_{\alpha}(x):= \begin{cases}k-\beta & \text { if } x \in V \\ T_{\alpha}(x) & \text { otherwise }\end{cases}
$$

is a non-decreasing degree d circle endomorpism, and $g^{n}(0) \in V$ for some $n>1$ precisely if $k-\beta$ is periodic.

The map T_{α}

Proof: Matching for quadratic Pisot slope T_{α}

Lemma: The map $g_{\alpha}:[0,1-\beta] \rightarrow[0,1-\beta]$,

$$
g_{\alpha}(x):= \begin{cases}k-\beta & \text { if } x \in V \\ T_{\alpha}(x) & \text { otherwise }\end{cases}
$$

is a non-decreasing degree d circle endomorpism, and $g^{n}(0) \in V$ for some $n>1$ precisely if $k-\beta$ is periodic.

The map T_{α} and g_{α}

Proof: Matching for quadratic Pisot slope T_{α}

Recall that V is the union of plateaux of the map

$$
g_{\alpha}(x):= \begin{cases}k-\beta & \text { if } x \in V \\ T_{\alpha}(x) & \text { otherwise }\end{cases}
$$

Lemma: Define

$$
X_{\alpha}=\left\{x \in \mathbb{S}^{1}: g_{\alpha}^{n}(x) \notin V \text { for all } n \geq 0\right\}
$$

If there is no matching, then $\operatorname{dim}_{H}\left(X_{\alpha}\right)=\frac{\log d}{\log \beta}$.

Proof: Matching for quadratic Pisot slope T_{α}

Recall that V is the union of plateaux of the map

$$
g_{\alpha}(x):= \begin{cases}k-\beta & \text { if } x \in V \\ T_{\alpha}(x) & \text { otherwise }\end{cases}
$$

Lemma: Define

$$
X_{\alpha}=\left\{x \in \mathbb{S}^{1}: g_{\alpha}^{n}(x) \notin V \text { for all } n \geq 0\right\}
$$

If there is no matching, then $\operatorname{dim}_{H}\left(X_{\alpha}\right)=\frac{\log d}{\log \beta}$.
Idea of Proof.
For each n, we cover X_{α} by $O\left(d^{n}\right)$ intervals of length β^{-n}. \square

Proof: Matching for quadratic-Pisot-slope T_{α}

$$
\text { Proof for } \beta^{2}-k \beta-d=0
$$

- The task is to transfer the previous lemma from dynamical to parameter space.

Proof: Matching for quadratic-Pisot-slope T_{α}

$$
\text { Proof for } \beta^{2}-k \beta-d=0
$$

- The task is to transfer the previous lemma from dynamical to parameter space.
- Use that $\alpha \mapsto T^{n}(\alpha)$ is piecewise linear with slope $\frac{\beta^{n}-1}{\beta-1}$.

Proof: Matching for quadratic-Pisot-slope T_{α}

Proof for $\beta^{2}-k \beta-d=0$.

- The task is to transfer the previous lemma from dynamical to parameter space.
- Use that $\alpha \mapsto T^{n}(\alpha)$ is piecewise linear with slope $\frac{\beta^{n}-1}{\beta-1}$.
- On the other hand, the intervals U in the cover of the previous lemma move with fixed speed (independent of n).

Proof: Matching for quadratic-Pisot-slope T_{α}

Proof for $\beta^{2}-k \beta-d=0$.

- The task is to transfer the previous lemma from dynamical to parameter space.
- Use that $\alpha \mapsto T^{n}(\alpha)$ is piecewise linear with slope $\frac{\beta^{n}-1}{\beta-1}$.
- On the other hand, the intervals U in the cover of the previous lemma move with fixed speed (independent of n).
- Therefore, for each n, the set A_{α} can be covered by $O\left(d^{n}\right)$ intervals of length $O\left(\beta^{-n}\right)$.

Matching for non-Pisot Units

The examples we have of prevalent matching all relate to β being a Pisot unit. However, matching can occur at non-Pisot units, e.g., the quartic Salem number satisfying

$$
\beta^{4}-\beta^{3}-\beta^{2}-\beta+1=0
$$

has matching at some non-trivial intervals.

Matching for non-Pisot Units

The examples we have of prevalent matching all relate to β being a Pisot unit. However, matching can occur at non-Pisot units, e.g., the quartic Salem number satisfying

$$
\beta^{4}-\beta^{3}-\beta^{2}-\beta+1=0
$$

has matching at some non-trivial intervals.
Numerical simulations give the following table

β	minimal polynomial	$\operatorname{dim}_{B}\left(\mathcal{E}_{\beta}\right)$
tribonacci	$\beta^{3}-\beta^{2}-\beta-1=0$	$0.66 \ldots$
tetrabonacci	$\beta^{4}-\beta^{3}-\beta^{2}-\beta-1=0$	$0.76 \ldots$
plastic	$\beta^{3}-\beta-1=0$	$0.93 \ldots$

Matching for non-Quadratic Pisot Units

There is another frequently used class of Pisot units, namely leading solutions β_{k} of

$$
\beta^{k}-\beta^{k-1}-\beta^{k-2}-\cdots-1=0
$$

for $k \geq 3$.
Theorem (Non-Quadratic Pisot Units)
For β_{3}, there is prevalent matching. For the non-matching set $\operatorname{dim}_{H}\left(A_{\beta}\right) \in(0,1)$.

Matching for non-Quadratic Pisot Units

There is another frequently used class of Pisot units, namely leading solutions β_{k} of

$$
\beta^{k}-\beta^{k-1}-\beta^{k-2}-\cdots-1=0
$$

for $k \geq 3$.
Theorem (Non-Quadratic Pisot Units)
For β_{3}, there is prevalent matching. For the non-matching set $\operatorname{dim}_{H}\left(A_{\beta}\right) \in(0,1)$.

We expect the same result for $\beta_{k}, k \geq 4$, but at the moment, we have no proof.

Matching for non-Quadratic Pisot Units
Lemma: For every $k \geq 2$ and $j \geq 0$ we have

$$
\left|T_{\alpha}^{j}(0)-T_{\alpha}^{j}(1)\right| \in\left\{\frac{e_{1}}{\beta}+\frac{e_{2}}{\beta^{2}}+\cdots+\frac{e_{k}}{\beta^{k}}: e_{1}, \ldots, e_{k} \in\{0,1\}\right\} .
$$

Matching for non-Quadratic Pisot Units

Lemma: For every $k \geq 2$ and $j \geq 0$ we have

$$
\left|T_{\alpha}^{j}(0)-T_{\alpha}^{j}(1)\right| \in\left\{\frac{e_{1}}{\beta}+\frac{e_{2}}{\beta^{2}}+\cdots+\frac{e_{k}}{\beta^{k}}: e_{1}, \ldots, e_{k} \in\{0,1\}\right\}
$$

Figure: The transition graph for the tribonacci number β_{3}. The red numbers indicate the difference in branch between $T_{\alpha}^{j}(0)$ and $T_{\alpha}^{j}(1)$.

Matching for non-Quadratic Pisot Units

- The diagram expresses only a the "fiber part" of a skew-product. So it is more complicated than a SFT.

Matching for non-Quadratic Pisot Units

- The diagram expresses only a the "fiber part" of a skew-product. So it is more complicated than a SFT.
- There are linked non-trivial loops that give a Cantor set of positive Hausdorff dimension inside the bifurcation set.

Matching for non-Quadratic Pisot Units

- The diagram expresses only a the "fiber part" of a skew-product. So it is more complicated than a SFT.
- There are linked non-trivial loops that give a Cantor set of positive Hausdorff dimension inside the bifurcation set.
- Abundancy of paths to matching gives upper bound <1.

Matching for non-Quadratic Pisot Units

Figure: The transition graph for the Pisot number β_{4} is similar but too complicated to handle.

References

E H. Bruin, C. Carminati, C. Kalle, Matching for generalised β-transformations, Indagationes Mathematicae, 28 (2017), no. 1, 55-73.
H. Bruin, C. Carminati, S. Marmi, A. Profeti, Matching in a family of piecewise affine interval maps, Preprint July 2016

回 K. Dajani, C. Kalle, Invariant measures, matching and the frequency of 0 for signed binary expansions, Preprint 2017, arXiv:1703.06335.

