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The map of Botero-Soler et al. generalized

For fixed slope 1 < s ∈ N, take:
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Qγ(x) =

{
x + 1, x ≤ γ
1 + s(1− x), x > γ



Matching

Let T = Tγ : [0, 1]→ [0, 1] be a family of piecewise C 1 and
expanding interval maps with discontinuity at γ.

Definition: There is matching if there are iterates κ± > 0 such that

Tκ−(γ−) = Tκ+(γ+) and derivatives DTκ−(γ−) = DTκ+(γ+)

The integers κ± are called the matching exponents.
The pre-matching partition is formed by the complementary
intervals of

{T j(γ−)}κ−−1
j=0 } ∪ {T

j(γ+)}κ+−1
j=0 };
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Not Markov but Matching

Despite Tγ not being a Markov map, matching has the following
similar effect:

Theorem: If a piecewise C 1 and expanding map T has matching at
all its discontinuities, then it preserves an absolutely continuous
measure µ, and

ρ =
dµ

dx
is smooth on each element of the pre-matching partition.

In fact, if T is piecewise affine, then ρ is constant on each element
of the pre-matching partition.
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For fixed slope 1 < s ∈ N, take:
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Qγ(x) =

{
x + 1, x ≤ γ
1 + s(1− x), x > γ

Matching properties of Qγ :
I x = 1 is fixed for all s and γ < 1;
I For integer s ≥ 2, every point ps−m, p,m ∈ N, eventually

maps to 1;
I therefore matching occurs whenever γ = ps−m;
I matching occurs on an open dense set!
I matching occurs when Qn

γ (γ+) ∈ [0, γ) = trap for some n ≥ 1.
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Signed binary digit map

Sα(x) =
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Figure: The signed binary expansion map (Dajani & Kalle).



Signed binary digit map

Sα(x) =


2x + α x ∈ [−1,−1

2);

2x x ∈ (−1
2 ,

1
2);

2x − α x ∈ (1
2 , 1].

α ∈ [1, 2].

Matching of 1
2
+ and 1

2
− (and by symmetry of (−1

2)− and (−1
2)+ )

occurs
I for α ∈ [3

2 , 2],
I whenever Sκα(1) ∈ [1

2 ,
α
2 ] = trap, and

I the matching exponent is the minimal such κ.



The α-continued fraction map Tα.

A generalization of the Gauß map stems from Nakada (and Natsui).
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Figure: Tα : [α− 1, α]→ [α− 1, α], x 7→ | 1x | − b
1
x + 1− αc.

All of them have invariant densities (infinite if α = 0).
Matching of the orbits of α and α− 1 occurs for a.e. α ∈ [0, 1].
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α-continued fractions and the Mandelbrot set

Figure: From a paper by Bonanno, Carminati, Isola and Tiozzo: The
non-matching set and the real antenna of Mandelbrot set



Prevalence of Matching

Theorem: In all the families concerned:
I Matching requires particular algebraic properties on the

branches (such as: integer or Pisot slopes).

I Matching occurs on an open dense parameter set of full
Lebesgue measure.

I Non-matching occurs in an (exceptional) set E of full Hausdorf
dimension, but occurs with Hausdorf dimension < 1 outside
any neighbourhood of a single point.

For the quadratic family z 7→ z2 + c , replace matching by:

the ray of parameter angle θ lands at the real antenna,

of Mandelbrot set and you get the same result w.r.t. θ.
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Monotonicity of entropy for Qγ

Theorem: Let ∆ = κ+ − κ−. The topological and metric entropy

hµ(Qγ) and htop(Qγ) are


decreasing if ∆ < 0;

constant if ∆ = 0;

increasing if ∆ > 0,

as function of γ within matching intervals. (See also Cosper &
Misiurewicz.)
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Meta-question

Additional features that the above maps have in common:
I Algebraic/symbolic properties of the matching interval in

parameter space;

I Period doubling and a Feigenbaum/Thue-Morse limit;
I Self-similarity in parameter space (cf. tuning in the Mandelbrot

set).
Question: Is there a meta-theorem (more precise than
“renormalization”) explaining these joint features of such interval
maps?
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Matching intervals for Qγ

Motivation: Find exact formulas for matching intervals J and
indices ∆ = κ+ − κ− (for slope s = 2, but it works for any s ∈ N).

Let Qdyd be the set of dyadic rationals in (0, 1].

Definition The pseudocenter of an interval J ⊂ (0, 1) is the
(unique) dyadic rational ξ ∈ Qdyd with minimal denominator.

Definition
I For binary string u, let ǔ be the bitwise negation of u.
I For ξ ∈ Qdyd \ {1} and let w be the shortest even binary

expansion of ξ and v be the shortest odd binary expansion of
1− ξ.

I Define the interval Iξ := (ξL, ξR) containing ξ where,
I ξL := .v̌ v , ξR := .w .

I Also define the “degenerate” interval I1 := (2/3,+∞).
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Matching intervals for Qγ

In short: Iξ := (ξL, ξR) with ξL := .v̌ v , ξR := .w .

If ξ = 1/2 then w = 10, v = 1 and ξL = .01, ξR = .10.
(01) w = u01⇒ ξL = .u001ǔ110;
(11) w = u11⇒ ξL = .u101ǔ010;

(010) w = u010⇒ ξL = .u00ǔ11;
(110) w = u110⇒ ξL = .u10ǔ01.

ξ ξR ξL

1
2 = .10 2

3 = .10 1
3 = .01

1
4 = .01 1

3 = .01 2
9 = .001110

7
32 = .001110 2

9 = .001110 7
33 = .0011011001

3
16 = .0011 1

5 = .0011 2
11 = .0010111010

9
64 = .001001 1

7 = .001 4334
16383 = .00100011101110

1
8 = .0010 2

15 = .0010 1
9 = .000111
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Matching intervals for Qγ

Theorem:
I All matching intervals have the form Iξ, where ξ ∈ Qdyd are

precisely the pseudo-centers of the components of [0, 2
3 ] \ E .

I The matching index is

∆(ξ) =
3
2

(|w0| − |w |1),

where |w |a is the number of symbols a ∈ {0, 1} in w (the
shortest even binary expansion of ξ).

Example: All matching intervals in (1
6 ,

2
3) have matching index

∆ = 0. Hence, entropy is constant on [1
6 ,

2
3 ].
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Matching intervals for Sα
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-1 0 1

Let d1d2d3 · · · ∈ {−1, 0, 1}N be the itinerary of 1:

di =


−1 S i−1

α (1) ∈ [−1,−1
2);

0 S i−1
α (1) ∈ [−1

2 ,
1
2 ];

1 S i−1
α (1) ∈ (−1

2 , 1].

Note that the matching index κ = min{n : dn = −1} − 1.



Matching intervals for Sα

For v = ua ∈ {0, 1}κ, define

ψS(ua) = uaǔ1 a ∈ {0, 1}.

Definition: A word v = v1 . . . vκ ∈ {0, 1}κ is called primitive if
I v1 = v2 = vκ = 1;
I vj . . . vκ � x1 . . . xκ−j+1 (shift-maximal in lexicogr. order);
I there is no word b such that b � v � ψS(b).

Theorem: Let α have matching exponent κ and itinerary
d1d2d3 . . . Then the matching interval of α is

J =

(
1 + 2−κ∑κ

j=1 dj2−j + 2−κ
,

1 + 2−κ∑κ
j=1 dj2−j − 2−κ

)

if and only if d1 . . . dκ is a primitive word.
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Matching intervals for Qγ (period doubling)
Take a pseudo-center

ξ =

{
0.w (even expansion)
1− 0.v (odd expansion).

The matching interval is Iξ = [ξL, ξR ] for ξL = .v̌ v and ξR = .w .

Let
ψS(ξ) := .v̌ for ξ = 1− 0.v

Note that ξL is also the right end-point of Iψ(ξ). We call this
“period doubling“. It repeats countably often, converging to
ξ∞ := limn ψ

n(ξ).

ξR

IξIψ(ξ)Iψ2(ξ)

ξξL = ψ(ξ)Rψ(ξ)L = ψ2(ξ)Rψ2(ξ)L = ψ3(ξ)Rξ∞



Matching intervals for Qγ (period doubling)
Take a pseudo-center

ξ =

{
0.w (even expansion)
1− 0.v (odd expansion).

The matching interval is Iξ = [ξL, ξR ] for ξL = .v̌ v and ξR = .w .

Let
ψS(ξ) := .v̌ for ξ = 1− 0.v

Note that ξL is also the right end-point of Iψ(ξ). We call this
“period doubling“. It repeats countably often, converging to
ξ∞ := limn ψ

n(ξ).

ξR

IξIψ(ξ)Iψ2(ξ)

ξξL = ψ(ξ)Rψ(ξ)L = ψ2(ξ)Rψ2(ξ)L = ψ3(ξ)Rξ∞



Matching intervals for Qγ (period doubling)
Lemma: The pseudo-center of the next period doubling can be
obtained from the previous using the substitution:

χ :
w 7→ v̌ v w̌ 7→ v v̌
v 7→ vw v̌ 7→ v̌ w̌

.

Thus the limit ξ∞ has s-adic expansion

ξ∞ = .v̌ w̌v v̌vwv̌w̌vwv̌v v̌ w̌ . . .

Remark: This substitution factorizes over the Thue-Morse
substitution

χThue-Morse :

{
0 7→ 01;

1 7→ 10

(via the change of symbols π(v) = π(w̌) = 0, π(v̌) = π(w) = 1),
which factorizes over the period-doubling (Feigenbaum) substitution

χFeigenbaum :

{
0 7→ 11;

1 7→ 10.
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Matching intervals for Qγ (tuning windows)

Pseudo-center ξ = .w (even expansion) and 1− ξ = .v (odd exp).
The matching interval is Iξ = [ξL, ξR ] for ξL = .v̌ v and ξR = .w .
The tuning interval is Tξ = [ξT , ξR ] for ξT = .v̌ w̌ .

ξR

Iξ

ξξLξ∞ξT

Theorem: Let K (ξT ) = {x : Qγ(γ+) /∈ [0, ξT ) ∀k}.
Then x ∈ K (ξT ) ∩ Tξ if and only if

x = .σ1σ2σ3σ4...

for σ1 ∈ {w , v̌}, σj ∈ {w , v , w̌ , v̌}
describing a path in the diagram.

w	

v̌

v

6

?

w̌ 	
@
@@R

�
��	

�
���

@
@@I

If ∆(ξ) = 0, all matching in Tξ is neutral.
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Matching intervals for Sα (period doubling)

Recall for v = ua ∈ {0, 1}κ, define

ψ(ua) = ψS(ua) = uaǔ1 a ∈ {0, 1}.

We have again period doubling:

vL = ψ(v)R provided v is primitive.

Remark: Starting with v = 11, we get

lim
n→∞

ψn(v) = v∞ = 110 1001 1001 0110 1001 0110 . . .

which is the left-shift of the fixed point of the Thue-Morse
substitution.
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Matching intervals for Sα (tuning intervals)

The analogon of tuning interval for the family Sα doesn’t seem to
have been investigated.
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To finish: the flowers on my balcony

Figure: Maiden pink – Dianthus Deltoides – Goździk kropkowany

Happy Birthday Michał !


