Matching of discontinuous interval maps.

Henk Bruin (University of Vienna)

joint with

Carlo Carminati (University of Pisa) Stefano Marmi (Scuola Normale di Pisa) Alessandro Profeti (University of Pisa) and results in papers by Dajani (Utrecht) & Kalle (Leiden) Bonanno, Carminati (Pisa), Isola (Bologna) & Tiozzo (Yale)

Krakow, June 2019

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ の へ ()

Figure: Kiev 1998

・ロト ・日・ ・日・ ・

물 🛌 🗄

For fixed slope $1 < s \in \mathbb{N}$, take:

$$\mathcal{Q}_{\gamma}(x) = egin{cases} x+1, & x \leq \gamma \ 1+s(1-x), & x > \gamma \end{cases}$$

<ロ> (四) (四) (三) (三) (三) (三)

Let $T = T_{\gamma} : [0, 1] \rightarrow [0, 1]$ be a family of piecewise C^1 and expanding interval maps with discontinuity at γ .

Definition: There is matching if there are iterates $\kappa_{\pm} > 0$ such that

$$T^{\kappa_-}(\gamma^-) = T^{\kappa_+}(\gamma^+)$$
 and derivatives $DT^{\kappa_-}(\gamma^-) = DT^{\kappa_+}(\gamma^+)$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Let $T = T_{\gamma} : [0, 1] \rightarrow [0, 1]$ be a family of piecewise C^1 and expanding interval maps with discontinuity at γ .

Definition: There is matching if there are iterates $\kappa_{\pm} > 0$ such that

$$T^{\kappa_-}(\gamma^-) = T^{\kappa_+}(\gamma^+)$$
 and derivatives $DT^{\kappa_-}(\gamma^-) = DT^{\kappa_+}(\gamma^+)$

ション ふゆ アメリア メリア しょうくの

The integers κ_{\pm} are called the matching exponents.

Let $T = T_{\gamma} : [0, 1] \rightarrow [0, 1]$ be a family of piecewise C^1 and expanding interval maps with discontinuity at γ .

Definition: There is matching if there are iterates $\kappa_{\pm} > 0$ such that

$$T^{\kappa_-}(\gamma^-)=T^{\kappa_+}(\gamma^+)$$
 and derivatives $DT^{\kappa_-}(\gamma^-)=DT^{\kappa_+}(\gamma^+)$

The integers κ_{\pm} are called the matching exponents.

The pre-matching partition is formed by the complementary intervals of

$$\{T^{j}(\gamma^{-})\}_{j=0}^{\kappa_{-}-1}\} \cup \{T^{j}(\gamma^{+})\}_{j=0}^{\kappa_{+}-1}\};$$

ション ふゆ アメリア メリア しょうくの

Let $T = T_{\gamma} : [0, 1] \rightarrow [0, 1]$ be a family of piecewise C^1 and expanding interval maps with discontinuity at γ .

Definition: There is matching if there are iterates $\kappa_{\pm} > 0$ such that

$$T^{\kappa_-}(\gamma^-)=T^{\kappa_+}(\gamma^+)$$
 and derivatives $DT^{\kappa_-}(\gamma^-)=DT^{\kappa_+}(\gamma^+)$

The integers κ_{\pm} are called the matching exponents.

The pre-matching partition is formed by the complementary intervals of

$$\{T^{j}(\gamma^{-})\}_{j=0}^{\kappa_{-}-1}\} \cup \{T^{j}(\gamma^{+})\}_{j=0}^{\kappa_{+}-1}\};$$

ション ふゆ アメリア メリア しょうくの

Not Markov but Matching

Despite T_{γ} not being a Markov map, matching has the following similar effect:

Theorem: If a piecewise C^1 and expanding map T has matching at all its discontinuities, then it preserves an absolutely continuous measure μ , and

 $\rho = \frac{d\mu}{dx}$ is smooth on each element of the pre-matching partition.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ● ● ●

Not Markov but Matching

Despite T_{γ} not being a Markov map, matching has the following similar effect:

Theorem: If a piecewise C^1 and expanding map T has matching at all its discontinuities, then it preserves an absolutely continuous measure μ , and

 $\rho = \frac{d\mu}{dx}$ is smooth on each element of the pre-matching partition.

In fact, if T is piecewise affine, then ρ is constant on each element of the pre-matching partition.

For fixed slope $1 < s \in \mathbb{N}$, take:

$$Q_{\gamma}(x) = egin{cases} x+1, & x \leq \gamma \ 1+s(1-x), & x > \gamma \end{cases}$$

(a)

э

For fixed slope $1 < s \in \mathbb{N}$, take:

$$Q_{\gamma}(x) = egin{cases} x+1, & x \leq \gamma \ 1+s(1-x), & x > \gamma \end{cases}$$

・ロッ ・雪 ・ ・ ヨ ・ ・ ヨ ・

Matching properties of Q_{γ} :

- x = 1 is fixed for all s and $\gamma < 1$;
- For integer s ≥ 2, every point ps^{-m}, p, m ∈ N, eventually maps to 1;

For fixed slope $1 < s \in \mathbb{N}$, take:

$$Q_{\gamma}(x) = egin{cases} x+1, & x \leq \gamma \ 1+s(1-x), & x > \gamma \end{cases}$$

Matching properties of Q_{γ} :

- x = 1 is fixed for all s and $\gamma < 1$;
- For integer s ≥ 2, every point ps^{-m}, p, m ∈ N, eventually maps to 1;
- therefore matching occurs whenever $\gamma = ps^{-m}$;
- matching occurs on an open dense set!

For fixed slope $1 < s \in \mathbb{N}$, take:

$$Q_{\gamma}(x) = egin{cases} x+1, & x \leq \gamma \ 1+s(1-x), & x > \gamma \end{cases}$$

Matching properties of Q_{γ} :

- x = 1 is fixed for all s and $\gamma < 1$;
- For integer s ≥ 2, every point ps^{-m}, p, m ∈ N, eventually maps to 1;
- therefore matching occurs whenever $\gamma = ps^{-m}$;
- matching occurs on an open dense set!
- matching occurs when $Q_{\gamma}^{n}(\gamma^{+}) \in [0, \gamma) = \text{trap}$ for some $n \geq 1$.

Signed binary digit map

$$S_{\alpha}(x) = \begin{cases} 2x + \alpha & x \in [-1, -\frac{1}{2}); \\ 2x & x \in (-\frac{1}{2}, \frac{1}{2}); \\ 2x - \alpha & x \in (\frac{1}{2}, 1]. \end{cases} \quad \alpha \in [1, 2].$$

Figure: The signed binary expansion map (Dajani & Kalle).

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

Signed binary digit map

$$S_{\alpha}(x) = \begin{cases} 2x + \alpha & x \in [-1, -\frac{1}{2}); \\ 2x & x \in (-\frac{1}{2}, \frac{1}{2}); \\ 2x - \alpha & x \in (\frac{1}{2}, 1]. \end{cases} \quad \alpha \in [1, 2].$$

Matching of $\frac{1}{2}^+$ and $\frac{1}{2}^-$ (and by symmetry of $(-\frac{1}{2})^-$ and $(-\frac{1}{2})^+$) occurs

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ うらつ

- for $\alpha \in [\frac{3}{2}, 2]$,
- whenever $S^{\kappa}_{\alpha}(1) \in [\frac{1}{2}, \frac{\alpha}{2}] =$ trap, and
- the matching exponent is the minimal such κ .

A generalization of the Gauß map stems from Nakada (and Natsui).

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

A generalization of the Gauß map stems from Nakada (and Natsui).

<ロ> (四) (四) (三) (三) (三) (三)

A generalization of the Gauß map stems from Nakada (and Natsui).

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

A generalization of the Gauß map stems from Nakada (and Natsui).

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

A generalization of the Gauß map stems from Nakada (and Natsui).

Figure: $T_{\alpha}: [\alpha - 1, \alpha] \to [\alpha - 1, \alpha], x \mapsto |\frac{1}{x}| - \lfloor \frac{1}{x} + 1 - \alpha \rfloor.$

All of them have invariant densities (infinite if $\alpha = 0$).

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

A generalization of the Gauß map stems from Nakada (and Natsui).

Figure: $T_{\alpha}: [\alpha - 1, \alpha] \to [\alpha - 1, \alpha], x \mapsto |\frac{1}{x}| - \lfloor \frac{1}{x} + 1 - \alpha \rfloor.$

All of them have invariant densities (infinite if $\alpha = 0$). Matching of the orbits of α and $\alpha - 1$ occurs for a.e. $\alpha \in [0, 1]$.

$\alpha\text{-}\mathrm{continued}$ fractions and the Mandelbrot set

Figure: From a paper by Bonanno, Carminati, Isola and Tiozzo: The non-matching set and the real antenna of Mandelbrot set

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … 釣�?

Theorem: In all the families concerned:

 Matching requires particular algebraic properties on the branches (such as: integer or Pisot slopes).

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Theorem: In all the families concerned:

- Matching requires particular algebraic properties on the branches (such as: integer or Pisot slopes).
- Matching occurs on an open dense parameter set of full Lebesgue measure.

(ロ) (型) (E) (E) (E) (O)

Theorem: In all the families concerned:

- Matching requires particular algebraic properties on the branches (such as: integer or Pisot slopes).
- Matching occurs on an open dense parameter set of full Lebesgue measure.
- ► Non-matching occurs in an (exceptional) set E of full Hausdorf dimension, but occurs with Hausdorf dimension < 1 outside any neighbourhood of a single point.</p>

ション ふゆ く 山 マ チャット しょうくしゃ

Theorem: In all the families concerned:

- Matching requires particular algebraic properties on the branches (such as: integer or Pisot slopes).
- Matching occurs on an open dense parameter set of full Lebesgue measure.
- ► Non-matching occurs in an (exceptional) set E of full Hausdorf dimension, but occurs with Hausdorf dimension < 1 outside any neighbourhood of a single point.</p>

For the quadratic family $z \mapsto z^2 + c$, replace matching by: the ray of parameter angle θ lands at the real antenna,

of Mandelbrot set and you get the same result w.r.t. θ .

Monotonicity of entropy for Q_{γ} Theorem: Let $\Delta = \kappa_+ - \kappa_-$. The topological and metric entropy

$$h_{\mu}(Q_{\gamma}) ext{ and } h_{top}(Q_{\gamma}) ext{ are } \left\{egin{array}{ll} ext{decreasing} & ext{if } \Delta < 0; \ ext{constant} & ext{if } \Delta = 0; \ ext{increasing} & ext{if } \Delta > 0, \end{array}
ight.$$

as function of γ within matching intervals. (See also Cosper & Misiurewicz.)

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Monotonicity of entropy for Q_{γ} Theorem: Let $\Delta = \kappa_{+} - \kappa_{-}$. The topological and metric entropy

$$h_\mu(Q_\gamma) ext{ and } h_{top}(Q_\gamma) ext{ are } \left\{egin{array}{ll} ext{decreasing} & ext{if } \Delta < 0; \ ext{constant} & ext{if } \Delta = 0; \ ext{increasing} & ext{if } \Delta > 0, \end{array}
ight.$$

as function of γ within matching intervals. (See also Cosper & Misiurewicz.)

590

э

Additional features that the above maps have in common:

 Algebraic/symbolic properties of the matching interval in parameter space;

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

Additional features that the above maps have in common:

 Algebraic/symbolic properties of the matching interval in parameter space;

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Period doubling and a Feigenbaum/Thue-Morse limit;

Additional features that the above maps have in common:

- Algebraic/symbolic properties of the matching interval in parameter space;
- Period doubling and a Feigenbaum/Thue-Morse limit;
- Self-similarity in parameter space (cf. tuning in the Mandelbrot set).

Additional features that the above maps have in common:

- Algebraic/symbolic properties of the matching interval in parameter space;
- Period doubling and a Feigenbaum/Thue-Morse limit;
- Self-similarity in parameter space (cf. tuning in the Mandelbrot set).

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Question: Is there a meta-theorem (more precise than "renormalization") explaining these joint features of such interval maps?

Motivation: Find exact formulas for matching intervals J and indices $\Delta = \kappa_+ - \kappa_-$ (for slope s = 2, but it works for any $s \in \mathbb{N}$).

Motivation: Find exact formulas for matching intervals J and indices $\Delta = \kappa_+ - \kappa_-$ (for slope s = 2, but it works for any $s \in \mathbb{N}$).

Let \mathbb{Q}_{dyd} be the set of dyadic rationals in (0, 1].

Definition The pseudocenter of an interval $J \subset (0, 1)$ is the (unique) dyadic rational $\xi \in \mathbb{Q}_{dyd}$ with minimal denominator.

Motivation: Find exact formulas for matching intervals J and indices $\Delta = \kappa_+ - \kappa_-$ (for slope s = 2, but it works for any $s \in \mathbb{N}$).

Let \mathbb{Q}_{dyd} be the set of dyadic rationals in (0, 1].

Definition The pseudocenter of an interval $J \subset (0, 1)$ is the (unique) dyadic rational $\xi \in \mathbb{Q}_{dyd}$ with minimal denominator.

Definition

- For binary string u, let \check{u} be the bitwise negation of u.
- For ξ ∈ Q_{dyd} \ {1} and let w be the shortest even binary expansion of ξ and v be the shortest odd binary expansion of 1 − ξ.

Motivation: Find exact formulas for matching intervals J and indices $\Delta = \kappa_+ - \kappa_-$ (for slope s = 2, but it works for any $s \in \mathbb{N}$).

Let \mathbb{Q}_{dyd} be the set of dyadic rationals in (0, 1].

Definition The pseudocenter of an interval $J \subset (0, 1)$ is the (unique) dyadic rational $\xi \in \mathbb{Q}_{dyd}$ with minimal denominator.

Definition

- For binary string u, let \check{u} be the bitwise negation of u.
- For ξ ∈ Q_{dyd} \ {1} and let w be the shortest even binary expansion of ξ and v be the shortest odd binary expansion of 1 − ξ.
- Define the interval $I_{\xi} := (\xi_L, \xi_R)$ containing ξ where,
- $\blacktriangleright \ \xi_L := . \overline{\check{v}v}, \quad \xi_R := . \overline{w}.$
- Also define the "degenerate" interval $I_1 := (2/3, +\infty)$.

In short: $I_{\xi} := (\xi_L, \xi_R)$ with $\xi_L := .\overline{\breve{v}v}, \quad \xi_R := .\overline{w}.$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

In short: $I_{\xi} := (\xi_L, \xi_R)$ with $\xi_L := .\overline{v}\overline{v}$, $\xi_R := .\overline{w}$. If $\xi = 1/2$ then w = 10, v = 1 and $\xi_L = .\overline{01}$, $\xi_R = .\overline{10}$. (01) $w = u01 \Rightarrow \xi_L = .\overline{u001}\overline{u110}$; (11) $w = u11 \Rightarrow \xi_L = .\overline{u101}\overline{u010}$; (010) $w = u010 \Rightarrow \xi_L = .\overline{u00}\overline{u11}$; (110) $w = u110 \Rightarrow \xi_L = .\overline{u10}\overline{u01}$.

In short: $I_{\xi} := (\xi_L, \xi_R)$ with $\xi_L := .\overline{v}\overline{v}$, $\xi_R := .\overline{w}$. If $\xi = 1/2$ then w = 10, v = 1 and $\xi_I = .\overline{01}$, $\xi_R = .\overline{10}$. (01) $w = u01 \Rightarrow \xi_L = .\overline{u001}\underline{\check{u}110};$ (11) $w = u11 \Rightarrow \xi_I = .\overline{u101}\underline{u010};$ (010) $w = u010 \Rightarrow \xi_I = .\overline{u00}\check{u}11;$ (110) $w = u 110 \Rightarrow \xi_I = .\overline{u 10 \check{u} 01}.$ ξR ξL ξ $\frac{2}{3}$ $\frac{1}{3}$ = .10= .01 $\frac{1}{2}$ $\frac{1}{4}$ = .10 1 3 2 0 $= .\overline{01}$ = .001110 = .01 $\frac{7}{32}$ $\frac{2}{9}$ $\frac{7}{33}$ = .0011011001 = .001110 $= .\overline{001110}$ $\frac{1}{5}$ $\frac{3}{16}$ $\frac{2}{11}$ = .0010111010 = .0011 = .0011 $\frac{1}{7}$ $\frac{9}{64}$ 4334 .001001 = .001= .0010001110111016383 $\frac{2}{15}$ $\frac{1}{2}$ $= .\overline{0010}$ $\frac{1}{2}$ = .000111 = .0010

Theorem:

All matching intervals have the form *I_ξ*, where *ξ* ∈ Q_{dyd} are precisely the pseudo-centers of the components of [0, ²/₃] \ *E*.

▲ロト ▲圖ト ▲ヨト ▲ヨト ヨー のへで

Theorem:

- All matching intervals have the form *I_ξ*, where *ξ* ∈ Q_{dyd} are precisely the pseudo-centers of the components of [0, ²/₃] \ *E*.
- The matching index is

$$\Delta(\xi) = \frac{3}{2}(|w_0| - |w|_1),$$

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ うらつ

where $|w|_a$ is the number of symbols $a \in \{0, 1\}$ in w (the shortest even binary expansion of ξ).

Theorem:

- All matching intervals have the form *I_ξ*, where *ξ* ∈ Q_{dyd} are precisely the pseudo-centers of the components of [0, ²/₃] \ *E*.
- The matching index is

$$\Delta(\xi) = \frac{3}{2}(|w_0| - |w|_1),$$

where $|w|_a$ is the number of symbols $a \in \{0, 1\}$ in w (the shortest even binary expansion of ξ).

Example: All matching intervals in $(\frac{1}{6}, \frac{2}{3})$ have matching index $\Delta = 0$. Hence, entropy is constant on $[\frac{1}{6}, \frac{2}{3}]$.

Matching intervals for S_{α}

Let $d_1d_2d_3\cdots \in \{-1,0,1\}^{\mathbb{N}}$ be the itinerary of 1:

$$d_i = egin{cases} -1 & S^{i-1}_lpha(1) \in [-1,-rac{1}{2}); \ 0 & S^{i-1}_lpha(1) \in [-rac{1}{2},rac{1}{2}]; \ 1 & S^{i-1}_lpha(1) \in (-rac{1}{2},1]. \end{cases}$$

Note that the matching index $\kappa = \min\{n : d_n = -1\}, -1$.

Matching intervals for S_{α}

For $v = ua \in \{0,1\}^{\kappa}$, define

 $\psi_{\mathcal{S}}(ua) = ua\check{u}1 \qquad a \in \{0,1\}.$

Definition: A word $v = v_1 \dots v_{\kappa} \in \{0,1\}^{\kappa}$ is called primitive if

► $v_1 = v_2 = v_\kappa = 1;$

▶ $v_j \dots v_{\kappa} \leq x_1 \dots x_{\kappa-j+1}$ (shift-maximal in lexicogr. order);

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

• there is no word b such that $b \leq v \leq \psi_{S}(b)$.

Matching intervals for S_{α}

For $v = ua \in \{0,1\}^{\kappa}$, define

 $\psi_{S}(ua) = ua\check{u}1 \qquad a \in \{0,1\}.$

Definition: A word $v = v_1 \dots v_{\kappa} \in \{0,1\}^{\kappa}$ is called primitive if

► $v_1 = v_2 = v_\kappa = 1;$

▶ $v_j \dots v_{\kappa} \preceq x_1 \dots x_{\kappa-j+1}$ (shift-maximal in lexicogr. order);

• there is no word b such that $b \leq v \leq \psi_S(b)$.

Theorem: Let α have matching exponent κ and itinerary $d_1d_2d_3\ldots$ Then the matching interval of α is

$$J = \left(\frac{1+2^{-\kappa}}{\sum_{j=1}^{\kappa} d_j 2^{-j} + 2^{-\kappa}}, \frac{1+2^{-\kappa}}{\sum_{j=1}^{\kappa} d_j 2^{-j} - 2^{-\kappa}}\right)$$

if and only if $d_1 \dots d_{\kappa}$ is a primitive word.

Take a pseudo-center

$$\xi = \begin{cases} 0.w & (\text{even expansion}) \\ 1 - 0.v & (\text{odd expansion}). \end{cases}$$

The matching interval is $I_{\xi} = [\xi_L, \xi_R]$ for $\xi_L = .\overline{\check{v}v}$ and $\xi_R = .\overline{w}$.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Take a pseudo-center

$$\xi = \begin{cases} 0.w & (\text{even expansion}) \\ 1 - 0.v & (\text{odd expansion}). \end{cases}$$

The matching interval is $I_{\xi} = [\xi_L, \xi_R]$ for $\xi_L = .\overline{v}\overline{v}$ and $\xi_R = .\overline{w}$. Let

$$\psi_{\mathcal{S}}(\xi) := .\check{v}$$
 for $\xi = 1 - 0.v$

Note that ξ_L is also the right end-point of $I_{\psi(\xi)}$. We call this "period doubling". It repeats countably often, converging to $\xi_{\infty} := \lim_{n} \psi^n(\xi)$.

$$\xi_{\infty} \qquad \psi^{2}(\xi)_{L} = \psi^{3}(\xi)_{R} \quad \psi(\xi)_{L} = \psi^{2}(\xi)_{R} \qquad \xi_{L} = \psi(\xi)_{R} \qquad \xi \qquad \xi_{R}$$

$$I_{\psi^{2}(\xi)} \qquad I_{\psi(\xi)} \qquad I_{\xi}$$

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ うらつ

Lemma: The pseudo-center of the next period doubling can be obtained from the previous using the substitution:

$$\chi: \begin{array}{ccc} w \mapsto \check{v}v & \check{w} \mapsto v\check{v} \\ v \mapsto vw & \check{v} \mapsto \check{v}\check{w} \end{array}$$

Thus the limit ξ_{∞} has *s*-adic expansion

 $\xi_{\infty} = .\check{v}\check{w}v\check{v}vw\check{v}\check{w}vw\check{v}v\check{v}\check{w}\dots$

うして ふゆう ふほう ふほう うらつ

Lemma: The pseudo-center of the next period doubling can be obtained from the previous using the substitution:

$$\chi: \begin{array}{ccc} w \mapsto \check{v}v & \check{w} \mapsto v\check{v} \\ v \mapsto vw & \check{v} \mapsto \check{v}\check{w} \end{array}$$

Thus the limit ξ_{∞} has *s*-adic expansion

 $\xi_{\infty} = .\check{v}\check{w}v\check{v}vw\check{v}\check{w}vw\check{v}v\check{v}\check{w}\dots$

Remark: This substitution factorizes over the Thue-Morse substitution

$$\chi_{\text{Thue-Morse}}: egin{cases} 0 \mapsto 01; \ 1 \mapsto 10 \end{cases}$$

(via the change of symbols $\pi(v) = \pi(\check{w}) = 0$, $\pi(\check{v}) = \pi(w) = 1$), which factorizes over the period-doubling (Feigenbaum) substitution

$$\chi_{\text{Feigenbaum}}: \begin{cases} 0\mapsto 11;\\ 1\mapsto 10. \end{cases}$$

Matching intervals for Q_{γ} (tuning windows)

Pseudo-center $\xi = .w$ (even expansion) and $1 - \xi = .v$ (odd exp). The matching interval is $I_{\xi} = [\xi_L, \xi_R]$ for $\xi_L = .\overline{vv}$ and $\xi_R = .\overline{w}$. The tuning interval is $T_{\xi} = [\xi_T, \xi_R]$ for $\xi_T = .v\overline{w}$.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

Matching intervals for Q_{γ} (tuning windows)

Pseudo-center $\xi = .w$ (even expansion) and $1 - \xi = .v$ (odd exp). The matching interval is $I_{\xi} = [\xi_L, \xi_R]$ for $\xi_L = .\overline{vv}$ and $\xi_R = .\overline{w}$. The tuning interval is $T_{\xi} = [\xi_T, \xi_R]$ for $\xi_T = .v\overline{w}$.

Theorem: Let $K(\xi_T) = \{x : Q_{\gamma}(\gamma^+) \notin [0, \xi_T) \forall k\}$. Then $x \in K(\xi_T) \cap T_{\xi}$ if and only if $x = .\sigma_1 \sigma_2 \sigma_3 \sigma_4 ...$ for $\sigma_1 \in \{w, \check{v}\}, \sigma_j \in \{w, v, \check{w}, \check{v}\}$ describing a path in the diagram. \check{v}

・ロッ ・雪 ・ ・ ヨ ・ ・

Matching intervals for Q_{γ} (tuning windows)

Pseudo-center $\xi = .w$ (even expansion) and $1 - \xi = .v$ (odd exp). The matching interval is $I_{\xi} = [\xi_L, \xi_R]$ for $\xi_L = .\overline{vv}$ and $\xi_R = .\overline{w}$. The tuning interval is $T_{\xi} = [\xi_T, \xi_R]$ for $\xi_T = .v\overline{w}$.

Theorem: Let $K(\xi_T) = \{x : Q_{\gamma}(\gamma^+) \notin [0, \xi_T) \forall k\}$. Then $x \in K(\xi_T) \cap T_{\xi}$ if and only if $x = .\sigma_1 \sigma_2 \sigma_3 \sigma_4 ...$ for $\sigma_1 \in \{w, \check{v}\}, \sigma_j \in \{w, v, \check{w}, \check{v}\}$ describing a path in the diagram. If $\Delta(\xi) = 0$, all matching in T_{ξ} is neutral.

・ロッ ・ 一 ・ ・ ・ ・ ・ ・ ・ ・

Recall for $v = ua \in \{0,1\}^{\kappa}$, define

$$\psi(ua) = \psi_{S}(ua) = ua\check{u}1 \qquad a \in \{0,1\}.$$

We have again period doubling:

 $v_L = \psi(v)_R$ provided v is primitive.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Recall for $v = ua \in \{0,1\}^{\kappa}$, define

$$\psi(ua) = \psi_S(ua) = ua\check{u}1 \qquad a \in \{0,1\}.$$

We have again period doubling:

 $v_L = \psi(v)_R$ provided v is primitive.

Remark: Starting with v = 11, we get

 $\lim_{n \to \infty} \psi^n(\mathbf{v}) = \mathbf{v}_{\infty} = 110\ 1001\ 0110\ 0110\ 0110\ \dots$

which is the left-shift of the fixed point of the Thue-Morse substitution.

Matching intervals for S_{α} (tuning intervals)

The analogon of tuning interval for the family S_{α} doesn't seem to have been investigated.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

References

- C. Bonanno, C. Carminati, S. Isola, G. Tiozzo, *Dynamics of continued fractions and kneading sequences of unimodal maps,* Discrete Contin. Dyn. Syst. **33** (2013), no. 4, 1313–1332.
- V. Botella-Soler, J. A. Oteo, J. Ros, P. Glendinning, *Families of piecewise linear maps ...*, J. Phys. A: Math. Theor. **46** 125101
- C. Carminati, G. Tiozzo, *Tuning and plateaux for the entropy of* α -continued fractions, Nonl. **26** (2013), no. 4, 1049–1070.
 - D. Cosper, M. Misiurewicz, *Entropy locking*, Fund. Math. **241** (2018), 83–96.
- K. Dajani, C. Kalle, *Invariant measures, matching and the frequency* of 0 for signed binary expansions, Preprint 2017, arXiv:1703.06335.
- H. Nakada, *Metrical theory continued fraction transformations and their natural extensions*, Tokyo J. Math. **4** (1981), 399–426
- H. Nakada, R. Natsui, The non-monotonicity of the entropy of α-continued fraction transf., Nonl. 21 (2008), 1207–1225, here is a set of the set of the

To finish: the flowers on my balcony

Figure: Maiden pink – Dianthus Deltoides – Goździk kropkowany

Happy Birthday Michał !

・ロト ・ 日本 ・ 日本 ・ 日本