Matching for discontinuous interval maps; its consequences and self-similarity of parameter space.

Henk Bruin (University of Vienna)
joint with
Carlo Carminati (University of Pisa)
Stefano Marmi (Scuola Normale di Pisa)
Alessndro Profeti (University of Pisa)
explaining observations in a paper by
V. Botella-Soler, J. A. Oteo, J. Ros, and P. Glendinning

Leoben, March 2017

β-transformations

The β-transformation is defined as

$$
x \mapsto \beta x(\bmod 1)
$$

For $|\beta|>1, T_{\beta}$ has an acip μ.

β-transformations

The β-transformation is defined as

$$
x \mapsto \beta x(\bmod 1)
$$

For $|\beta|>1, T_{\beta}$ has an acip μ.

Figure: Density $\frac{d \mu}{d x}$ for $\beta=\frac{1}{2}(\sqrt{5}+1)$ and $\beta=\sqrt[3]{7}$.

The density is only locally constant, if there is a Markov partition

The map T_{β}

$$
T_{\beta}(x)= \begin{cases}T_{\beta}^{-}(x)=x+2 & \text { if } x \leq 0 \\ T_{\beta}^{+}(x)=\beta-2 x & \text { if } x \geq 0\end{cases}
$$

T_{β} preserves the $[\beta-\max \{2, \beta\}, \max \{2, \beta\}]$ and some iterate is uniformly expanding. Therefore T_{β} admits an acip.

The map T_{β}

$$
T_{\beta}(x)= \begin{cases}T_{\beta}^{-}(x)=x+2 & \text { if } x \leq 0 \\ T_{\beta}^{+}(x)=\beta-2 x & \text { if } x \geq 0\end{cases}
$$

T_{β} preserves the $[\beta-\max \{2, \beta\}, \max \{2, \beta\}]$ and some iterate is uniformly expanding. Therefore T_{β} admits an acip.

Figure: Invariant density for the T_{β} : left $\beta=\frac{1}{2}(\sqrt{5}+1)$ right: $\beta=\sqrt[3]{7}$.

Not Markov but Matching

For the family T_{β}, there is no Markov partition in general, but something called matching takes can occur:

Definition: There is matching if there are iterates $\kappa_{ \pm}>0$ such that

$$
T^{\kappa_{-}}\left(0^{-}\right)=T^{\kappa_{+}}\left(0^{+}\right) \text {and derivatives } D T^{\kappa_{-}}\left(0^{-}\right)=D T^{\kappa_{+}}\left(0^{+}\right)
$$

Not Markov but Matching

For the family T_{β}, there is no Markov partition in general, but something called matching takes can occur:

Definition: There is matching if there are iterates $\kappa_{ \pm}>0$ such that

$$
T^{\kappa_{-}}\left(0^{-}\right)=T^{\kappa_{+}}\left(0^{+}\right) \text {and derivatives } D T^{\kappa_{-}}\left(0^{-}\right)=D T^{\kappa_{+}}\left(0^{+}\right)
$$

The pre-matching partition plays the role of Markov partition:

$$
\left.\left.\left\{T^{j}\left(0^{-}\right)\right\}_{j=0}^{\kappa_{-}-1}\right\} \cup\left\{T^{j}\left(0^{+}\right)\right\}_{j=0}^{\kappa_{+}-1}\right\}
$$

Not Markov but Matching

For the family T_{β}, there is no Markov partition in general, but something called matching takes can occur:

Definition: There is matching if there are iterates $\kappa_{ \pm}>0$ such that

$$
T^{\kappa_{-}}\left(0^{-}\right)=T^{\kappa_{+}}\left(0^{+}\right) \text {and derivatives } D T^{\kappa_{-}}\left(0^{-}\right)=D T^{\kappa_{+}}\left(0^{+}\right)
$$

The pre-matching partition plays the role of Markov partition:

$$
\left.\left.\left\{T^{j}\left(0^{-}\right)\right\}_{j=0}^{\kappa_{-}-1}\right\} \cup\left\{T^{j}\left(0^{+}\right)\right\}_{j=0}^{\kappa_{+}-1}\right\}
$$

Theorem: If T has matching, then $\rho=\frac{d \mu}{d x}$ is constant on each element of the pre-matching partition.

Monotonicity of entropy

Numerical illustration for the metric entropy:

Figure: Entropy $h_{\mu}\left(T_{\beta}\right)$ for $\beta \in[4.6,6]$ (I) and $\beta \in[5.29,5.33]$ (r).

Monotonicity of entropy

Definition: The matching index is $\Delta=\kappa_{+}-\kappa_{-}$.
Theorem: Topological and metric entropy are

$$
h_{\mu}\left(T_{\beta}\right) \text { and } h_{\text {top }}\left(T_{\beta}\right) \text { are }\left\{\begin{aligned}
\text { increasing } & \text { if } \Delta<0 \\
\text { constant } & \text { if } \Delta=0 \\
\text { decreasing } & \text { if } \Delta>0
\end{aligned}\right.
$$

as function of β within matching intervals.

The α-continued fraction map T_{α}.

A generalization of the Gauß map stems from Nakada (and Natsui).

The α-continued fraction map T_{α}.

A generalization of the Gauß map stems from Nakada (and Natsui). branches: $\left|\frac{1}{x}\right|+n$, $n \in \mathbb{Z}$, on $[-1,1]$

The α-continued fraction map T_{α}.

A generalization of the Gauß map stems from Nakada (and Natsui).
branches: $\left|\frac{1}{x}\right|+n$, $n \in \mathbb{Z}$, on $[-1,1]$

The α-continued fraction map T_{α}.

A generalization of the Gauß map stems from Nakada (and Natsui).
branches: $\left|\frac{1}{x}\right|+n$, $n \in \mathbb{Z}$, on $[-1,1]$

The α-continued fraction map T_{α}.

A generalization of the Gauß map stems from Nakada (and Natsui).
branches: $\left|\frac{1}{x}\right|+n$, $n \in \mathbb{Z}$, on $[-1,1]$

Figure: $\quad T_{\alpha}:[\alpha-1, \alpha] \rightarrow[\alpha-1, \alpha], x \mapsto\left|\frac{1}{x}\right|-\left\lfloor\frac{1}{x}+1-\alpha\right\rfloor$.

All of them have invariant densities (infinite if $\alpha=0$).

The α-continued fraction map T_{α}.

A generalization of the Gauß map stems from Nakada (and Natsui).
branches: $\left|\frac{1}{x}\right|+n$, $n \in \mathbb{Z}$, on $[-1,1]$

Figure: $\quad T_{\alpha}:[\alpha-1, \alpha] \rightarrow[\alpha-1, \alpha], x \mapsto\left|\frac{1}{x}\right|-\left\lfloor\frac{1}{x}+1-\alpha\right\rfloor$.

All of them have invariant densities (infinite if $\alpha=0$). Matching of the orbits of α and $\alpha-1$ occurs for a.e. $\alpha \in[0,1]$.

α-continued fractions and the Mandelbrot set

Figure: From a paper by Bonanno, Carminati, Isola and Tiozzo: The non-matching set and the real antenna of Mandelbrot set

Change of coordinates

For fixed slope $s>1$, take:

$$
Q_{\gamma}(x)= \begin{cases}x+1, & x \leq \gamma \\ 1+s(1-x), & x>\gamma\end{cases}
$$

For $s=2, Q_{\gamma}$ is conjugate to T_{β} above via

$$
H \circ Q_{\gamma}=T_{\beta} \circ H \quad \text { with } H(x)=2(x-\gamma), \beta:=2(1+s)(1-\gamma)
$$

Change of coordinates

For fixed slope $s>1$, take:

$$
Q_{\gamma}(x)= \begin{cases}x+1, & x \leq \gamma \\ 1+s(1-x), & x>\gamma\end{cases}
$$

For $s=2, Q_{\gamma}$ is conjugate to T_{β} above via

$H \circ Q_{\gamma}=T_{\beta} \circ H \quad$ with $H(x)=2(x-\gamma), \beta:=2(1+s)(1-\gamma)$.
Advantages of Q_{γ} :

- $x=1$ is fixed for all $s \in \mathbb{R}$ and $\gamma<1$;
- For integer $s \geq 2$, every point $p s^{-m}, p, m \in \mathbb{N}$, eventually maps to 1 ;
- Therefore matching occurs whenever $\gamma=p s^{-m}$;
- Matching occurs on an open dense set!

Matching is Lebesgue typical

Theorem: Q_{γ} has matching for Lebesgue-a.e. γ, but the set \mathcal{E} of non-matching parameters has Haussdorf dimension 1.

Matching is Lebesgue typical

Theorem: Q_{γ} has matching for Lebesgue-a.e. γ, but the set \mathcal{E} of non-matching parameters has Haussdorf dimension 1.

Let $g(x):=s(1-x) \bmod 1$ and $R:(0,1) \rightarrow(0,1)$ be the first return of $Q_{\gamma}^{k}(x)$ to $[0,1)$.

Lemma:

$$
R(x)= \begin{cases}g(x) & \text { if } x \in(0, \gamma) \\ g^{2}(x) & \text { if } x \in(\gamma, 1)\end{cases}
$$

On the proof of "Matching is Lebesgue typical"

Lemma: For fixed $\gamma \in[0,1]$, the following conditions are equivalent:
(i) $g^{k}(\gamma)<\gamma$ for some $k \in \mathbb{N}$;
(ii) matching holds for γ.

In other words, the bifurcation set is

$$
\mathcal{E}=\left\{\gamma \in[0,1]: g^{k}(\gamma) \geq \gamma \forall k \in \mathbb{N}\right\} .
$$

On the proof of "Matching is Lebesgue typical"

Proof of the Theorem:

- Lebesgue measure is preserved by g, so the Ergodic Theorem implies that $\inf \left\{g^{k}(\gamma): k \geq 1\right\}=0$ for a.e. γ. The previous lemma gives that each such $\gamma \notin \mathcal{E}$.

On the proof of "Matching is Lebesgue typical"

Proof of the Theorem:

- Lebesgue measure is preserved by g, so the Ergodic Theorem implies that $\inf \left\{g^{k}(\gamma): k \geq 1\right\}=0$ for a.e. γ. The previous lemma gives that each such $\gamma \notin \mathcal{E}$.
- Define $K(t):=\left\{x \in[0,1]: g^{k}(x) \geq t \forall k \geq 1\right\}$.

On the proof of "Matching is Lebesgue typical"

Proof of the Theorem:

- Lebesgue measure is preserved by g, so the Ergodic Theorem implies that $\inf \left\{g^{k}(\gamma): k \geq 1\right\}=0$ for a.e. γ. The previous lemma gives that each such $\gamma \notin \mathcal{E}$.
- Define $K(t):=\left\{x \in[0,1]: g^{k}(x) \geq t \forall k \geq 1\right\}$.
- The Hausdorf dimension $\operatorname{dim}_{H}(K(t)) \rightarrow 1$ and $\operatorname{dim}_{H}(K(t) \cap[0,1]) \rightarrow 1$ as $t \rightarrow 0$.

On the proof of "Matching is Lebesgue typical"

Proof of the Theorem:

- Lebesgue measure is preserved by g, so the Ergodic Theorem implies that $\inf \left\{g^{k}(\gamma): k \geq 1\right\}=0$ for a.e. γ. The previous lemma gives that each such $\gamma \notin \mathcal{E}$.
- Define $K(t):=\left\{x \in[0,1]: g^{k}(x) \geq t \forall k \geq 1\right\}$.
- The Hausdorf dimension $\operatorname{dim}_{H}(K(t)) \rightarrow 1$ and $\operatorname{dim}_{H}(K(t) \cap[0,1]) \rightarrow 1$ as $t \rightarrow 0$.
- Combine this with $\mathcal{E} \cap[0, t] \supset K(t)$.

Monotonicity

Recall the Monotonicity Theorem stated for Q_{γ} :
Topological and metric entropy are

$$
h_{\mu}\left(Q_{\gamma}\right) \text { and } h_{\text {top }}\left(Q_{\gamma}\right) \text { are }\left\{\begin{aligned}
\text { decreasing } & \text { if } \Delta<0 \\
\text { constant } & \text { if } \Delta=0 \\
\text { increasing } & \text { if } \Delta>0
\end{aligned}\right.
$$

as function of γ within matching intervals.

Monotonicity

Recall the Monotonicity Theorem stated for Q_{γ} :
Topological and metric entropy are

$$
h_{\mu}\left(Q_{\gamma}\right) \text { and } h_{\text {top }}\left(Q_{\gamma}\right) \text { are }\left\{\begin{aligned}
\text { decreasing } & \text { if } \Delta<0 \\
\text { constant } & \text { if } \Delta=0 \\
\text { increasing } & \text { if } \Delta>0
\end{aligned}\right.
$$

as function of γ within matching intervals.
The proof is based on the structure of the first return map R to a neighbourhood J of $z:=Q_{\gamma}^{\kappa_{-}}\left(\gamma_{-}\right)=Q_{\gamma}^{\kappa_{+}}\left(\gamma_{+}\right)$which is nice,

Monotonicity

Recall the Monotonicity Theorem stated for Q_{γ} :
Topological and metric entropy are

$$
h_{\mu}\left(Q_{\gamma}\right) \text { and } h_{\text {top }}\left(Q_{\gamma}\right) \text { are }\left\{\begin{aligned}
\text { decreasing } & \text { if } \Delta<0 \\
\text { constant } & \text { if } \Delta=0 \\
\text { increasing } & \text { if } \Delta>0
\end{aligned}\right.
$$

as function of γ within matching intervals.
The proof is based on the structure of the first return map R to a neighbourhood J of $z:=Q_{\gamma}^{\kappa_{-}}\left(\gamma_{-}\right)=Q_{\gamma}^{\kappa_{+}}\left(\gamma_{+}\right)$which is nice,, i.e.:

$$
\operatorname{orb}(\partial J) \cap J^{\circ}=\emptyset .
$$

Monotonicity

Lemma: All branches of R are monotone onto, also the branches that contain a preimage $y \in Q_{\gamma}^{-N}(\gamma)$.

$$
\begin{aligned}
& R=Q_{\gamma}^{\tau} \text { for first } \\
& \text { return time } \tau:[0,1) \rightarrow \mathbb{N} \\
& \qquad \begin{array}{l}
\tau\left(A_{-}\right)=N+\kappa_{-} \\
\tau\left(A_{+}\right)=N+\kappa_{+}
\end{array}
\end{aligned}
$$

Corollary: R preserves Lebesgue measure m.

Monotonicity

Proof-sketch of the monotonicity theorem:

- $\int_{J} \tau d m h_{m}(R)$ increases by an amount proportional to $\eta:=\Delta \times$ increased proportion of $\left|A_{+}\right| /\left|A_{-}\right|$.
- Abramov's Formula: $h_{\mu}\left(Q_{\gamma}\right)=\frac{1}{\int_{J} \tau d m} h_{m}(R)$.
- Therefore $h_{\mu}\left(Q_{\gamma}\right)$ decreases due to increase of η.

Monotonicity

Proof-sketch of the monotonicity theorem:

- $\int_{J} \tau d m h_{m}(R)$ increases by an amount proportional to $\eta:=\Delta \times$ increased proportion of $\left|A_{+}\right| /\left|A_{-}\right|$.
- Abramov's Formula: $h_{\mu}\left(Q_{\gamma}\right)=\frac{1}{\int_{\jmath} \tau d m} h_{m}(R)$.
- Therefore $h_{\mu}\left(Q_{\gamma}\right)$ decreases due to increase of η.
- Topological entropy is the exponential growth-rate of number of periodic point.
- As γ moves within a matching interval, periodic points in J don't change,

Monotonicity

Proof-sketch of the monotonicity theorem:

- $\int_{J} \tau d m h_{m}(R)$ increases by an amount proportional to $\eta:=\Delta \times$ increased proportion of $\left|A_{+}\right| /\left|A_{-}\right|$.
- Abramov's Formula: $h_{\mu}\left(Q_{\gamma}\right)=\frac{1}{\int_{\jmath} \tau d m} h_{m}(R)$.
- Therefore $h_{\mu}\left(Q_{\gamma}\right)$ decreases due to increase of η.
- Topological entropy is the exponential growth-rate of number of periodic point.
- As γ moves within a matching interval, periodic points in J don't change,
- but their period increases by Δ as A_{+}absorbes them (when they previously belonged to A_{-}).

Monotonicity

Proof-sketch of the monotonicity theorem:

- $\int_{J} \tau d m h_{m}(R)$ increases by an amount proportional to $\eta:=\Delta \times$ increased proportion of $\left|A_{+}\right| /\left|A_{-}\right|$.
- Abramov's Formula: $h_{\mu}\left(Q_{\gamma}\right)=\frac{1}{\int_{\jmath} \tau d m} h_{m}(R)$.
- Therefore $h_{\mu}\left(Q_{\gamma}\right)$ decreases due to increase of η.
- Topological entropy is the exponential growth-rate of number of periodic point.
- As γ moves within a matching interval, periodic points in J don't change,
- but their period increases by Δ as A_{+}absorbes them (when they previously belonged to A_{-}).
- Hence the topological entropy decreases accordingly.

Pseudo-centers

Motivation: Find exact formulas for matching intervals J and their matching indices Δ for slope $s=2$ (also works for $2 \leq s \in \mathbb{N}$).

Pseudo-centers

Motivation: Find exact formulas for matching intervals J and their matching indices Δ for slope $s=2$ (also works for $2 \leq s \in \mathbb{N}$).

Let $\mathbb{Q}_{\text {dyd }}$ be the set of dyadic rationals in $(0,1]$.
Definition The pseudocenter of an interval $J \subset(0,1)$ is the (unique) dyadic rational $\xi \in \mathbb{Q}_{\text {dyd }}$ with minimal denominator.

Pseudo-centers

Motivation: Find exact formulas for matching intervals J and their matching indices Δ for slope $s=2$ (also works for $2 \leq s \in \mathbb{N}$).

Let $\mathbb{Q}_{\text {dyd }}$ be the set of dyadic rationals in $(0,1]$.
Definition The pseudocenter of an interval $J \subset(0,1)$ is the (unique) dyadic rational $\xi \in \mathbb{Q}_{\text {dyd }}$ with minimal denominator.

Definition

- For binary string u, let \check{u} be the bitwise negation of u.
- For $\xi \in \mathbb{Q}_{\text {dyd }} \backslash\{1\}$ and let w be the shortest even binary expansion of ξ and v be the shortest odd binary expansion of $1-\xi$.

Pseudo-centers

Motivation: Find exact formulas for matching intervals J and their matching indices Δ for slope $s=2$ (also works for $2 \leq s \in \mathbb{N}$).

Let $\mathbb{Q}_{\text {dyd }}$ be the set of dyadic rationals in $(0,1]$.
Definition The pseudocenter of an interval $J \subset(0,1)$ is the (unique) dyadic rational $\xi \in \mathbb{Q}_{\text {dyd }}$ with minimal denominator.

Definition

- For binary string u, let \check{u} be the bitwise negation of u.
- For $\xi \in \mathbb{Q}_{\text {dyd }} \backslash\{1\}$ and let w be the shortest even binary expansion of ξ and v be the shortest odd binary expansion of $1-\xi$.
- Define the interval $I_{\xi}:=\left(\xi_{L}, \xi_{R}\right)$ containing ξ where,
- $\xi_{L}:=. \bar{v} v, \quad \xi_{R}:=. \bar{w}$.
- Also define the "degenerate" interval $I_{1}:=(2 / 3,+\infty)$.

Pseudo-centers

In short: $I_{\xi}:=\left(\xi_{L}, \xi_{R}\right)$ with $\xi_{L}:=. \bar{v} v, \quad \xi_{R}:=. \bar{w}$.

Pseudo-centers

In short: $I_{\xi}:=\left(\xi_{L}, \xi_{R}\right)$ with $\xi_{L}:=\bar{v} v, \quad \xi_{R}:=. \bar{w}$.
If $\xi=1 / 2$ then $w=10, v=1$ and $\xi_{L}=. \overline{01}, \xi_{R}=. \overline{10}$.
(01) $w=u 01 \Rightarrow \xi_{L}=. \overline{u 001 u ̌ 110}$;
(11) $w=u 11 \Rightarrow \xi_{L}=. \overline{u 101 u ̌ 010 ;}$
(010) $w=u 010 \Rightarrow \xi_{L}=. \overline{u 00 u ̌ 11 ; ~}$
(110) $w=u 110 \Rightarrow \xi_{L}=. \overline{u 10 u ̌ 01}$.

Pseudo-centers

In short: $I_{\xi}:=\left(\xi_{L}, \xi_{R}\right)$ with $\xi_{L}:=\bar{v} v, \quad \xi_{R}:=. \bar{w}$.
If $\xi=1 / 2$ then $w=10, v=1$ and $\xi_{L}=. \overline{01}, \xi_{R}=. \overline{10}$.
(01) $w=u 01 \Rightarrow \xi_{L}=. \overline{u 001 u ̌ 110 ;}$;
(11) $w=u 11 \Rightarrow \xi_{L}=. \overline{u 101 u ̌ 010 ;}$
(010) $w=u 010 \Rightarrow \xi_{L}=. \overline{u 00 u ̌ 11 ;} ;$
(110) $w=u 110 \Rightarrow \xi_{L}=. \overline{u 10 u ̌ 01}$.

ξ		ξ_{R}	ξ	
$\frac{1}{2}$	$=.10$	$\frac{2}{3}=. \overline{10}$		$=. \overline{01}$
$\frac{1}{4}$	$=.01$	$\frac{1}{3}=. \overline{01}$		$=. \overline{001110}$
$\frac{7}{32}$	$=.001110$	$\frac{2}{9}=. \overline{001110}$	3	$=. \overline{0011011001}$
$\frac{3}{16}$	$=.0011$	$\frac{1}{5}=. \overline{0011}$	$\frac{2}{11}$	$=. \overline{0010111010}$
$\frac{9}{64}$	$=.001001$	$\frac{1}{7}=. \overline{001}$	$\frac{4334}{16383}$	$=. \overline{00100011101110}$
$\frac{1}{8}$	$=.0010$	$\frac{2}{15}=. \overline{0010}$		$=. \overline{000111}$

Pseudo-centers

Theorem:

- All matching intervals have the form I_{ξ}, where $\xi \in \mathbb{Q}_{\text {dyd }}$ are precisely the pseudo-centers of the components of $\left[0, \frac{2}{3}\right] \backslash \mathcal{E}$.
- The matching index is

$$
\Delta(\xi)=\frac{3}{2}\left(|w|_{0}-|w|_{1}\right)
$$

where $|w|_{a}$ is the number of symbols a in w (the shortest even binary expansion of ξ).

Pseudo-centers

Theorem:

- All matching intervals have the form I_{ξ}, where $\xi \in \mathbb{Q}_{\text {dyd }}$ are precisely the pseudo-centers of the components of $\left[0, \frac{2}{3}\right] \backslash \mathcal{E}$.
- The matching index is

$$
\Delta(\xi)=\frac{3}{2}\left(|w|_{0}-|w|_{1}\right)
$$

where $|w|_{a}$ is the number of symbols a in w (the shortest even binary expansion of ξ).

Proposition: If $g^{k}(\gamma) \geq \frac{1}{6}$, then $\left|w_{0}\right|=|w|_{1}$. In particular, all matching intervals in $\left(\frac{1}{6}, \frac{2}{3}\right)$ have matching index $\Delta=0$.

Pseudo-centers

Figure: Entropies $h_{\text {top }}\left(T_{\beta}\right)$ and $h_{\mu}\left(T_{\beta}\right)$ for $\beta \in[0,6.5]$.

Remark: This proposition explains constant entropy on all matching intervals in $\left(\frac{1}{6}, \frac{2}{3}\right)$. A no devil's staircase argument would give:

$$
h_{\mu}\left(Q_{\gamma}\right)=\log \left(\frac{1+\sqrt{5}}{2}\right) \quad \text { and } h_{\text {top }}\left(Q_{\gamma}\right)=\frac{2}{3} \log 2
$$

for all $\gamma \in\left[\frac{1}{6}, \frac{2}{3}\right]$.

Pseudo-centers (period doubling)

Pseudo-center $\xi=. w$ (even expansion) and $1-\xi=. v$ (odd exp). The matching interval is $I_{\xi}=\left[\xi_{L}, \xi_{R}\right]$ for $\xi_{L}=. \bar{v} v$ and $\xi_{R}=. \bar{w}$.

Pseudo-centers (period doubling)

Pseudo-center $\xi=. w$ (even expansion) and $1-\xi=. v$ (odd exp). The matching interval is $I_{\xi}=\left[\xi_{L}, \xi_{R}\right]$ for $\xi_{L}=. \bar{v} v$ and $\xi_{R}=. \bar{w}$. But ξ_{L} is also the right end-point of $I_{\xi_{1}}$ for $\xi_{1}=. \check{v} v$. We call this "period doubling". It repeats countably often, converging to ξ_{∞}.

$$
\underbrace{\xi_{\infty} \quad\left(\xi_{2}\right)_{L}=\left(\xi_{3}\right)_{R} \quad\left(\xi_{1}\right)_{L}=\left(\xi_{2}\right)_{R} \quad \xi_{L}=\left(\xi_{1}\right)_{R}}_{\xi_{\xi_{2}}} \quad \underset{\xi_{1}}{\xi} \quad \boldsymbol{I}_{\xi}
$$

Pseudo-centers (period doubling)

Pseudo-center $\xi=. w$ (even expansion) and $1-\xi=. v$ (odd exp).
The matching interval is $I_{\xi}=\left[\xi_{L}, \xi_{R}\right]$ for $\xi_{L}=. \bar{v} v$ and $\xi_{R}=. \bar{w}$. But ξ_{L} is also the right end-point of $I_{\xi_{1}}$ for $\xi_{1}=. \check{v} v$. We call this "period doubling". It repeats countably often, converging to ξ_{∞}.

$$
\underbrace{\xi_{\infty} \quad\left(\xi_{2}\right)_{L}=\left(\xi_{3}\right)_{R} \quad\left(\xi_{1}\right)_{L}=\left(\xi_{2}\right)_{R} \quad \xi_{L}=\left(\xi_{1}\right)_{R}}_{\xi_{\xi_{2}}} \quad \underset{\xi_{1}}{\xi} \quad \boldsymbol{I}_{\xi}
$$

Lemma: The pseudo-center of the next period doubling can be obtained from the previous using the substitution:

$$
\chi: \begin{array}{ll}
w \mapsto \check{v} v & \check{w} \mapsto v \check{v} \\
v \mapsto v w & \check{v} \mapsto \check{v} \check{w}
\end{array} .
$$

Thus the limit ξ_{∞} has s-adic expansion

$$
\xi_{\infty}=. \check{v} \check{w} v \check{v} v w \check{v} \check{w} v w \check{v} v \check{v} \check{w} \ldots
$$

Pseudo-centers (tuning windows)

Pseudo-center $\xi=. w$ (even expansion) and $1-\xi=. v$ (odd exp). The matching interval is $I_{\xi}=\left[\xi_{L}, \xi_{R}\right]$ for $\xi_{L}=. \overline{\bar{v} v}$ and $\xi_{R}=. \bar{w}$. The tuning interval is $T_{\xi}=\left[\xi_{T}, \xi_{R}\right]$ for $\xi_{T}=. \check{v} \overline{\mathscr{W}}$.
ξ_{T}

Pseudo-centers (tuning windows)

Pseudo-center $\xi=. w$ (even expansion) and $1-\xi=. v$ (odd exp). The matching interval is $I_{\xi}=\left[\xi_{L}, \xi_{R}\right]$ for $\xi_{L}=. \overline{\bar{v} v}$ and $\xi_{R}=. \bar{w}$. The tuning interval is $T_{\xi}=\left[\xi_{T}, \xi_{R}\right]$ for $\xi_{T}=. \check{v} \overline{\mathscr{W}}$.

Theorem: Let $K\left(\xi_{T}\right)=\left\{x: g^{k}(x) \geq \xi_{T} \forall k\right\}$. Then $x \in K\left(\xi_{T}\right) \cap T_{\xi}$ if and only if

$$
x=. \sigma_{1} \sigma_{2} \sigma_{3} \sigma_{4} \cdots
$$

for $\sigma_{1} \in\{w, \check{v}\}, \sigma_{j} \in\{w, v, \check{w}, \check{v}\}$ describing a path in the diagram.

Pseudo-centers (tuning windows)

Pseudo-center $\xi=. w$ (even expansion) and $1-\xi=. v$ (odd exp). The matching interval is $I_{\xi}=\left[\xi_{L}, \xi_{R}\right]$ for $\xi_{L}=. \overline{\bar{v} v}$ and $\xi_{R}=. \bar{w}$. The tuning interval is $T_{\xi}=\left[\xi_{T}, \xi_{R}\right]$ for $\xi_{T}=. \check{v} \overline{\mathscr{W}}$.

Theorem: Let $K\left(\xi_{T}\right)=\left\{x: g^{k}(x) \geq \xi_{T} \forall k\right\}$. Then $x \in K\left(\xi_{T}\right) \cap T_{\xi}$ if and only if

$$
x=. \sigma_{1} \sigma_{2} \sigma_{3} \sigma_{4} \cdots
$$

for $\sigma_{1} \in\{w, \check{v}\}, \sigma_{j} \in\{w, v, \check{w}, \check{v}\}$ describing a path in the diagram.
If $\Delta(\xi)=0$, all matching in T_{ξ} is neutral.

Shape of the entropy function

Question: We know that $\gamma \mapsto h\left(\mu_{\gamma}\right)$ is Hölder. Is $\gamma \mapsto h_{\text {top }}\left(Q_{\gamma}\right)$ Hölder?

Shape of the entropy function

Question: We know that $\gamma \mapsto h\left(\mu_{\gamma}\right)$ is Hölder. Is $\gamma \mapsto h_{\text {top }}\left(Q_{\gamma}\right)$ Hölder?

Conjecture: The neutral tuning windows are exactly the plateaus of (topological and metric) entropy.

Shape of the entropy function

Question: We know that $\gamma \mapsto h\left(\mu_{\gamma}\right)$ is Hölder. Is $\gamma \mapsto h_{\text {top }}\left(Q_{\gamma}\right)$ Hölder?

Conjecture: The neutral tuning windows are exactly the plateaus of (topological and metric) entropy.

Conjecture: The shape of the entire entropy function (i.e., pattern of increase/decrease) is repeated in every tuning window T_{ξ} with $\Delta(\xi)>0$, and reversed in every tuning window T_{ξ} with $\Delta(\xi)<0$.

Shape of the entropy function

Question: We know that $\gamma \mapsto h\left(\mu_{\gamma}\right)$ is Hölder. Is $\gamma \mapsto h_{\text {top }}\left(Q_{\gamma}\right)$ Hölder?

Conjecture: The neutral tuning windows are exactly the plateaus of (topological and metric) entropy.

Conjecture: The shape of the entire entropy function (i.e., pattern of increase/decrease) is repeated in every tuning window T_{ξ} with $\Delta(\xi)>0$, and reversed in every tuning window T_{ξ} with $\Delta(\xi)<0$.

End of the Show

References

C. Bonanno, C. Carminati, S. Isola, G. Tiozzo, Dynamics of continued fractions and kneading sequences of unimodal maps, Discrete Contin. Dyn. Syst. 33 (2013), no. 4, 1313-1332.
R V. Botella-Soler, J. A. Oteo, J. Ros, P. Glendinning, Families of piecewise linear maps with constant Lyapunov exponents, J. Phys. A: Math. Theor. 46125101
(R. Carminati, G. Tiozzo, Tuning and plateaux for the entropy of α-continued fractions, Nonlinearity 26 (2013), no. 4, 1049-1070.
囲 H. Nakada, Metrical theory for a class of continued fraction transformations and their natural extensions, Tokyo J. Math. 4 (1981), 399-426

围 H. Nakada, R. Natsui, The non-monotonicity of the entropy of α-continued fraction transformations, Nonlinearity, 21 (2008), 1207-1225.

