Matching for discontinuous interval maps; its consequences and self-similarity of parameter space.

Henk Bruin (University of Vienna)

joint with

Carlo Carminati (University of Pisa) Stefano Marmi (Scuola Normale di Pisa) Alessndro Profeti (University of Pisa) explaining observations in a paper by

V. Botella-Soler, J. A. Oteo, J. Ros, and P. Glendinning

Leoben, March 2017

β -transformations

The $\beta\text{-transformation}$ is defined as

 $x \mapsto \beta x \pmod{1}$

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

For $|\beta| > 1$, T_{β} has an acip μ .

β -transformations

The $\beta\text{-transformation}$ is defined as

 $x \mapsto \beta x \pmod{1}$

For $|\beta| > 1$, T_{β} has an acip μ .

Figure: Density $\frac{d\mu}{dx}$ for $\beta = \frac{1}{2}(\sqrt{5}+1)$ and $\beta = \sqrt[3]{7}$.

The density is only locally constant, if there is a Markov partition

The map T_{β}

 T_{β} preserves the $[\beta - \max\{2, \beta\}, \max\{2, \beta\}]$ and some iterate is uniformly expanding. Therefore T_{β} admits an acip.

The map T_{β}

 T_{β} preserves the $[\beta - \max\{2, \beta\}, \max\{2, \beta\}]$ and some iterate is uniformly expanding. Therefore T_{β} admits an acip.

Figure: Invariant density for the T_{β} : left $\beta = \frac{1}{2}(\sqrt{5}+1)$ right: $\beta = \sqrt[3]{7}$.

Not Markov but Matching

For the family T_{β} , there is no Markov partition in general, but something called matching takes can occur:

Definition: There is matching if there are iterates $\kappa_{\pm} > 0$ such that

$$T^{\kappa_-}(0^-) = T^{\kappa_+}(0^+)$$
 and derivatives $DT^{\kappa_-}(0^-) = DT^{\kappa_+}(0^+)$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Not Markov but Matching

For the family T_{β} , there is no Markov partition in general, but something called matching takes can occur:

Definition: There is matching if there are iterates $\kappa_{\pm} > 0$ such that

$$T^{\kappa_-}(0^-)=T^{\kappa_+}(0^+)$$
 and derivatives $DT^{\kappa_-}(0^-)=DT^{\kappa_+}(0^+)$

The pre-matching partition plays the role of Markov partition:

$$\{T^{j}(0^{-})\}_{j=0}^{\kappa_{-}-1}\} \cup \{T^{j}(0^{+})\}_{j=0}^{\kappa_{+}-1}\};$$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Not Markov but Matching

For the family T_{β} , there is no Markov partition in general, but something called matching takes can occur:

Definition: There is matching if there are iterates $\kappa_{\pm} > 0$ such that

$$T^{\kappa_-}(0^-)=T^{\kappa_+}(0^+)$$
 and derivatives $DT^{\kappa_-}(0^-)=DT^{\kappa_+}(0^+)$

The pre-matching partition plays the role of Markov partition:

$$\{T^{j}(0^{-})\}_{j=0}^{\kappa_{-}-1}\} \cup \{T^{j}(0^{+})\}_{j=0}^{\kappa_{+}-1}\};$$

Theorem: If T has matching, then $\rho = \frac{d\mu}{dx}$ is constant on each element of the pre-matching partition.

Monotonicity of entropy

Numerical illustration for the metric entropy:

Figure: Entropy $h_{\mu}(T_{\beta})$ for $\beta \in [4.6, 6]$ (I) and $\beta \in [5.29, 5.33]$ (r).

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Monotonicity of entropy

Definition: The matching index is $\Delta = \kappa_{+} - \kappa_{-}$.

Theorem: Topological and metric entropy are

$$h_{\mu}(T_{\beta}) ext{ and } h_{top}(T_{\beta}) ext{ are } \left\{ egin{array}{ll} ext{increasing} & ext{if } \Delta < 0; \\ ext{constant} & ext{if } \Delta = 0; \\ ext{decreasing} & ext{if } \Delta > 0, \end{array}
ight.$$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

as function of β within matching intervals.

A generalization of the Gauß map stems from Nakada (and Natsui).

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

A generalization of the Gauß map stems from Nakada (and Natsui).

A generalization of the Gauß map stems from Nakada (and Natsui).

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

A generalization of the Gauß map stems from Nakada (and Natsui).

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

A generalization of the Gauß map stems from Nakada (and Natsui).

Figure: $T_{\alpha}: [\alpha - 1, \alpha] \to [\alpha - 1, \alpha], x \mapsto |\frac{1}{x}| - \lfloor \frac{1}{x} + 1 - \alpha \rfloor.$

All of them have invariant densities (infinite if $\alpha = 0$).

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

A generalization of the Gauß map stems from Nakada (and Natsui).

Figure: $T_{\alpha}: [\alpha - 1, \alpha] \to [\alpha - 1, \alpha], x \mapsto |\frac{1}{x}| - \lfloor \frac{1}{x} + 1 - \alpha \rfloor.$

All of them have invariant densities (infinite if $\alpha = 0$). Matching of the orbits of α and $\alpha - 1$ occurs for a.e. $\alpha \in [0, 1]$.

$\alpha\text{-}\mathrm{continued}$ fractions and the Mandelbrot set

Figure: From a paper by Bonanno, Carminati, Isola and Tiozzo: The non-matching set and the real antenna of Mandelbrot set

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … 釣�?

Change of coordinates

For fixed slope s > 1, take:

$$\mathcal{Q}_\gamma(x) = egin{cases} x+1, & x\leq\gamma\ 1+s(1-x), & x>\gamma \end{cases}$$

・ロト ・個ト ・モト ・モト

ж

For s= 2, ${\it Q}_\gamma$ is conjugate to ${\it T}_eta$ above via

$$H \circ Q_{\gamma} = T_{\beta} \circ H$$
 with $H(x) = 2(x - \gamma), \beta := 2(1 + s)(1 - \gamma).$

Change of coordinates

For fixed slope s > 1, take:

$$\mathcal{Q}_\gamma(x) = egin{cases} x+1, & x\leq \gamma \ 1+s(1-x), & x>\gamma \end{cases}$$

For s= 2, Q_γ is conjugate to T_eta above via

 $H \circ Q_{\gamma} = T_{\beta} \circ H$ with $H(x) = 2(x - \gamma), \beta := 2(1 + s)(1 - \gamma).$

Advantages of Q_{γ} :

- x = 1 is fixed for all $s \in \mathbb{R}$ and $\gamma < 1$;
- For integer s ≥ 2, every point ps^{-m}, p, m ∈ N, eventually maps to 1;
- Therefore matching occurs whenever $\gamma = ps^{-m}$;
- Matching occurs on an open dense set!

Matching is Lebesgue typical

Theorem: Q_{γ} has matching for Lebesgue-a.e. γ , but the set \mathcal{E} of non-matching parameters has Haussdorf dimension 1.

Matching is Lebesgue typical

Theorem: Q_{γ} has matching for Lebesgue-a.e. γ , but the set \mathcal{E} of non-matching parameters has Haussdorf dimension 1.

Let $g(x) := s(1-x) \mod 1$ and $R : (0,1) \rightarrow (0,1)$ be the first return of $Q_{\gamma}^k(x)$ to [0,1).

Lemma:

$$R(x) = egin{cases} g(x) & ext{if } x \in (0,\gamma) \ g^2(x) & ext{if } x \in (\gamma,1) \end{cases}$$

Lemma: For fixed $\gamma \in [0, 1]$, the following conditions are equivalent:

(i)
$$g^k(\gamma) < \gamma$$
 for some $k \in \mathbb{N}$;

(ii) matching holds for γ .

In other words, the bifurcation set is

 $\mathcal{E} = \{ \gamma \in [0,1] : g^k(\gamma) \ge \gamma \ \forall k \in \mathbb{N} \}.$

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ うらつ

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

Proof of the Theorem:

Lebesgue measure is preserved by g, so the Ergodic Theorem implies that inf{g^k(γ) : k ≥ 1} = 0 for a.e. γ. The previous lemma gives that each such γ ∉ E.

うして ふゆう ふほう ふほう うらつ

Proof of the Theorem:

- Lebesgue measure is preserved by g, so the Ergodic Theorem implies that inf{g^k(γ) : k ≥ 1} = 0 for a.e. γ. The previous lemma gives that each such γ ∉ E.
- Define $K(t) := \{x \in [0,1] : g^k(x) \ge t \ \forall k \ge 1\}.$

うして ふゆう ふほう ふほう うらつ

Proof of the Theorem:

- Lebesgue measure is preserved by g, so the Ergodic Theorem implies that inf{g^k(γ) : k ≥ 1} = 0 for a.e. γ. The previous lemma gives that each such γ ∉ E.
- Define $K(t) := \{x \in [0,1] : g^k(x) \ge t \ \forall k \ge 1\}.$
- The Hausdorf dimension dim_H(K(t)) → 1 and dim_H(K(t) ∩ [0, 1]) → 1 as t → 0.

うして ふゆう ふほう ふほう うらつ

Proof of the Theorem:

- Lebesgue measure is preserved by g, so the Ergodic Theorem implies that inf{g^k(γ) : k ≥ 1} = 0 for a.e. γ. The previous lemma gives that each such γ ∉ E.
- Define $K(t) := \{x \in [0,1] : g^k(x) \ge t \ \forall k \ge 1\}.$
- The Hausdorf dimension dim_H(K(t)) → 1 and dim_H(K(t) ∩ [0, 1]) → 1 as t → 0.
- Combine this with $\mathcal{E} \cap [0, t] \supset K(t)$.

Recall the Monotonicity Theorem stated for Q_{γ} :

Topological and metric entropy are

$$h_{\mu}(Q_{\gamma}) ext{ and } h_{top}(Q_{\gamma}) ext{ are } \left\{ egin{array}{c} ext{decreasing} & ext{if } \Delta < 0; \\ ext{constant} & ext{if } \Delta = 0; \\ ext{increasing} & ext{if } \Delta > 0, \end{array}
ight.$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

as function of $\boldsymbol{\gamma}$ within matching intervals.

Recall the Monotonicity Theorem stated for Q_{γ} :

Topological and metric entropy are

$$h_{\mu}(Q_{\gamma}) ext{ and } h_{top}(Q_{\gamma}) ext{ are } \left\{ egin{array}{c} ext{decreasing} & ext{if } \Delta < 0; \\ ext{constant} & ext{if } \Delta = 0; \\ ext{increasing} & ext{if } \Delta > 0, \end{array}
ight.$$

as function of $\boldsymbol{\gamma}$ within matching intervals.

The proof is based on the structure of the first return map R to a neighbourhood J of $z := Q_{\gamma}^{\kappa_{-}}(\gamma_{-}) = Q_{\gamma}^{\kappa_{+}}(\gamma_{+})$ which is nice,

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ うらつ

Recall the Monotonicity Theorem stated for Q_{γ} :

Topological and metric entropy are

$$h_{\mu}(Q_{\gamma}) ext{ and } h_{top}(Q_{\gamma}) ext{ are } \left\{ egin{array}{c} ext{decreasing} & ext{if } \Delta < 0; \\ ext{constant} & ext{if } \Delta = 0; \\ ext{increasing} & ext{if } \Delta > 0, \end{array}
ight.$$

as function of $\boldsymbol{\gamma}$ within matching intervals.

The proof is based on the structure of the first return map R to a neighbourhood J of $z := Q_{\gamma}^{\kappa_{-}}(\gamma_{-}) = Q_{\gamma}^{\kappa_{+}}(\gamma_{+})$ which is nice,, i.e.:

 $\operatorname{orb}(\partial J) \cap J^{\circ} = \emptyset.$

Lemma: All branches of R are monotone onto, also the branches that contain a preimage $y \in Q_{\gamma}^{-N}(\gamma)$.

Corollary: *R* preserves Lebesgue measure *m*.

Proof-sketch of the monotonicity theorem:

• $\int_J \tau \ dmh_m(R)$ increases by an amount proportional to $\eta := \Delta \times$ increased proportion of $|A_+|/|A_-|$.

うして ふゆう ふほう ふほう うらつ

- Abramov's Formula: $h_{\mu}(Q_{\gamma}) = \frac{1}{\int_{L^{\tau}} dm} h_{m}(R)$.
- Therefore $h_{\mu}(Q_{\gamma})$ decreases due to increase of η .

Proof-sketch of the monotonicity theorem:

- $\int_J \tau \ dmh_m(R)$ increases by an amount proportional to $\eta := \Delta \times$ increased proportion of $|A_+|/|A_-|$.
- Abramov's Formula: $h_{\mu}(Q_{\gamma}) = \frac{1}{\int_{L^{\tau}} dm} h_{m}(R)$.
- Therefore $h_{\mu}(Q_{\gamma})$ decreases due to increase of η .
- Topological entropy is the exponential growth-rate of number of periodic point.
- As γ moves within a matching interval, periodic points in J don't change,

Proof-sketch of the monotonicity theorem:

- $\int_J \tau \ dmh_m(R)$ increases by an amount proportional to $\eta := \Delta \times$ increased proportion of $|A_+|/|A_-|$.
- Abramov's Formula: $h_{\mu}(Q_{\gamma}) = \frac{1}{\int_{L^{\tau}} dm} h_{m}(R)$.
- Therefore $h_{\mu}(Q_{\gamma})$ decreases due to increase of η .
- Topological entropy is the exponential growth-rate of number of periodic point.
- As γ moves within a matching interval, periodic points in J don't change,
- but their period increases by ∆ as A₊ absorbes them (when they previously belonged to A₋).

Proof-sketch of the monotonicity theorem:

- $\int_J \tau \ dmh_m(R)$ increases by an amount proportional to $\eta := \Delta \times$ increased proportion of $|A_+|/|A_-|$.
- Abramov's Formula: $h_{\mu}(Q_{\gamma}) = \frac{1}{\int_{L^{\tau}} dm} h_{m}(R)$.
- Therefore $h_{\mu}(Q_{\gamma})$ decreases due to increase of η .
- Topological entropy is the exponential growth-rate of number of periodic point.
- As γ moves within a matching interval, periodic points in J don't change,
- but their period increases by ∆ as A₊ absorbes them (when they previously belonged to A₋).
- ► Hence the topological entropy decreases accordingly.

Motivation: Find exact formulas for matching intervals J and their matching indices Δ for slope s = 2 (also works for $2 \le s \in \mathbb{N}$).

Motivation: Find exact formulas for matching intervals J and their matching indices Δ for slope s = 2 (also works for $2 \le s \in \mathbb{N}$).

Let \mathbb{Q}_{dyd} be the set of dyadic rationals in (0, 1].

Definition The pseudocenter of an interval $J \subset (0, 1)$ is the (unique) dyadic rational $\xi \in \mathbb{Q}_{dyd}$ with minimal denominator.

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ うらつ

Motivation: Find exact formulas for matching intervals J and their matching indices Δ for slope s = 2 (also works for $2 \le s \in \mathbb{N}$).

Let \mathbb{Q}_{dyd} be the set of dyadic rationals in (0, 1].

Definition The pseudocenter of an interval $J \subset (0, 1)$ is the (unique) dyadic rational $\xi \in \mathbb{Q}_{dyd}$ with minimal denominator.

Definition

- For binary string u, let \check{u} be the bitwise negation of u.
- For ξ ∈ Q_{dyd} \ {1} and let w be the shortest even binary expansion of ξ and v be the shortest odd binary expansion of 1 − ξ.

Motivation: Find exact formulas for matching intervals J and their matching indices Δ for slope s = 2 (also works for $2 \le s \in \mathbb{N}$).

Let \mathbb{Q}_{dyd} be the set of dyadic rationals in (0, 1].

Definition The pseudocenter of an interval $J \subset (0, 1)$ is the (unique) dyadic rational $\xi \in \mathbb{Q}_{dyd}$ with minimal denominator.

Definition

- For binary string u, let \check{u} be the bitwise negation of u.
- For ξ ∈ Q_{dyd} \ {1} and let w be the shortest even binary expansion of ξ and v be the shortest odd binary expansion of 1 − ξ.

- Define the interval $I_{\xi} := (\xi_L, \xi_R)$ containing ξ where,
- $\blacktriangleright \ \xi_L := . \overline{\check{v}v}, \quad \xi_R := . \overline{w}.$
- Also define the "degenerate" interval $I_1 := (2/3, +\infty)$.

In short:
$$I_{\xi} := (\xi_L, \xi_R)$$
 with $\xi_L := .\overline{v}v$, $\xi_R := .\overline{w}$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

In short: $l_{\xi} := (\xi_L, \xi_R)$ with $\xi_L := .\overline{v}v$, $\xi_R := .\overline{w}$. If $\xi = 1/2$ then w = 10, v = 1 and $\xi_L = .\overline{01}$, $\xi_R = .\overline{10}$. (01) $w = u01 \Rightarrow \xi_L = .\overline{u001}\overline{u110}$; (11) $w = u11 \Rightarrow \xi_L = .\overline{u101}\overline{u010}$; (010) $w = u010 \Rightarrow \xi_L = .\overline{u00}\overline{u11}$; (110) $w = u110 \Rightarrow \xi_L = .\overline{u10}\overline{u01}$.

In short: $I_{\xi} := (\xi_L, \xi_R)$ with $\xi_L := .\overline{\check{v}v}, \xi_R := .\overline{w}.$		
If $\xi = 1/2$ then $w = 10$, $v = 1$ and $\xi_L = .\overline{01}$, $\xi_R = .\overline{10}$.		
(01) $w = u01 \Rightarrow \xi_L = .\overline{u001}\check{u}110;$		
(11) $w = u11 \Rightarrow \xi_L = .\overline{u101\check{u}010};$		
$(010) w = u010 \Rightarrow \xi_L = .\overline{u00\check{u}11};$		
(110) $w = u 110 \Rightarrow \xi_L = .\overline{u 10 \check{u} 01}.$		
ξ	ξR	ξL
$\frac{\frac{1}{2}}{\frac{1}{4}} = .10$ $\frac{\frac{1}{4}}{\frac{7}{32}} = .001$	$\begin{array}{rcl} \frac{2}{3} & = & .\overline{10} \\ \frac{1}{3} & = & .\overline{01} \\ \frac{2}{9} & = & .\overline{001110} \\ \end{array}$	$ \frac{\frac{1}{3}}{\frac{2}{9}} = .\overline{01} $ $ \frac{\frac{7}{33}}{\frac{7}{33}} = .\overline{001101} $
$\frac{\frac{3}{16}}{\frac{9}{64}} = .0011$ $\frac{9}{64} = .001001$	$\frac{1}{5} = .\overline{0011}$ $\frac{1}{7} = .\overline{001}$ $\frac{1}{2} = .\overline{0010}$	$\frac{\frac{2}{11}}{\frac{4334}{16383}} = .\overline{00100111010}$
$\frac{1}{8}$ – .0010	$ \frac{1}{15}0010$	$\frac{1}{9}$ – .000111

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Theorem:

- All matching intervals have the form *I_ξ*, where *ξ* ∈ Q_{dyd} are precisely the pseudo-centers of the components of [0, ²/₃] \ *E*.
- The matching index is

$$\Delta(\xi) = \frac{3}{2}(|w|_0 - |w|_1),$$

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ うらつ

where $|w|_a$ is the number of symbols *a* in *w* (the shortest even binary expansion of ξ).

Theorem:

- All matching intervals have the form *I*_ξ, where ξ ∈ Q_{dyd} are precisely the pseudo-centers of the components of [0, ²/₃] \ ε.
- The matching index is

$$\Delta(\xi) = \frac{3}{2}(|w|_0 - |w|_1),$$

where $|w|_a$ is the number of symbols *a* in *w* (the shortest even binary expansion of ξ).

Proposition: If $g^k(\gamma) \ge \frac{1}{6}$, then $|w_0| = |w|_1$. In particular, all matching intervals in $(\frac{1}{6}, \frac{2}{3})$ have matching index $\Delta = 0$.

for

Figure: Entropies $h_{top}(T_{\beta})$ and $h_{\mu}(T_{\beta})$ for $\beta \in [0, 6.5]$.

Remark: This proposition explains constant entropy on all matching intervals in $(\frac{1}{6}, \frac{2}{3})$. A no devil's staircase argument would give:

$$h_{\mu}(Q_{\gamma}) = \log(\frac{1+\sqrt{5}}{2})$$
 and $h_{top}(Q_{\gamma}) = \frac{2}{3}\log 2$,
all $\gamma \in [\frac{1}{6}, \frac{2}{3}]$.

Pseudo-centers (period doubling)

Pseudo-center $\xi = .w$ (even expansion) and $1 - \xi = .v$ (odd exp). The matching interval is $I_{\xi} = [\xi_L, \xi_R]$ for $\xi_L = .\overline{v}v$ and $\xi_R = .\overline{w}$.

(ロ) (型) (E) (E) (E) (O)

Pseudo-centers (period doubling)

Pseudo-center $\xi = .w$ (even expansion) and $1 - \xi = .v$ (odd exp). The matching interval is $I_{\xi} = [\xi_L, \xi_R]$ for $\xi_L = .\overline{v}\overline{v}$ and $\xi_R = .\overline{w}$. But ξ_L is also the right end-point of I_{ξ_1} for $\xi_1 = .vv$. We call this "period doubling". It repeats countably often, converging to ξ_{∞} .

$$\xi_{\infty} \quad (\xi_2)_L = (\xi_3)_R \quad (\xi_1)_L = (\xi_2)_R \quad \xi_L = (\xi_1)_R \quad \xi \quad \xi_R$$

Pseudo-centers (period doubling)

Pseudo-center $\xi = .w$ (even expansion) and $1 - \xi = .v$ (odd exp). The matching interval is $I_{\xi} = [\xi_L, \xi_R]$ for $\xi_L = .\overline{v}v$ and $\xi_R = .\overline{w}$. But ξ_L is also the right end-point of I_{ξ_1} for $\xi_1 = .vv$. We call this "period doubling". It repeats countably often, converging to ξ_{∞} .

$$\xi_{\infty} \quad (\xi_2)_L = (\xi_3)_R \quad (\xi_1)_L = (\xi_2)_R \quad \xi_L = (\xi_1)_R \quad \xi \qquad \xi_R$$

Lemma: The pseudo-center of the next period doubling can be obtained from the previous using the substitution:

$$\chi: \begin{array}{ccc} w \mapsto \check{v}v & \check{w} \mapsto v\check{v} \\ v \mapsto vw & \check{v} \mapsto \check{v}\check{w} \end{array}$$

Thus the limit ξ_{∞} has *s*-adic expansion

$$\xi_{\infty} = .\check{v}\check{w}v\check{v}vw\check{v}\check{w}vw\check{v}v\check{v}\check{w}\dots$$

うして ふゆう ふほう ふほう うらつ

Pseudo-centers (tuning windows)

Pseudo-center $\xi = .w$ (even expansion) and $1 - \xi = .v$ (odd exp). The matching interval is $I_{\xi} = [\xi_L, \xi_R]$ for $\xi_L = .\overline{v}\overline{v}$ and $\xi_R = .\overline{w}$. The tuning interval is $T_{\xi} = [\xi_T, \xi_R]$ for $\xi_T = .\overline{v}\overline{w}$.

Pseudo-centers (tuning windows)

Pseudo-center $\xi = .w$ (even expansion) and $1 - \xi = .v$ (odd exp). The matching interval is $I_{\xi} = [\xi_L, \xi_R]$ for $\xi_L = .\overline{v}\overline{v}$ and $\xi_R = .\overline{w}$. The tuning interval is $T_{\xi} = [\xi_T, \xi_R]$ for $\xi_T = .\overline{v}\overline{w}$.

Theorem: Let $K(\xi_T) = \{x : g^k(x) \ge \xi_T \ \forall k\}$. Then $x \in K(\xi_T) \cap T_{\xi}$ if and only if $x = .\sigma_1 \sigma_2 \sigma_3 \sigma_4 ...$ for $\sigma_1 \in \{w, \check{v}\}, \sigma_j \in \{w, v, \check{w}, \check{v}\}$ describing a path in the diagram. \check{v}

Pseudo-centers (tuning windows)

Pseudo-center $\xi = .w$ (even expansion) and $1 - \xi = .v$ (odd exp). The matching interval is $I_{\xi} = [\xi_L, \xi_R]$ for $\xi_L = .\overline{v}\overline{v}$ and $\xi_R = .\overline{w}$. The tuning interval is $T_{\xi} = [\xi_T, \xi_R]$ for $\xi_T = .\overline{v}\overline{w}$.

Theorem: Let $K(\xi_T) = \{x : g^k(x) \ge \xi_T \ \forall k\}$. Then $x \in K(\xi_T) \cap T_{\xi}$ if and only if $x = .\sigma_1 \sigma_2 \sigma_3 \sigma_4 ...$ for $\sigma_1 \in \{w, \check{v}\}, \sigma_j \in \{w, v, \check{w}, \check{v}\}$ \circlearrowright \overleftrightarrow describing a path in the diagram. If $\Delta(\xi) = 0$, all matching in T_{ξ} is neutral. \widecheck{v}

Question: We know that $\gamma \mapsto h(\mu_{\gamma})$ is Hölder. Is $\gamma \mapsto h_{top}(Q_{\gamma})$ Hölder?

Question: We know that $\gamma \mapsto h(\mu_{\gamma})$ is Hölder. Is $\gamma \mapsto h_{top}(Q_{\gamma})$ Hölder?

Conjecture: The neutral tuning windows are exactly the plateaus of (topological and metric) entropy.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

э

Question: We know that $\gamma \mapsto h(\mu_{\gamma})$ is Hölder. Is $\gamma \mapsto h_{top}(Q_{\gamma})$ Hölder?

Conjecture: The neutral tuning windows are exactly the plateaus of (topological and metric) entropy.

Conjecture: The shape of the entire entropy function (i.e., pattern of increase/decrease) is repeated in every tuning window T_{ξ} with $\Delta(\xi) > 0$, and reversed in every tuning window T_{ξ} with $\Delta(\xi) < 0$.

Question: We know that $\gamma \mapsto h(\mu_{\gamma})$ is Hölder. Is $\gamma \mapsto h_{top}(Q_{\gamma})$ Hölder?

Conjecture: The neutral tuning windows are exactly the plateaus of (topological and metric) entropy.

Conjecture: The shape of the entire entropy function (i.e., pattern of increase/decrease) is repeated in every tuning window T_{ξ} with $\Delta(\xi) > 0$, and reversed in every tuning window T_{ξ} with $\Delta(\xi) < 0$.

End of the Show

References

- C. Bonanno, C. Carminati, S. Isola, G. Tiozzo, *Dynamics of continued fractions and kneading sequences of unimodal maps,* Discrete Contin. Dyn. Syst. **33** (2013), no. 4, 1313–1332.
- V. Botella-Soler, J. A. Oteo, J. Ros, P. Glendinning, Families of piecewise linear maps with constant Lyapunov exponents, J. Phys. A: Math. Theor. 46 125101
- C. Carminati, G. Tiozzo, *Tuning and plateaux for the entropy of α-continued fractions*, Nonlinearity **26** (2013), no. 4, 1049–1070.
- H. Nakada, Metrical theory for a class of continued fraction transformations and their natural extensions, Tokyo J. Math. 4 (1981), 399–426
- H. Nakada, R. Natsui, The non-monotonicity of the entropy of α-continued fraction transformations, Nonlinearity, 21 (2008), 1207–1225.

うして ふゆう ふほう ふほう うらつ