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β-transformations
The β-transformation is defined as

















x 7→ βx (mod 1)

For |β| > 1, Tβ has an acip µ.

0.2 0.4 0.6 0.8 1.0

1000

2000

3000

4000

5000

6000

0.2 0.4 0.6 0.8 1.0

1000

2000

3000

4000

5000

6000

Figure: Density dµ
dx for β = 1

2 (
√

5 + 1) and β = 3
√

7.

The density is only locally constant, if there is a Markov partition.
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The map Tβ
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Tβ(x) =

{
T−β (x) = x + 2 if x ≤ 0,
T+
β (x) = β − 2x if x ≥ 0.

Tβ preserves the [β −max{2, β},max{2, β}] and some iterate is
uniformly expanding. Therefore Tβ admits an acip.
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Generically, dµ
dx IS locally constant
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Not Markov but Matching

For the family Tβ , there is no Markov partition in general, but
something called matching takes can occur:

Definition: There is matching if there are iterates κ± > 0 such that

Tκ−(0−) = Tκ+(0+) and derivatives DTκ−(0−) = DTκ+(0+)

The pre-matching partition plays the role of Markov partition:

{T j(0−)}κ−−1
j=0 } ∪ {T

j(0+)}κ+−1
j=0 };

Theorem: If T has matching, then ρ = dµ
dx is constant on each

element of the pre-matching partition.



Not Markov but Matching

For the family Tβ , there is no Markov partition in general, but
something called matching takes can occur:

Definition: There is matching if there are iterates κ± > 0 such that

Tκ−(0−) = Tκ+(0+) and derivatives DTκ−(0−) = DTκ+(0+)

The pre-matching partition plays the role of Markov partition:

{T j(0−)}κ−−1
j=0 } ∪ {T

j(0+)}κ+−1
j=0 };

Theorem: If T has matching, then ρ = dµ
dx is constant on each

element of the pre-matching partition.



Not Markov but Matching

For the family Tβ , there is no Markov partition in general, but
something called matching takes can occur:

Definition: There is matching if there are iterates κ± > 0 such that

Tκ−(0−) = Tκ+(0+) and derivatives DTκ−(0−) = DTκ+(0+)

The pre-matching partition plays the role of Markov partition:

{T j(0−)}κ−−1
j=0 } ∪ {T

j(0+)}κ+−1
j=0 };

Theorem: If T has matching, then ρ = dµ
dx is constant on each

element of the pre-matching partition.



Monotonicity of entropy

Numerical illustration for the metric entropy:

Figure: Entropy hµ(Tβ) for β ∈ [4.6, 6] (l) and β ∈ [5.29, 5.33] (r).



Monotonicity of entropy

Definition: The matching index is ∆ = κ+ − κ−.

Theorem: Topological and metric entropy are

hµ(Tβ) and htop(Tβ) are


increasing if ∆ < 0;

constant if ∆ = 0;

decreasing if ∆ > 0,

as function of β within matching intervals.



The α-continued fraction map Tα.

A generalization of the Gauß map stems from Nakada (and Natsui).
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Figure: Tα : [α− 1, α]→ [α− 1, α], x 7→ | 1x | − b
1
x + 1− αc.

All of them have invariant densities (infinite if α = 0).
Matching of the orbits of α and α− 1 occurs for a.e. α ∈ [0, 1].
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α-continued fractions and the Mandelbrot set

Figure: From a paper by Bonanno, Carminati, Isola and Tiozzo: The
non-matching set and the real antenna of Mandelbrot set



Change of coordinates

For fixed slope s > 1, take:
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Qγ(x) =

{
x + 1, x ≤ γ
1 + s(1− x), x > γ

For s = 2, Qγ is conjugate to Tβ above via

H ◦ Qγ = Tβ ◦ H with H(x) = 2(x − γ), β := 2(1 + s)(1− γ).

Advantages of Qγ :
I x = 1 is fixed for all s ∈ R and γ < 1;
I For integer s ≥ 2, every point ps−m, p,m ∈ N, eventually

maps to 1;
I Therefore matching occurs whenever γ = ps−m;
I Matching occurs on an open dense set!
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Matching is Lebesgue typical

Theorem: Qγ has matching for Lebesgue-a.e. γ, but the set E of
non-matching parameters has Haussdorf dimension 1.

Let g(x) := s(1− x) mod 1 and R : (0, 1)→ (0, 1) be the first
return of Qk

γ (x) to [0, 1).

Lemma:
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γ = 1
8

R(x) =

{
g(x) if x ∈ (0, γ)

g2(x) if x ∈ (γ, 1)

s = 2



Matching is Lebesgue typical

Theorem: Qγ has matching for Lebesgue-a.e. γ, but the set E of
non-matching parameters has Haussdorf dimension 1.

Let g(x) := s(1− x) mod 1 and R : (0, 1)→ (0, 1) be the first
return of Qk

γ (x) to [0, 1).

Lemma:

�
�
�
�
�

�
�
�
�
�
�
�
�
��

�
�
�
�
�
�
�
�
��

�
�
�
�
�
�
�
�
��A

AA

γ = 1
8

R(x) =

{
g(x) if x ∈ (0, γ)

g2(x) if x ∈ (γ, 1)

s = 2



On the proof of “Matching is Lebesgue typical”

Lemma: For fixed γ ∈ [0, 1], the following conditions are
equivalent:
(i) gk(γ) < γ for some k ∈ N;
(ii) matching holds for γ.
In other words, the bifurcation set is

E = {γ ∈ [0, 1] : gk(γ) ≥ γ ∀k ∈ N}.



On the proof of “Matching is Lebesgue typical”
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Proof of the Theorem:
I Lebesgue measure is preserved by g , so the Ergodic Theorem

implies that inf{gk(γ) : k ≥ 1} = 0 for a.e. γ. The previous
lemma gives that each such γ /∈ E .

I Define K (t) := {x ∈ [0, 1] : gk(x) ≥ t ∀k ≥ 1}.
I The Hausdorf dimension dimH(K (t))→ 1 and

dimH(K (t) ∩ [0, 1])→ 1 as t → 0.
I Combine this with E ∩ [0, t] ⊃ K (t).
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Monotonicity

Recall the Monotonicity Theorem stated for Qγ :

Topological and metric entropy are

hµ(Qγ) and htop(Qγ) are


decreasing if ∆ < 0;

constant if ∆ = 0;

increasing if ∆ > 0,

as function of γ within matching intervals.

The proof is based on the structure of the first return map R to a
neighbourhood J of z := Q

κ−
γ (γ−) = Qκ+

γ (γ+) which is nice,, i.e.:

orb(∂J) ∩ J◦ = ∅.



Monotonicity

Recall the Monotonicity Theorem stated for Qγ :

Topological and metric entropy are

hµ(Qγ) and htop(Qγ) are


decreasing if ∆ < 0;

constant if ∆ = 0;

increasing if ∆ > 0,

as function of γ within matching intervals.

The proof is based on the structure of the first return map R to a
neighbourhood J of z := Q

κ−
γ (γ−) = Qκ+

γ (γ+) which is nice,

, i.e.:

orb(∂J) ∩ J◦ = ∅.



Monotonicity

Recall the Monotonicity Theorem stated for Qγ :

Topological and metric entropy are

hµ(Qγ) and htop(Qγ) are


decreasing if ∆ < 0;

constant if ∆ = 0;

increasing if ∆ > 0,

as function of γ within matching intervals.

The proof is based on the structure of the first return map R to a
neighbourhood J of z := Q

κ−
γ (γ−) = Qκ+

γ (γ+) which is nice,, i.e.:

orb(∂J) ∩ J◦ = ∅.



Monotonicity

Lemma: All branches of R are monotone onto, also the branches
that contain a preimage y ∈ Q−Nγ (γ).
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R = Qτ
γ for first

return time τ : [0, 1)→ N

τ(A−) = N + κ−

τ(A+) = N + κ+

Corollary: R preserves Lebesgue measure m.



Monotonicity

Proof-sketch of the monotonicity theorem:
I

∫
J τ dmhm(R) increases by an amount proportional to
η := ∆× increased proportion of |A+|/|A−|.

I Abramov’s Formula: hµ(Qγ) = 1∫
J τ dm

hm(R).

I Therefore hµ(Qγ) decreases due to increase of η.

I Topological entropy is the exponential growth-rate of number
of periodic point.

I As γ moves within a matching interval, periodic points in J
don’t change,

I but their period increases by ∆ as A+ absorbes them (when
they previously belonged to A−).

I Hence the topological entropy decreases accordingly.
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Pseudo-centers
Motivation: Find exact formulas for matching intervals J and their
matching indices ∆ for slope s = 2 (also works for 2 ≤ s ∈ N).

Let Qdyd be the set of dyadic rationals in (0, 1].

Definition The pseudocenter of an interval J ⊂ (0, 1) is the
(unique) dyadic rational ξ ∈ Qdyd with minimal denominator.

Definition
I For binary string u, let ǔ be the bitwise negation of u.
I For ξ ∈ Qdyd \ {1} and let w be the shortest even binary

expansion of ξ and v be the shortest odd binary expansion of
1− ξ.

I Define the interval Iξ := (ξL, ξR) containing ξ where,
I ξL := .v̌ v , ξR := .w .

I Also define the “degenerate” interval I1 := (2/3,+∞).
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Pseudo-centers
In short: Iξ := (ξL, ξR) with ξL := .v̌ v , ξR := .w .

If ξ = 1/2 then w = 10, v = 1 and ξL = .01, ξR = .10.
(01) w = u01⇒ ξL = .u001ǔ110;
(11) w = u11⇒ ξL = .u101ǔ010;

(010) w = u010⇒ ξL = .u00ǔ11;
(110) w = u110⇒ ξL = .u10ǔ01.

ξ ξR ξL

1
2 = .10 2

3 = .10 1
3 = .01

1
4 = .01 1

3 = .01 2
9 = .001110

7
32 = .001110 2

9 = .001110 7
33 = .0011011001

3
16 = .0011 1

5 = .0011 2
11 = .0010111010

9
64 = .001001 1

7 = .001 4334
16383 = .00100011101110

1
8 = .0010 2

15 = .0010 1
9 = .000111
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Pseudo-centers

Theorem:
I All matching intervals have the form Iξ, where ξ ∈ Qdyd are

precisely the pseudo-centers of the components of [0, 2
3 ] \ E .

I The matching index is

∆(ξ) =
3
2

(|w |0 − |w |1),

where |w |a is the number of symbols a in w (the shortest
even binary expansion of ξ).

Proposition: If gk(γ) ≥ 1
6 , then |w0| = |w |1. In particular, all

matching intervals in (1
6 ,

2
3) have matching index ∆ = 0.
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where |w |a is the number of symbols a in w (the shortest
even binary expansion of ξ).

Proposition: If gk(γ) ≥ 1
6 , then |w0| = |w |1. In particular, all

matching intervals in (1
6 ,

2
3) have matching index ∆ = 0.



Pseudo-centers

Figure: Entropies htop(Tβ) and hµ(Tβ) for β ∈ [0, 6.5].

Remark: This proposition explains constant entropy on all matching
intervals in (1

6 ,
2
3). A no devil’s staircase argument would give:

hµ(Qγ) = log(
1 +
√
5

2
) and htop(Qγ) =

2
3
log 2,

for all γ ∈ [1
6 ,

2
3 ].



Pseudo-centers (period doubling)
Pseudo-center ξ = .w (even expansion) and 1− ξ = .v (odd exp).
The matching interval is Iξ = [ξL, ξR ] for ξL = .v̌ v and ξR = .w .

But ξL is also the right end-point of Iξ1 for ξ1 = .v̌ v . We call this
“period doubling“. It repeats countably often, converging to ξ∞.

ξR

IξIξ1Iξ2

ξξL = (ξ1)R(ξ1)L = (ξ2)R(ξ2)L = (ξ3)Rξ∞

Lemma: The pseudo-center of the next period doubling can be
obtained from the previous using the substitution:

χ :
w 7→ v̌ v w̌ 7→ v v̌
v 7→ vw v̌ 7→ v̌ w̌

.

Thus the limit ξ∞ has s-adic expansion

ξ∞ = .v̌ w̌v v̌vwv̌w̌vwv̌v v̌ w̌ . . .
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Pseudo-centers (tuning windows)

Pseudo-center ξ = .w (even expansion) and 1− ξ = .v (odd exp).
The matching interval is Iξ = [ξL, ξR ] for ξL = .v̌ v and ξR = .w .
The tuning interval is Tξ = [ξT , ξR ] for ξT = .v̌ w̌ .

ξR

Iξ

ξξLξ∞ξT

Theorem: Let K (ξT ) = {x : gk(x) ≥ ξT ∀k}.
Then x ∈ K (ξT ) ∩ Tξ if and only if

x = .σ1σ2σ3σ4...

for σ1 ∈ {w , v̌}, σj ∈ {w , v , w̌ , v̌}
describing a path in the diagram.

w	

v̌

v

6

?

w̌ 	
@
@@R

�
��	

�
���

@
@@I

If ∆(ξ) = 0, all matching in Tξ is neutral.
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Shape of the entropy function

Question: We know that γ 7→ h(µγ) is Hölder. Is γ 7→ htop(Qγ)
Hölder?

Conjecture: The neutral tuning windows are exactly the plateaus of
(topological and metric) entropy.

Conjecture: The shape of the entire entropy function (i.e., pattern
of increase/decrease) is repeated in every tuning window Tξ with
∆(ξ) > 0, and reversed in every tuning window Tξ with ∆(ξ) < 0.

End of the Show
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