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Figure: Density Z—g for 8 = %(\/54— 1) and 8 = 7.

The density is only locally constant, if there is a Markov partition.



The map Tp

Ta(x) Tg(x)=x+2 if x <0,
U TR =8 -2x ifx>0.

Ts preserves the [3 — max{2, 3}, max{2, 3}] and some iterate is
uniformly expanding. Therefore Tz admits an acip.



The map Tp

Talx) = Tﬂ_(x)zx—i-Z if x <0,
U TR =8 -2x ifx>0.

Ts preserves the [3 — max{2, 3}, max{2, 3}] and some iterate is
uniformly expanding. Therefore Tz admits an acip.

Figure: Invariant density for the Tg: left 8 = %(\f—&— 1) right: 3= V7.



Not Markov but Matching

For the family Tg, there is no Markov partition in general, but
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Definition: There is matching if there are iterates x4+ > 0 such that
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Not Markov but Matching

For the family Tg, there is no Markov partition in general, but
something called matching takes can occur:

Definition: There is matching if there are iterates x4+ > 0 such that
T"=(07) = T"+(0") and derivatives DT"~(0~) = DT"+(0")
The pre-matching partition plays the role of Markov partition:
(T} T u{T (O

Theorem: If T has matching, then p = % is constant on each
element of the pre-matching partition.



Monotonicity of entropy

Numerical illustration for the metric entropy:

Figure: Entropy h,(Tg) for 3 € [4.6,6] (I) and 3 € [5.29,5.33] (r).



Monotonicity of entropy

Definition: The matching index is A = k4 — K_.

Theorem: Topological and metric entropy are

increasing  if A <0;
h.(Tp) and hiop(Tg) are constant if A =0;
decreasing if A >0,

as function of 8 within matching intervals.
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All of them have invariant densities (infinite if o = 0).



The a-continued fraction map T,.

A generalization of the Gaull map stems from Nakada (and Natsui).

branches: |§| +n,
n € Z, on [—1,1]

Figure: To:la—1,a] = [a—1,a],x— | = [ +1—aqa].

All of them have invariant densities (infinite if o = 0).
Matching of the orbits of o and o — 1 occurs for a.e. a € [0, 1].



a-continued fractions and the Mandelbrot set

Figure: From a paper by Bonanno, Carminati, Isola and Tiozzo: The
non-matching set and the real antenna of Mandelbrot set



Change of coordinates

For fixed slope s > 1, take:

x+1, X<y ;
Q,(x) =
1+s(l—x), x>~

For s =2, Q, is conjugate to Ty above via

HoQ,=TgoH with H(x) =2(x —7),8:=2(1+s)(1—7).



Change of coordinates

For fixed slope s > 1, take:

x+1, X<y ;
Q,(x) =
1+s(l—x), x>~

For s =2, Q, is conjugate to Ty above via

HoQ,=TgoH with H(x) =2(x —7),8:=2(1+s)(1—7).

Advantages of Q:
» x = 1is fixed for all s € R and v < 1;

» For integer s > 2, every point ps—™, p, m € N, eventually
maps to 1;
» Therefore matching occurs whenever v = ps—™;

» Matching occurs on an open dense set!
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Matching is Lebesgue typical

Theorem: @, has matching for Lebesgue-a.e. v, but the set £ of
non-matching parameters has Haussdorf dimension 1.

Let g(x) :=s(1 —x) mod 1 and R : (0,1) — (0, 1) be the first
return of Q¥(x) to [0,1).

Lemma:




On the proof of “Matching is Lebesgue typical”

Lemma: For fixed v € [0, 1], the following conditions are
equivalent:

(i) g“(7) < for some k € N;
(i) matching holds for ~.

In other words, the bifurcation set is

E={vel0,1] : g) >~ VkeN}.



On the proof of “Matching is Lebesgue typical”

Proof of the Theorem: y=1

» Lebesgue measure is preserved by g, so the Ergodic Theorem

implies that inf{g*(y) : k > 1} = 0 for a.e. 7. The previous
lemma gives that each such v ¢ £.
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On the proof of “Matching is Lebesgue typical”

Proof of the Theorem: y=1

» Lebesgue measure is preserved by g, so the Ergodic Theorem
implies that inf{g*(y) : k > 1} = 0 for a.e. 7. The previous
lemma gives that each such v ¢ £.

» Define K(t) := {x €[0,1] : gk(x) >t Vk > 1}.

» The Hausdorf dimension dimy(K(t)) — 1 and
dimy(K(t)N[0,1]) = 1as t — 0.

» Combine this with €N [0, t] D K(t).
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Monotonicity

Recall the Monotonicity Theorem stated for Q:

Topological and metric entropy are

decreasing if A <0;

hu.(Qy) and hiop(Qy) are constant if A =0;
increasing  if A >0,

as function of v within matching intervals.

The proof is based on the structure of the first return map R to a
neighbourhood J of z := Q) (v-) = Q5" (v4) which is nice,, i.e.:

orb(9J) N J° = 0.



Monotonicity

Lemma: All branches of R are monotone onto, also the branches
that contain a preimage y € Q;N(fy).

R = Q; for first

return time 7: [0,1) - N
T(AZ) =N+ k_ z
T(A+) = N "‘ K,_Ar_

_A
y

Corollary: R preserves Lebesgue measure m.



Monotonicity

Proof-sketch of the monotonicity theorem:

» [, 7 dmhpn(R) increases by an amount proportional to
n := AX increased proportion of |A+\/|A,\.
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> Therefore h,(Q,) decreases due to increase of 7.

» Abramov’s Formula: h,(Qy) = T+ dm
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Monotonicity

Proof-sketch of the monotonicity theorem:

» [, 7 dmhpn(R) increases by an amount proportional to
n := AX increased proportion of |A+\/|A,\.

» Abramov’s Formula: h,(Qy) = T+ dm dm hm(R).

> Therefore h,(Q,) decreases due to increase of 7.

» Topological entropy is the exponential growth-rate of number
of periodic point.

» As v moves within a matching interval, periodic points in J
don't change,

» but their period increases by A as A, absorbes them (when
they previously belonged to A_).

» Hence the topological entropy decreases accordingly.
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Pseudo-centers

Motivation: Find exact formulas for matching intervals J and their
matching indices A for slope s = 2 (also works for 2 < s € N).

Let Qqyq be the set of dyadic rationals in (0, 1].

Definition The pseudocenter of an interval J C (0,1) is the
(unique) dyadic rational £ € Qgyq with minimal denominator.

Definition
» For binary string u, let i be the bitwise negation of wu.

For £ € Qgya \ {1} and let w be the shortest even binary
expansion of £ and v be the shortest odd binary expansion of

1-¢
Define the interval Iz := ({1, &r) containing £ where,
L= Vv, (rpi=.W.

Also define the “degenerate” interval /; := (2/3, +00).

v

v

v

v
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Pseudo-centers

In short: ¢ := (&1, &R) with & = Vv, (g i=.w.
If ¢ =1/2then w =10, v=1and & = .01, (& = .10.

(01) w = w0l = & = .u0014110;

(11) w = ull = & = .u1014010;

(010) w = w010 = & = .u00H1T;

(110) w = ul10 = & = .u10F01.
£ €r €L
3 = .10 2 =10 ; =01
i = .01 3 = .01 $ = .001110
& = .001110| 3 = .001110| 4 = .0011011001
& = .0011 | i = .0011 & = .0010111010
& = .001001| % = 001 433 = .00100011101110
t = .0010 |Z& = .0010 § = .000111




Pseudo-centers

Theorem:
» All matching intervals have the form /¢, where £ € Qqyq are
precisely the pseudo-centers of the components of [0, %] \ €.

» The matching index is

3
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where |w/|, is the number of symbols a in w (the shortest
even binary expansion of ¢).



Pseudo-centers

Theorem:
» All matching intervals have the form /¢, where £ € Qqyq are
precisely the pseudo-centers of the components of [0, %] \ €.

» The matching index is

3

INGE

(Iwlo = Iwl1),

where |w/|, is the number of symbols a in w (the shortest
even binary expansion of ¢).

Proposition: If g¥(~)
matching intervals in (

v

¢, then [wo| = |wl1. In particular, all
) have matching index A = 0.

WIN

Y

o=



Pseudo-centers

035 - // 4
/ ~ I
)/ . e

Figure: Entropies hp(Tg) and h,(Tg) for 8 € [0, 6.5].

Remark: This proposition explains constant entropy on all matching

intervals in (%, %) A no devils staircase argument would give:

1++5 2
hM(Q’Y) = |Og( 2\f) and htop(Q'y) - § |Og 2,
for all v € [£, 2].
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Pseudo-centers (period doubling)
Pseudo-center £ = .w (even expansion) and 1 — £ = .v (odd exp).
The matching interval is ¢ = [, &R] for §, = .Vv and &g = .W.
But £, is also the right end-point of /¢, for {; = .Vv. We call this
“period doubling”. It repeats countably often, converging to £..

Eoo (&)L = (&3)r (&)L = (&2)r &L :l(fl)R § R

J

l§2 /51 I§

Lemma: The pseudo-center of the next period doubling can be
obtained from the previous using the substitution:

W Vv W= vv

X'v»—>vw Vi vw

Thus the limit &, has s-adic expansion

oo = VWVVVWVWVWVVIW . ..
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Pseudo-center £ = .w (even expansion) and 1 — ¢ = .v (odd exp).
The matching interval is e = [¢/,&R] for § = .Vv and g = .W.
The tuning interval is T¢ = [€71,&R] for {1 = VW,
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Theorem: Let K(&7) = {x : gk(x) > &7 Vk}.
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Pseudo-centers (tuning windows)

Pseudo-center £ = .w (even expansion) and 1 — ¢ = .v (odd exp).
The matching interval is e = [¢/,&R] for § = .Vv and g = .W.
The tuning interval is T¢ = [€71,&R] for {1 = VW,

§T §00 §L § fR

L

Theorem: Let K(&7) = {x : gk(x) > &7 Vk}.
Then x € K(§7) N T¢ if and only if
X = .01020304... / \
for o1 € {w, v}, oj € {w,v, W, v} O O
describing a path in the diagram. \
If A(&) =0, all matching in T¢ is neutral.
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Shape of the entropy function

Question: We know that v — h(jy) is Holder. Is v = hsop(Qy)
Holder?

Conjecture: The neutral tuning windows are exactly the plateaus of
(topological and metric) entropy.

Conjecture: The shape of the entire entropy function (i.e., pattern

of increase/decrease) is repeated in every tuning window T with
A(§) > 0, and reversed in every tuning window T¢ with A(§) < 0.

End of the Show
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