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β-transformations
The β-transformation is de�ned as

















x 7→ βx (mod 1)

For |β| > 1, Tβ has an acip µ.
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The density is only locally constant, if there is a Markov partition.
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The map Tβ
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Tβ(x) =

{
T−β (x) = x + 2 if x ≤ 0,

T+
β (x) = β − 2x if x ≥ 0.

Tβ preserves the [β −max{2, β},max{2, β}] and some iterate is

uniformly expanding. Therefore Tβ admits an acip.
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Markov partitions and entropy

The interval partition {Pi} is a Markov partition for T if

T (Pi ) ∩ Pj 6= ∅ implies T (Pi ) ⊃ Pj .

The transition matrix Π = Πi ,j is de�ned as:

Πi ,j =


1 if T (Pi ) ⊃ Pj ,

0 if Pj ∩ T (Pi ) = ∅,
No other possibility, because {Pi} is Markov

The topological entropy is

htop(T ) = log σ

for σ the leading eigenvalue of Π.
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Markov partitions and entropy

Scale Π by the slopes ti = |DT|Pi
| to obtain a matrix

Ai ,j =
1

ti
Πi ,j .

Then `i = |Pi | and ρi = dµ
dx |Pi

satisfy
∑

i ρi`i = 1 and

ρ1...
ρN


T

A =

ρ1...
ρN


T

and A

`1...
`N

 =

`1...
`N



Rokhlin's formula gives the metric entropy:

hµ(T ) =
N∑
i=1

max{log(ti ), 0}µ(Pi )
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Not Markov but Matching

For the family Tβ , there is no Markov partition in general, but

something called matching takes can occur:

De�nition: There is matching if there are iterates κ± > 0 such that

Tκ−(0−) = Tκ+(0+) and derivatives DTκ−(0−) = DTκ+(0+)

The pre-matching partition plays the role of Markov partition:

{T j(0−)}κ−−1j=0 } ∪ {T
j(0+)}κ+−1j=0 };

Theorem: If T has matching, then ρ = dµ
dx

is constant on each

element of the pre-matching partition.
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Not Markov but Matching

Remark: The density can again be found by linear algebra, using

Πi ,j = |T (Pi ) ∩ Pj |/|Pj |.

Then Πi ,j ∈ {0, 1} except for those column numbers j such that

z := Tκ−(c−) = Tκ+(c+) ∈ Pj .

Example: For 0 < β ≤ 2, we have matrices

Π =

0 1 θ
0 0 1− θ
1 1 θ

 and A =

0 1 θ
0 0 1− θ
1
2

1
2

θ
2
,

 .

The eigenvectors are

ρ =
1

10− 4θ

(
1 2 2

)
and ` =

 2

2− 2θ
2


The metric entropy is hµ(Tβ) = 2 log 2

5−2θ by the Rokhlin formula.



Monotonicity of entropy

Numerical illustration for the metric entropy:

Figure : Entropy hµ(Tβ) for β ∈ [4.6, 6] (l) and β ∈ [5.29, 5.33] (r).



Monotonicity of entropy

De�nition: The matching index is ∆ = κ+ − κ−.

Theorem: Topological and metric entropy are

hµ(Tβ) and htop(Tβ) are


increasing if ∆ < 0;

constant if ∆ = 0;

decreasing if ∆ > 0,

as function of β within matching intervals.



The α-continued fraction map Tα.

A generalization of the Gauÿ map stems from Nakada (and Natsui).
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Figure : Tα : [α− 1, α]→ [α− 1, α], x 7→ | 1
x
| − b 1

x
+ 1− αc.

All of them have invariant densities (in�nite if α = 0).

Matching of the orbits of α and α− 1 occurs for a.e. α ∈ [0, 1].
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α-continued fractions and the Mandelbrot set

Figure : From a paper by Bonanno, Carminati, Isola and Tiozzo: The
non-matching set and the real antenna of Mandelbrot set



Change of coordinates

For �xed slope s > 1, take:
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Qγ(x) =

{
x + 1, x ≤ γ
1 + s(1− x), x > γ

For s = 2, Qγ is conjugate to Tβ above via

H ◦ Qγ = Tβ ◦ H with H(x) = 2(x − γ), β := 2(1 + s)(1− γ).

Advantages of Qγ :

I x = 1 is �xed for all s ∈ R and γ < 1;

I For integer s ≥ 2, every point ps−m, p,m ∈ N, eventually
maps to 1;

I therefore matching occurs whenever γ = ps−m;

I matching occurs on an open dense set!
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Matching is Lebesgue typical

Theorem: Qγ has matching for Lebesgue-a.e. γ, but the set E of

non-matching parameters has Haussdorf dimension 1.

Let g(x) := s(1− x) mod 1 and R : (0, 1)→ (0, 1) be the �rst

return of Qk
γ (x) to [0, 1).

Lemma:
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γ = 1

8

R(x) =

{
g(x) if x ∈ (0, γ)

g2(x) if x ∈ (γ, 1)

s = 2
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On the proof of �Matching is Lebesgue typical�

Lemma: For �xed γ ∈ [0, 1], the following conditions are

equivalent:

(i) gk(γ) < γ for some k ∈ N;
(ii) matching holds for γ.

In other words, the bifurcation set is

E = {γ ∈ [0, 1] : gk(γ) ≥ γ ∀k ∈ N}.



On the proof of �Matching is Lebesgue typical�
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Proof of the Theorem:

I Lebesgue measure is preserved by g , so the Ergodic Theorem

implies that inf{gk(γ) : k ≥ 1} = 0 for a.e. γ. The previous

lemma gives that each such γ /∈ E .

I De�ne K (t) := {x ∈ [0, 1] : gk(x) ≥ t ∀k ≥ 1}.
I The Hausdorf dimension dimH(K (t))→ 1 and

dimH(K (t) ∩ [0, 1])→ 1 as t → 0.

I Combine this with E ∩ [0, t] ⊃ K (t).
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Monotonicity

Recall the Monotonicity Theorem stated for Qγ :

Topological and metric entropy are

hµ(Qγ) and htop(Qγ) are


decreasing if ∆ < 0;

constant if ∆ = 0;

increasing if ∆ > 0,

as function of γ within matching intervals.

The proof is based on the structure of the �rst return map R to a

neighbourhood J of z := Q
κ−
γ (γ−) = Q

κ+
γ (γ+) which is nice,, i.e.:

orb(∂J) ∩ J◦ = ∅.
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Monotonicity

Lemma: All branches of R are monotone onto, also the branches

that contain a preimage y ∈ Q−Nγ (γ).
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y

z

R = Qτ
γ for �rst

return time τ : [0, 1)→ N

τ(A−) = N + κ−

τ(A+) = N + κ+

Corollary: R preserves Lebesgue measure m.



Monotonicity

Proof-sketch of the monotonicity theorem:

I
∫
J
τ dmhm(R) increases by an amount proportional to

η := ∆× increased proportion of |A+|/|A−|.
I Abramov's Formula: hµ(Qγ) = 1∫

J
τ dm

hm(R).

I Therefore hµ(Qγ) decreases due to increase of η.

I Topological entropy is the exponential growth-rate of number

of periodic point.

I As γ moves within a matching interval, periodic points in J

don't change,

I but their period increases by ∆ as A+ absorbes them (when

they previously belonged to A−).

I Hence the topological entropy decreases accordingly.
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Pseudo-centers

Motivation: Find exact formulas for matching intervals J and their

matching indices ∆ for slope s = 2.

Let Qdyd be the set of dyadic rationals in (0, 1].

De�nition The pseudocenter of an interval J ⊂ (0, 1) is the

(unique) dyadic rational ξ ∈ Qdyd with minimal denominator.

De�nition

I For binary string u, let ǔ be the bitwise negation of u.

I For ξ ∈ Qdyd \ {1} and let w be the shortest even binary

expansion of ξ and v be the shortest odd binary expansion of

1− ξ.
I De�ne the interval Iξ := (ξL, ξR) containing ξ where,

I ξL := .v̌ v , ξR := .w .

I Also de�ne the �degenerate� interval I1 := (2/3,+∞).
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Pseudo-centers

In short: Iξ := (ξL, ξR) with ξL := .v̌ v , ξR := .w .

If ξ = 1/2 then w = 10, v = 1 and ξL = .01, ξR = .10.

(01) w = u01⇒ ξL = .u001ǔ110;

(11) w = u11⇒ ξL = .u101ǔ010;

(010) w = u010⇒ ξL = .u00ǔ11;

(110) w = u110⇒ ξL = .u10ǔ01.

ξ ξR ξL

1
2

= .10 2
3

= .10 1
3

= .01
1
4

= .01 1
3

= .01 2
9

= .001110
7
32

= .001110 2
9

= .001110 7
33

= .0011011001
3
16

= .0011 1
5

= .0011 2
11

= .0010111010
9
64

= .001001 1
7

= .001 4334
16383

= .00100011101110
1
8

= .0010 2
15

= .0010 1
9

= .000111
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(010) w = u010⇒ ξL = .u00ǔ11;
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Pseudo-centers

Theorem:

I All matching intervals have the form Iξ, where ξ ∈ Qdyd are

precisely the pseudo-centers of the components of [0, 2
3

] \ E .
I The matching index is

∆(ξ) =
3

2
(|w |0 − |w |1),

where |w |a is the number of symbols a in w (the shortest

even binary expansion of ξ).

Proposition: If gk(γ) ≥ 1
6
, then |w0| = |w |1. In particular, all

matching intervals in (1
6
, 2
3

) have matching index ∆ = 0.
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Pseudo-centers

Figure : Entropies htop(Tβ) and hµ(Tβ) for β ∈ [0, 6.5].

Remark: This proposition explains constant entropy on all matching

intervals in (1
6
, 2
3

). Using an extra (no devil's staircase) argument:

hµ(Qγ) = log(
1 +
√
5

2
) and htop(Qγ) =

2

3
log 2,

for all γ ∈ [1
6
, 2
3

].
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