About pseudo-Markov interval maps, entropy and pseudocenters.

Henk Bruin (University of Vienna)

joint with Carlo Carminati (University of Pisa)

explaining observations in a paper by

V. Botella-Soler, J. A. Oteo, J. Ros, and P. Glendinning

Maribor, January 2015

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

β -transformations

The β -transformation is defined as

 $x \mapsto \beta x \pmod{1}$

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

For $|\beta| > 1$, T_{β} has an acip μ .

β -transformations

The β -transformation is defined as

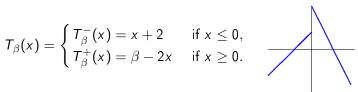
 $x \mapsto \beta x \pmod{1}$

For $|\beta| > 1$, T_{β} has an acip μ .

Figure : Density $\frac{d\mu}{dx}$ for $\beta = \frac{1}{2}(\sqrt{5}+1)$ and $\beta = \sqrt[3]{7}$.

The density is only locally constant, if there is a Markov partition

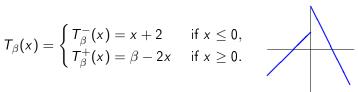
The map T_{β}



 T_{β} preserves the $[\beta - \max\{2, \beta\}, \max\{2, \beta\}]$ and some iterate is uniformly expanding. Therefore T_{β} admits an acip.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

The map T_{β}



 T_{β} preserves the $[\beta - \max\{2, \beta\}, \max\{2, \beta\}]$ and some iterate is uniformly expanding. Therefore T_{β} admits an acip.

Figure : Invariant density for the T_{β} : left $\beta = \frac{1}{2}(\sqrt{5}+1)$ right: $\beta = \sqrt[3]{7}$.

The interval partition $\{P_i\}$ is a Markov partition for T if

 $T(P_i) \cap P_j \neq \emptyset$ implies $T(P_i) \supset P_j$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

The interval partition $\{P_i\}$ is a Markov partition for T if

 $T(P_i) \cap P_j \neq \emptyset$ implies $T(P_i) \supset P_j$.

The transition matrix $\Pi = \Pi_{i,j}$ is defined as:

$$\Pi_{i,j} = \begin{cases} 1 & \text{if } T(P_i) \supset P_j, \\ 0 & \text{if } P_j \cap T(P_i) = \emptyset, \\ \text{No other possibility, because } \{P_i\} \text{ is Markov} \end{cases}$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

The interval partition $\{P_i\}$ is a Markov partition for T if

 $T(P_i) \cap P_j \neq \emptyset$ implies $T(P_i) \supset P_j$.

The transition matrix $\Pi = \Pi_{i,j}$ is defined as:

$$\Pi_{i,j} = \begin{cases} 1 & \text{if } T(P_i) \supset P_j, \\ 0 & \text{if } P_j \cap T(P_i) = \emptyset, \\ \text{No other possibility, because } \{P_i\} \text{ is Markov} \end{cases}$$

The topological entropy is

 $h_{top}(T) = \log \sigma$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

for σ the leading eigenvalue of Π .

Scale Π by the slopes $t_i = |DT_{|P_i}|$ to obtain a matrix

$$A_{i,j} = \frac{1}{t_i} \Pi_{i,j}.$$

Then $\ell_i = |P_i|$ and $\rho_i = \frac{d\mu}{dx}_{|P_i|}$ satisfy $\sum_i \rho_i \ell_i = 1$ and

$$\begin{pmatrix} \rho_1 \\ \vdots \\ \rho_N \end{pmatrix}^T A = \begin{pmatrix} \rho_1 \\ \vdots \\ \rho_N \end{pmatrix}^T \quad \text{and} \quad A \begin{pmatrix} \ell_1 \\ \vdots \\ \ell_N \end{pmatrix} = \begin{pmatrix} \ell_1 \\ \vdots \\ \ell_N \end{pmatrix}$$

Scale Π by the slopes $t_i = |DT_{|P_i}|$ to obtain a matrix

$$A_{i,j} = \frac{1}{t_i} \Pi_{i,j}.$$

Then $\ell_i = |P_i|$ and $\rho_i = \frac{d\mu}{dx}_{|P_i|}$ satisfy $\sum_i \rho_i \ell_i = 1$ and

$$\begin{pmatrix} \rho_1 \\ \vdots \\ \rho_N \end{pmatrix}^T A = \begin{pmatrix} \rho_1 \\ \vdots \\ \rho_N \end{pmatrix}^T \quad \text{and} \quad A \begin{pmatrix} \ell_1 \\ \vdots \\ \ell_N \end{pmatrix} = \begin{pmatrix} \ell_1 \\ \vdots \\ \ell_N \end{pmatrix}$$

Rokhlin's formula gives the metric entropy:

$$h_{\mu}(T) = \sum_{i=1}^{N} \max\{\log(t_i), 0\}\mu(P_i)$$

For the family T_{β} , there is no Markov partition in general, but something called matching takes can occur:

Definition: There is matching if there are iterates $\kappa_{\pm} > 0$ such that

$$T^{\kappa_-}(0^-)=T^{\kappa_+}(0^+)$$
 and derivatives $DT^{\kappa_-}(0^-)=DT^{\kappa_+}(0^+)$

For the family T_{β} , there is no Markov partition in general, but something called matching takes can occur:

Definition: There is matching if there are iterates $\kappa_{\pm} > 0$ such that

$$T^{\kappa_-}(0^-)=T^{\kappa_+}(0^+)$$
 and derivatives $DT^{\kappa_-}(0^-)=DT^{\kappa_+}(0^+)$

The pre-matching partition plays the role of Markov partition:

$$\{T^{j}(0^{-})\}_{j=0}^{\kappa_{-}-1}\} \cup \{T^{j}(0^{+})\}_{j=0}^{\kappa_{+}-1}\};$$

For the family T_{β} , there is no Markov partition in general, but something called matching takes can occur:

Definition: There is matching if there are iterates $\kappa_{\pm} > 0$ such that

$$T^{\kappa_-}(0^-)=T^{\kappa_+}(0^+)$$
 and derivatives $DT^{\kappa_-}(0^-)=DT^{\kappa_+}(0^+)$

The pre-matching partition plays the role of Markov partition:

$$\{T^{j}(0^{-})\}_{j=0}^{\kappa_{-}-1}\} \cup \{T^{j}(0^{+})\}_{j=0}^{\kappa_{+}-1}\};$$

Theorem: If T has matching, then $\rho = \frac{d\mu}{dx}$ is constant on each element of the pre-matching partition.

Remark: The density can again be found by linear algebra, using $\Pi_{i,j} = |T(P_i) \cap P_j| / |P_j|.$

Then $\Pi_{i,j} \in \{0,1\}$ except for those column numbers j such that $z := T^{\kappa_-}(c_-) = T^{\kappa_+}(c_+) \in P_j$. Example: For $0 < \beta \leq 2$, we have matrices

$$\Pi = \begin{pmatrix} 0 & 1 & \theta \\ 0 & 0 & 1 - \theta \\ 1 & 1 & \theta \end{pmatrix} \text{ and } A = \begin{pmatrix} 0 & 1 & \theta \\ 0 & 0 & 1 - \theta \\ \frac{1}{2} & \frac{1}{2} & \frac{\theta}{2}, \end{pmatrix}.$$

The eigenvectors are

$$\rho = rac{1}{10 - 4 heta} \begin{pmatrix} 1 & 2 & 2 \end{pmatrix} \quad \text{and} \quad \ell = \begin{pmatrix} 2 \\ 2 - 2 heta \\ 2 \end{pmatrix}$$

The metric entropy is $h_{\mu}(T_{\beta}) = \frac{2 \log 2}{5-2\theta}$ by the Rokhlin formula.

Monotonicity of entropy

Numerical illustration for the metric entropy:

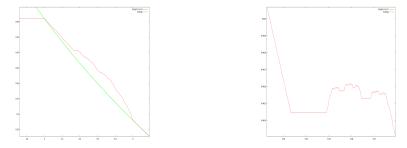


Figure : Entropy $h_{\mu}(T_{\beta})$ for $\beta \in [4.6, 6]$ (I) and $\beta \in [5.29, 5.33]$ (r).

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

Monotonicity of entropy

Definition: The matching index is $\Delta = \kappa_+ - \kappa_-$.

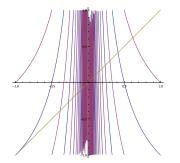
Theorem: Topological and metric entropy are

$$h_{\mu}(T_{\beta}) ext{ and } h_{top}(T_{\beta}) ext{ are } \left\{ egin{array}{ll} ext{increasing} & ext{if } \Delta < 0; \ ext{constant} & ext{if } \Delta = 0; \ ext{decreasing} & ext{if } \Delta > 0, \end{array}
ight.$$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

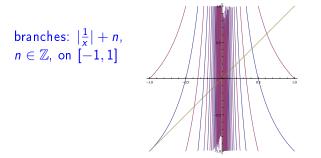
as function of β within matching intervals.

A generalization of the Gauß map stems from Nakada (and Natsui).



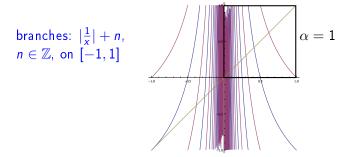
A generalization of the Gauß map stems from Nakada (and Natsui).

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト ・ ヨ



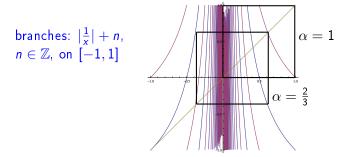
A generalization of the Gauß map stems from Nakada (and Natsui).

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@



A generalization of the Gauß map stems from Nakada (and Natsui).

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@



A generalization of the Gauß map stems from Nakada (and Natsui).

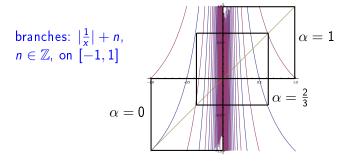


Figure : $T_{\alpha} : [\alpha - 1, \alpha] \to [\alpha - 1, \alpha], x \mapsto |\frac{1}{x}| - \lfloor \frac{1}{x} + 1 - \alpha \rfloor.$

All of them have invariant densities (infinite if $\alpha = 0$).

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

A generalization of the Gauß map stems from Nakada (and Natsui).

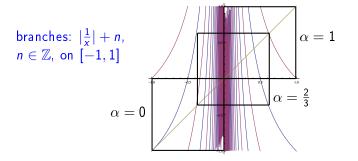


Figure : $T_{\alpha} : [\alpha - 1, \alpha] \to [\alpha - 1, \alpha], x \mapsto |\frac{1}{x}| - \lfloor \frac{1}{x} + 1 - \alpha \rfloor.$

All of them have invariant densities (infinite if $\alpha = 0$). Matching of the orbits of α and $\alpha - 1$ occurs for a.e. $\alpha \in [0, 1]$.

$\alpha\text{-}\mathrm{continued}$ fractions and the Mandelbrot set

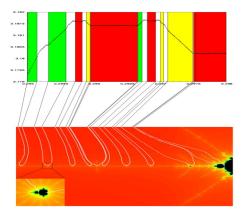


Figure : From a paper by Bonanno, Carminati, Isola and Tiozzo: The non-matching set and the real antenna of Mandelbrot set

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … 釣�?

Change of coordinates

For fixed slope s > 1, take:

$$\mathcal{Q}_{\gamma}(x) = egin{cases} x+1, & x \leq \gamma \ 1+s(1-x), & x > \gamma \end{cases}$$

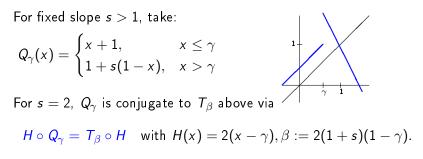
・ロト ・個ト ・ヨト ・ヨト

э.

For s= 2, ${\it Q}_\gamma$ is conjugate to ${\it T}_eta$ above via

$$H \circ Q_{\gamma} = T_{\beta} \circ H$$
 with $H(x) = 2(x - \gamma), \beta := 2(1 + s)(1 - \gamma).$

Change of coordinates



Advantages of Q_{γ} :

- x = 1 is fixed for all $s \in \mathbb{R}$ and $\gamma < 1$;
- For integer s ≥ 2, every point ps^{-m}, p, m ∈ N, eventually maps to 1;
- therefore matching occurs whenever $\gamma = ps^{-m}$;
- matching occurs on an open dense set!

Matching is Lebesgue typical

Theorem: Q_{γ} has matching for Lebesgue-a.e. γ , but the set \mathcal{E} of non-matching parameters has Haussdorf dimension 1.

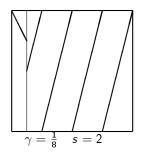
Matching is Lebesgue typical

Theorem: Q_{γ} has matching for Lebesgue-a.e. γ , but the set \mathcal{E} of non-matching parameters has Haussdorf dimension 1.

Let $g(x) := s(1-x) \mod 1$ and $R : (0,1) \rightarrow (0,1)$ be the first return of $Q_{\gamma}^k(x)$ to [0,1).

Lemma:

$$R(x) = \begin{cases} g(x) & \text{if } x \in (0, \gamma) \\ g^2(x) & \text{if } x \in (\gamma, 1) \end{cases}$$



Lemma: For fixed $\gamma \in [0, 1]$, the following conditions are equivalent:

(i)
$$g^k(\gamma) < \gamma$$
 for some $k \in \mathbb{N}$;

(ii) matching holds for γ .

In other words, the bifurcation set is

 $\mathcal{E} = \{ \gamma \in [0,1] : g^k(\gamma) \ge \gamma \ \forall k \in \mathbb{N} \}.$

ション ふゆ アメリア メリア しょうくの

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

Proof of the Theorem:

► Lebesgue measure is preserved by g, so the Ergodic Theorem implies that $\inf\{g^k(\gamma) : k \ge 1\} = 0$ for a.e. γ . The previous lemma gives that each such $\gamma \notin \mathcal{E}$.

ション ふゆ く 山 マ チャット しょうくしゃ

Proof of the Theorem:

- ► Lebesgue measure is preserved by g, so the Ergodic Theorem implies that $\inf\{g^k(\gamma) : k \ge 1\} = 0$ for a.e. γ . The previous lemma gives that each such $\gamma \notin \mathcal{E}$.
- Define $K(t) := \{x \in [0, 1] : g^k(x) \ge t \ \forall k \ge 1\}.$

ション ふゆ く 山 マ チャット しょうくしゃ

Proof of the Theorem:

- ▶ Lebesgue measure is preserved by g, so the Ergodic Theorem implies that $\inf\{g^k(\gamma) : k \ge 1\} = 0$ for a.e. γ . The previous lemma gives that each such $\gamma \notin \mathcal{E}$.
- Define $K(t) := \{x \in [0,1] : g^k(x) \ge t \ \forall k \ge 1\}.$
- The Hausdorf dimension dim_H(K(t)) → 1 and dim_H(K(t) ∩ [0, 1]) → 1 as t → 0.

ション ふゆ く 山 マ チャット しょうくしゃ

Proof of the Theorem:

- ► Lebesgue measure is preserved by g, so the Ergodic Theorem implies that $\inf\{g^k(\gamma) : k \ge 1\} = 0$ for a.e. γ . The previous lemma gives that each such $\gamma \notin \mathcal{E}$.
- Define $K(t) := \{x \in [0,1] : g^k(x) \ge t \ \forall k \ge 1\}.$
- The Hausdorf dimension dim_H(K(t)) → 1 and dim_H(K(t) ∩ [0, 1]) → 1 as t → 0.
- Combine this with $\mathcal{E} \cap [0, t] \supset \mathcal{K}(t)$.

Recall the Monotonicity Theorem stated for Q_{γ} :

Topological and metric entropy are

$$h_{\mu}(Q_{\gamma}) ext{ and } h_{top}(Q_{\gamma}) ext{ are } \left\{ egin{array}{ll} ext{decreasing} & ext{if } \Delta < 0; \ ext{constant} & ext{if } \Delta = 0; \ ext{increasing} & ext{if } \Delta > 0, \end{array}
ight.$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

as function of γ within matching intervals.

Recall the Monotonicity Theorem stated for Q_{γ} :

Topological and metric entropy are

$$h_{\mu}(Q_{\gamma}) ext{ and } h_{top}(Q_{\gamma}) ext{ are } \left\{ egin{array}{c} ext{decreasing} & ext{if } \Delta < 0; \ ext{constant} & ext{if } \Delta = 0; \ ext{increasing} & ext{if } \Delta > 0, \end{array}
ight.$$

as function of γ within matching intervals.

The proof is based on the structure of the first return map R to a neighbourhood J of $z := Q_{\gamma}^{\kappa_{-}}(\gamma_{-}) = Q_{\gamma}^{\kappa_{+}}(\gamma_{+})$ which is nice,

ション ふゆ アメリア メリア しょうくの

Recall the Monotonicity Theorem stated for Q_{γ} :

Topological and metric entropy are

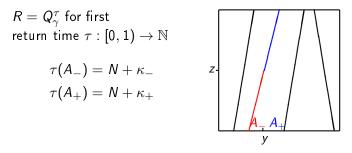
$$h_{\mu}(Q_{\gamma}) ext{ and } h_{top}(Q_{\gamma}) ext{ are } \left\{ egin{array}{ll} ext{decreasing} & ext{if } \Delta < 0; \ ext{constant} & ext{if } \Delta = 0; \ ext{increasing} & ext{if } \Delta > 0, \end{array}
ight.$$

as function of γ within matching intervals.

The proof is based on the structure of the first return map R to a neighbourhood J of $z := Q_{\gamma}^{\kappa_{-}}(\gamma_{-}) = Q_{\gamma}^{\kappa_{+}}(\gamma_{+})$ which is nice,, i.e.:

 $\operatorname{orb}(\partial J) \cap J^{\circ} = \emptyset.$

Lemma: All branches of R are monotone onto, also the branches that contain a preimage $y \in Q_{\gamma}^{-N}(\gamma)$.



Corollary: R preserves Lebesgue measure m.

Proof-sketch of the monotonicity theorem:

• $\int_J \tau \ dmh_m(R)$ increases by an amount proportional to $\eta := \Delta \times$ increased proportion of $|A_+|/|A_-|$.

ション ふゆ く 山 マ チャット しょうくしゃ

- Abramov's Formula: $h_{\mu}(Q_{\gamma}) = \frac{1}{\int_{L} \tau \ dm} h_{m}(R)$.
- Therefore $h_{\mu}(Q_{\gamma})$ decreases due to increase of η .

Proof-sketch of the monotonicity theorem:

- $\int_J \tau \ dmh_m(R)$ increases by an amount proportional to $\eta := \Delta \times$ increased proportion of $|A_+|/|A_-|$.
- Abramov's Formula: $h_{\mu}(Q_{\gamma}) = \frac{1}{\int_{L} \tau \ dm} h_{m}(R)$.
- Therefore $h_{\mu}(Q_{\gamma})$ decreases due to increase of η .
- Topological entropy is the exponential growth-rate of number of periodic point.
- As γ moves within a matching interval, periodic points in J don't change,

(日) (伊) (日) (日) (日) (0) (0)

Proof-sketch of the monotonicity theorem:

- $\int_J \tau \ dmh_m(R)$ increases by an amount proportional to $\eta := \Delta \times$ increased proportion of $|A_+|/|A_-|$.
- Abramov's Formula: $h_{\mu}(Q_{\gamma}) = \frac{1}{\int_{L} \tau \ dm} h_{m}(R).$
- Therefore $h_{\mu}(Q_{\gamma})$ decreases due to increase of η .
- Topological entropy is the exponential growth-rate of number of periodic point.
- As γ moves within a matching interval, periodic points in J don't change,
- but their period increases by ∆ as A₊ absorbes them (when they previously belonged to A₋).

Proof-sketch of the monotonicity theorem:

- $\int_J \tau \ dmh_m(R)$ increases by an amount proportional to $\eta := \Delta \times$ increased proportion of $|A_+|/|A_-|$.
- Abramov's Formula: $h_{\mu}(Q_{\gamma}) = \frac{1}{\int_{L} \tau \ dm} h_{m}(R)$.
- Therefore $h_{\mu}(Q_{\gamma})$ decreases due to increase of η .
- Topological entropy is the exponential growth-rate of number of periodic point.
- As γ moves within a matching interval, periodic points in J don't change,
- ▶ but their period increases by ∆ as A₊ absorbes them (when they previously belonged to A₋).
- ► Hence the topological entropy decreases accordingly.

Motivation: Find exact formulas for matching intervals J and their matching indices Δ for slope s = 2.

Motivation: Find exact formulas for matching intervals J and their matching indices Δ for slope s = 2.

Let \mathbb{Q}_{dyd} be the set of dyadic rationals in (0, 1].

Definition The pseudocenter of an interval $J \subset (0, 1)$ is the (unique) dyadic rational $\xi \in \mathbb{Q}_{dyd}$ with minimal denominator.

ション ふゆ アメリア メリア しょうくの

Motivation: Find exact formulas for matching intervals J and their matching indices Δ for slope s = 2.

Let \mathbb{Q}_{dyd} be the set of dyadic rationals in (0, 1].

Definition The pseudocenter of an interval $J \subset (0, 1)$ is the (unique) dyadic rational $\xi \in \mathbb{Q}_{dyd}$ with minimal denominator.

Definition

- For binary string u, let \check{u} be the bitwise negation of u.
- For ξ ∈ Q_{dyd} \ {1} and let w be the shortest even binary expansion of ξ and v be the shortest odd binary expansion of 1 − ξ.

Motivation: Find exact formulas for matching intervals J and their matching indices Δ for slope s = 2.

Let \mathbb{Q}_{dyd} be the set of dyadic rationals in (0, 1].

Definition The pseudocenter of an interval $J \subset (0, 1)$ is the (unique) dyadic rational $\xi \in \mathbb{Q}_{dyd}$ with minimal denominator.

Definition

- For binary string u, let \check{u} be the bitwise negation of u.
- For ξ ∈ Q_{dyd} \ {1} and let w be the shortest even binary expansion of ξ and v be the shortest odd binary expansion of 1 − ξ.
- Define the interval $I_{\xi} := (\xi_L, \xi_R)$ containing ξ where,

$$\blacktriangleright \ \xi_L := . \overline{\check{v} v}, \quad \xi_R := . \overline{w}.$$

• Also define the "degenerate" interval $I_1 := (2/3, +\infty)$.

In short:
$$I_{\xi} := (\xi_L, \xi_R)$$
 with $\xi_L := .\overline{v}v$, $\xi_R := .\overline{w}$.

In short: $l_{\xi} := (\xi_L, \xi_R)$ with $\xi_L := .\overline{v}v$, $\xi_R := .\overline{w}$. If $\xi = 1/2$ then w = 10, v = 1 and $\xi_L = .\overline{01}$, $\xi_R = .\overline{10}$. (01) $w = u01 \Rightarrow \xi_L = .\overline{u001}\overline{u110}$; (11) $w = u11 \Rightarrow \xi_L = .\overline{u101}\overline{u010}$; (010) $w = u010 \Rightarrow \xi_L = .\overline{u00}\overline{u11}$; (110) $w = u110 \Rightarrow \xi_L = .\overline{u10}\overline{u01}$.

In short: $I_{\xi}:=(\xi_L,\xi_R)$ with $\xi_L:=.\overline{\check{v}v}, \xi_R:=.\overline{w}.$		
If $\xi=1/2$ then $w=10$, $v=1$ and $\xi_L=.\overline{01}$, $\xi_R=.\overline{10}$.		
$(01) w = u01 \Rightarrow \xi_L = .\overline{u001\check{u}110};$		
(11) $w = u 11 \Rightarrow \xi_L = .\overline{u 101 \check{u} 010};$		
$(010) w = u010 \Rightarrow \xi_L = .\overline{u00\check{u}11};$		
(110) $w = u 110 \Rightarrow \xi_L = .\overline{u 10 \check{u} 01}.$		
ξ	ξR	ξι
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rcrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$

Theorem:

- All matching intervals have the form *l*_ξ, where ξ ∈ Q_{dyd} are precisely the pseudo-centers of the components of [0, ²/₃] \ ε.
- The matching index is

$$\Delta(\xi) = \frac{3}{2}(|w|_0 - |w|_1),$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへの

where $|w|_a$ is the number of symbols a in w (the shortest even binary expansion of ξ).

Theorem:

- All matching intervals have the form *I_ξ*, where *ξ* ∈ Q_{dyd} are precisely the pseudo-centers of the components of [0, ²/₃] \ *E*.
- The matching index is

$$\Delta(\xi) = \frac{3}{2}(|w|_0 - |w|_1),$$

where $|w|_a$ is the number of symbols a in w (the shortest even binary expansion of ξ).

Proposition: If $g^k(\gamma) \ge \frac{1}{6}$, then $|w_0| = |w|_1$. In particular, all matching intervals in $(\frac{1}{6}, \frac{2}{3})$ have matching index $\Delta = 0$.

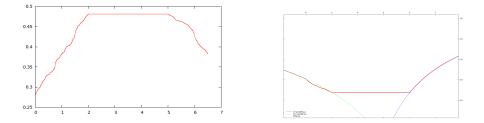


Figure : Entropies $h_{top}(T_{\beta})$ and $h_{\mu}(T_{\beta})$ for $\beta \in [0, 6.5]$.

Remark: This proposition explains constant entropy on all matching intervals in $(\frac{1}{6}, \frac{2}{3})$. Using an extra (no devil's staircase) argument:

$$h_{\mu}(Q_{\gamma}) = \log(\frac{1+\sqrt{5}}{2})$$
 and $h_{top}(Q_{\gamma}) = \frac{2}{3}\log 2$,
for all $\gamma \in [\frac{1}{6}, \frac{2}{3}]$.

References

- C. Bonanno, C. Carminati, S. Isola, G. Tiozzo, *Dynamics of continued fractions and kneading sequences of unimodal maps,* Discrete Contin. Dyn. Syst. **33** (2013), no. 4, 1313–1332.
- V. Botella-Soler, J. A. Oteo, J. Ros, P. Glendinning, Families of piecewise linear maps with constant Lyapunov exponents, J. Phys. A: Math. Theor. 46 125101
- C. Carminati, G. Tiozzo, Tuning and plateaux for the entropy of α-continued fractions, Nonlinearity 26 (2013), no. 4, 1049–1070.
- H. Nakada, Metrical theory for a class of continued fraction transformations and their natural extensions, Tokyo J. Math. 4 (1981), 399–426
- H. Nakada, R. Natsui, The non-monotonicity of the entropy of α-continued fraction transformations, Nonlinearity, 21 (2008), 1207–1225.