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The family Qγ

For fixed slope s > 1 and γ ∈ [0, 1], take:
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Qγ(x) =

{
x + 1, x ≤ γ
1 + s(1− x), x > γ

There is matching if there are κ± ≥ 1 such that

Qκ+

γ (γ+) = Qκ−
γ (γ−),

(Qκ+

γ )′(γ+) = (Qκ−
γ )′(γ−).

The number
∆ = κ+ − κ−

is the matching index.



The family Qγ

Facts about matching for Qγ (proved in our paper, not in this
talk):
I Matching holds for an open dense set of full Lebesgue measure.

I Matching occurs for every s-adic rational: γ = ps−q for
p, q ∈ N.
(In this case Qn

γ (γ+) = Qn
γ (γ−) = 1 is fixed for all n large

enough.)
I The non-matching set E has Hausdorff dimension

dimH(E) = 1,

but dimH(E \ [0, δ)) < 1 for every δ > 0.
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Figure: Topological & metric entropies of Qγ for s = 2 as functions of γ.



The family Qγ

Theorem: Topological and metric entropy

hµ(Qγ) and htop(Qγ) are


decreasing if ∆ < 0;

constant if ∆ = 0;

increasing if ∆ > 0,

as function of γ within matching intervals. (Recall ∆ = κ+ − κ−.)
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Plan of this talk

Aim of this talk:
I Explain why matching happens;

I Describe the matching intervals (components of [0, 1] \ E)
precisely

I pseudo-centers
I period doubling cascades
I computing the matching index

I Tuning windows and explanation of the self-similarity of the
entropy graphs.
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Why there is matching

Let g(x) := s(1− x) mod 1 and R : (0, 1)→ (0, 1) be the first
return of Qγ to [0, 1).

Lemma:
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γ = 1
8

R(x) =

{
g(x) if x ∈ (0, γ)

g2(x) if x ∈ (γ, 1)

s = 2
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Lemma: For fixed γ ∈ [0, 1], the following conditions are
equivalent:
(i) gk(γ) < γ for some k ∈ N;
(ii) matching holds for γ.
In other words, the bifurcation set is

E = {γ ∈ [0, 1] : gk(γ) ≥ γ ∀k ∈ N}.



Pseudo-centers
Motivation: Find exact formulas for matching intervals J and their
matching indices ∆ for slope s = 2 (also works for 2 ≤ s ∈ N).

Let Qdyd be the set of dyadic rationals in (0, 1].

Definition The pseudo-center of an interval J ⊂ (0, 1) is the
(unique) dyadic rational ξ ∈ Qdyd with minimal denominator.

Definition
I For binary string u, let ǔ be the bitwise negation of u.
I For ξ ∈ Qdyd \ {1} and let w be the shortest even binary

expansion of ξ and v be the shortest odd binary expansion of
1− ξ.

I Define the interval Iξ := (ξL, ξR) containing ξ where,
I ξL := .v̌ v , ξR := .w .

I Also define the “degenerate” interval I1 := (2/3,+∞).
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Pseudo-centers
In short: Iξ := (ξL, ξR) with ξL := .v̌ v , ξR := .w .

If ξ = 1/2 then w = 10, v = 1 and ξL = .01, ξR = .10.
(01) w = u01⇒ ξL = .u001ǔ110;
(11) w = u11⇒ ξL = .u101ǔ010;

(010) w = u010⇒ ξL = .u00ǔ11;
(110) w = u110⇒ ξL = .u10ǔ01.

ξ ξR ξL

1
2 = .10 2

3 = .10 1
3 = .01

1
4 = .01 1

3 = .01 2
9 = .001110

7
32 = .001110 2

9 = .001110 7
33 = .0011011001

3
16 = .0011 1

5 = .0011 2
11 = .0010111010

9
64 = .001001 1

7 = .001 4334
16383 = .00100011101110

1
8 = .0010 2

15 = .0010 1
9 = .000111
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Pseudo-centers
Theorem:
I All matching intervals have the form Iξ, where ξ ∈ Qdyd are

precisely the pseudo-centers of the components of [0, 2
3 ] \ E .

I The matching index is

∆(ξ) =
3
2

(|w |0 − |w |1),

where |w |a is the number of symbols a in w (the shortest
even binary expansion of ξ).

Proposition: If γ ≥ 1
6 , then |w0| = |w |1. In particular, all matching

intervals in (1
6 ,

2
3) have matching index ∆ = 0

Remark: For general slope s ≥ 2, the formulas are

∆(ξ) =
s + 1
2

s−1∑
a=0

(s − 1− 2a)|w |a, M = (
s

s + 1
− 1

s
,

s

s + 1
)
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Pseudo-centers (period doubling)
Pseudo-center ξ = .w (even exp.) and 1− ξ = .v (odd exp.).
The matching interval is Iξ = [ξL, ξR ] for ξL = .v̌ v and ξR = .w .

But ξL is also the right end-point of Iξ1 for ξ1 = .v̌ v . We call this
“period doubling“. It repeats countably often, converging to ξ∞.

ξR

IξIξ1Iξ2

ξξL = (ξ1)R(ξ1)L = (ξ2)R(ξ2)L = (ξ3)Rξ∞

Lemma: The pseudo-center of the next period doubling can be
obtained from the previous using the substitution:

χ :
w 7→ v̌ v w̌ 7→ v v̌
v 7→ vw v̌ 7→ v̌ w̌

.

Thus the limit ξ∞ has s-adic expansion

ξ∞ = .v̌ w̌v v̌vwv̌w̌vwv̌v v̌ w̌ . . .
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Pseudo-centers (period doubling)
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Remark: This proposition explains constant entropy on all matching
intervals in M = (1

6 ,
2
3). A no devil’s staircase argument gives:

hµ(Qγ) = log(
1 +
√
5

2
) and htop(Qγ) =

2
3
log 2,

for all γ ∈ [1
6 ,

2
3 ].



Pseudo-centers (tuning windows)

Pseudo-center ξ = .w (even expansion) and 1− ξ = .v (odd exp).
The matching interval is Iξ = [ξL, ξR ] = [.v̌ v , .w ].
The tuning interval is Tξ = [ξT , ξR ] for ξT = .v̌ w̌ .

ξR

Iξ

ξξLξ∞ξT

Theorem: Let K (ξT ) = {x : gk(x) ≥ ξT ∀k}.
Then x ∈ K (ξT ) ∩ Tξ if and only if

x = .σ1σ2σ3σ4...

for σ1 ∈ {w , v̌}, σj ∈ {w , v , w̌ , v̌}
describing a path in the diagram.

w	

v̌

v

6

?

w̌ 	
@
@@R

�
��	

�
���

@
@@I

If ∆(ξ) = 0, then all matching in Tξ is neutral.
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Shape of the entropy function
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Question: Known: γ 7→ h(µγ) is Hölder. Is γ 7→ htop(Qγ) Hölder?

Conjecture: The neutral tuning windows are exactly the plateaus of
(topological and metric) entropy.

Corollary: The shape of the entire entropy function (i.e., pattern of
increase/decrease) is repeated in every tuning window Tξ with
∆(ξ) > 0, and reversed in every tuning window Tξ with ∆(ξ) < 0.
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