Matching for translated β-transformations.

Henk Bruin (University of Vienna) joint with

Carlo Carminati (University of Pisa)
Charlene Kalle (University of Leiden)

San Diego, January 2018

Survey on Matching in 1D dynamics

including work of
Dajani, Kalle and Bruin, Carminati, Marmi, Profeti

Conference in Hillerød, Denmark, 1993.

Translated β-transformations

The translated β-transformation is defined as

$$
T_{\beta, \alpha}: x \mapsto \beta x+\alpha(\bmod 1)
$$

We fix $|\beta|>1$. Then $T_{\alpha}: \mathbb{S}^{1} \rightarrow \mathbb{S}^{1}$ has an acip μ for all α.

Translated β-transformations

The translated β-transformation is defined as

$$
T_{\beta, \alpha}: x \mapsto \beta x+\alpha(\bmod 1)
$$

We fix $|\beta|>1$. Then $T_{\alpha}: \mathbb{S}^{1} \rightarrow \mathbb{S}^{1}$ has an acip μ for all α.

Figure: Density $\frac{d \mu}{d x}$ for $\beta=\frac{1}{2}(\sqrt{5}+1)$ and $\beta=\sqrt[3]{7}$.

The density is only? locally constant, if there is a Markov partition.

Not Markov but Matching

For the family T_{α}, there is no Markov partition in general, but something called matching takes can occur:

Definition: There is matching if there is an iterate $\kappa>0$ such that

$$
\lim _{x \uparrow 0} T_{\alpha}^{\kappa}(x)=\lim _{x \downarrow 0} T_{\alpha}^{\kappa}(x)
$$

Not Markov but Matching

For the family T_{α}, there is no Markov partition in general, but something called matching takes can occur:

Definition: There is matching if there is an iterate $\kappa>0$ such that

$$
\lim _{x \uparrow 0} T_{\alpha}^{\kappa}(x)=\lim _{x \downarrow 0} T_{\alpha}^{\kappa}(x)
$$

The pre-matching partition plays the role of Markov partition:

$$
\left.\left.\left\{T_{\alpha}^{j}\left(0^{-}\right)\right\}_{j=0}^{\kappa-1}\right\} \cup\left\{T_{\alpha}^{j}\left(0^{+}\right)\right\}_{j=0}^{\kappa-1}\right\}
$$

Not Markov but Matching

For the family T_{α}, there is no Markov partition in general, but something called matching takes can occur:

Definition: There is matching if there is an iterate $\kappa>0$ such that

$$
\lim _{x \uparrow 0} T_{\alpha}^{\kappa}(x)=\lim _{x \downarrow 0} T_{\alpha}^{\kappa}(x)
$$

The pre-matching partition plays the role of Markov partition:

$$
\left.\left.\left\{T_{\alpha}^{j}\left(0^{-}\right)\right\}_{j=0}^{\kappa-1}\right\} \cup\left\{T_{\alpha}^{j}\left(0^{+}\right)\right\}_{j=0}^{\kappa-1}\right\}
$$

Theorem: If T_{α} has matching, then $\rho=\frac{d \mu}{d x}$ is constant on each element of the pre-matching partition.

The family Q_{γ}

The following family is conjuagte to the one studied by Botella-Soler, Oteo, Ros \& Glendinning.

For fixed slope $s>1$, take:

$$
Q_{\gamma}(x)= \begin{cases}x+1, & x \leq \gamma \\ 1+s(1-x), & x>\gamma\end{cases}
$$

The family Q_{γ}

The following family is conjuagte to the one studied by Botella-Soler, Oteo, Ros \& Glendinning.

For fixed slope $s>1$, take:

$$
Q_{\gamma}(x)= \begin{cases}x+1, & x \leq \gamma \\ 1+s(1-x), & x>\gamma\end{cases}
$$

Matching occurs when there are $\kappa_{ \pm} \in \mathbb{N}$ such that

$$
\lim _{x \uparrow \gamma} Q_{\gamma}^{\kappa_{-}}(x)=\lim _{x \downarrow \gamma} Q_{\gamma}^{\kappa_{+}}(x) \quad \text { and } \quad \lim _{x \uparrow \gamma} D Q_{\gamma}^{\kappa_{-}}(x)=\lim _{x \downarrow \gamma} D Q_{\gamma}^{\kappa_{+}}(x)
$$

The family S_{α} (Dajani \& Kalle)

Dajani and Kalle study the following map:

$$
S_{\alpha}(x)= \begin{cases}2 x+\alpha & x \in\left[-1, \frac{1}{2}\right) \\ 2 x & x \in\left[-\frac{1}{2}, \frac{1}{2}\right] \\ 2 x-\alpha & x \in\left(\frac{1}{2}, 1\right]\end{cases}
$$

For $\alpha \in\left(\frac{1}{2}, 1\right]$ there is a unique acip. There is a symmetry $S_{\alpha}(-x)=-S_{\alpha}(x)$.

The family S_{α} (Dajani \& Kalle)

Dajani and Kalle study the following map:

$$
S_{\alpha}(x)= \begin{cases}2 x+\alpha & x \in\left[-1, \frac{1}{2}\right) \\ 2 x & x \in\left[-\frac{1}{2}, \frac{1}{2}\right] \\ 2 x-\alpha & x \in\left(\frac{1}{2}, 1\right]\end{cases}
$$

For $\alpha \in\left(\frac{1}{2}, 1\right]$ there is a unique acip. There is a symmetry $S_{\alpha}(-x)=-S_{\alpha}(x)$.

Matching occurs when there is $\kappa \in \mathbb{N}$ such that

$$
\lim _{x \uparrow \frac{1}{2}} S_{\alpha}^{\kappa}(x)=\lim _{x \downarrow \frac{1}{2}} S_{\alpha}^{\kappa}(x)
$$

The α-continued fraction map A_{α}.

A generalization of the Gauß map stems from Nakada (and Natsui).

The α-continued fraction map A_{α}.
A generalization of the Gauß map stems from Nakada (and Natsui). branches: $\left|\frac{1}{x}\right|+n$, $n \in \mathbb{Z}$, on $[-1,1]$

The α-continued fraction map A_{α}.
A generalization of the Gauß map stems from Nakada (and Natsui).
branches: $\left|\frac{1}{x}\right|+n$, $n \in \mathbb{Z}$, on $[-1,1]$

The α-continued fraction map A_{α}.

A generalization of the Gauß map stems from Nakada (and Natsui).
branches: $\left|\frac{1}{x}\right|+n$, $n \in \mathbb{Z}$, on $[-1,1]$

The α-continued fraction map A_{α}.

A generalization of the Gauß map stems from Nakada (and Natsui).
branches: $\left|\frac{1}{x}\right|+n$, $n \in \mathbb{Z}$, on $[-1,1]$

Figure: $A_{\alpha}:[\alpha-1, \alpha] \rightarrow[\alpha-1, \alpha], x \mapsto\left|\frac{1}{x}\right|-\left\lfloor\frac{1}{x}+1-\alpha\right\rfloor$.

All of them have invariant densities (infinite if $\alpha=0$).

The α-continued fraction map A_{α}.

A generalization of the Gauß map stems from Nakada (and Natsui).
branches: $\left|\frac{1}{x}\right|+n$, $n \in \mathbb{Z}$, on $[-1,1]$

Figure: $A_{\alpha}:[\alpha-1, \alpha] \rightarrow[\alpha-1, \alpha], x \mapsto\left|\frac{1}{x}\right|-\left\lfloor\frac{1}{x}+1-\alpha\right\rfloor$.

All of them have invariant densities (infinite if $\alpha=0$).
Matching occurs if $A_{\alpha}^{\kappa}(\alpha)=A_{\alpha}^{\kappa}(\alpha-1)$ for some $\kappa \geq 1$.

Matching and piecewise constant densities

The pre-matching partition plays the role of Markov partition:

$$
\left.\left.\left\{T_{\alpha}^{j}\left(0^{-}\right)\right\}_{j=0}^{\kappa_{-}-1}\right\} \cup\left\{T_{\alpha}^{j}\left(0^{+}\right)\right\}_{j=0}^{\kappa_{j}^{+-1}}\right\} ;
$$

Matching and piecewise constant densities

The pre-matching partition plays the role of Markov partition:

$$
\left.\left.\left\{T_{\alpha}^{j}\left(0^{-}\right)\right\}_{j=0}^{\kappa_{-}-1}\right\} \cup\left\{T_{\alpha}^{j}\left(0^{+}\right)\right\}_{j=0}^{\kappa_{+}-1}\right\} ;
$$

Theorem: If T_{α} has matching, then $\frac{d \mu}{d x}$ is constant on each element of the pre-matching partition.

Matching and piecewise constant densities

The pre-matching partition plays the role of Markov partition:

$$
\left.\left.\left\{T_{\alpha}^{j}\left(0^{-}\right)\right\}_{j=0}^{\kappa_{-}-1}\right\} \cup\left\{T_{\alpha}^{j}\left(0^{+}\right)\right\}_{j=0}^{\kappa_{+}-1}\right\}
$$

Theorem: If T_{α} has matching, then $\frac{d \mu}{d x}$ is constant on each element of the pre-matching partition.

This is a general theorem: If a piecewise affine expanding interval $\operatorname{map} T:[0,1] \rightarrow[0,1]$ has matching at all its discontinuity points, then $\frac{d \mu}{d x}$ is constant on each element of the pre-matching partition.

Matching and piecewise constant densities

The pre-matching partition plays the role of Markov partition:

$$
\left.\left.\left\{T_{\alpha}^{j}\left(0^{-}\right)\right\}_{j=0}^{\kappa_{-}-1}\right\} \cup\left\{T_{\alpha}^{j}\left(0^{+}\right)\right\}_{j=0}^{\kappa_{+}-1}\right\}
$$

Theorem: If T_{α} has matching, then $\frac{d \mu}{d x}$ is constant on each element of the pre-matching partition.

This is a general theorem: If a piecewise affine expanding interval $\operatorname{map} T:[0,1] \rightarrow[0,1]$ has matching at all its discontinuity points, then $\frac{d \mu}{d x}$ is constant on each element of the pre-matching partition.

The family of α-continued fraction maps has Möbius branches. The density is piecewise Möbius, accordingly.

Matching and piecewise constant densities

Sketch of proof:

- Take a nice interval J disjoint from the matching set. (nice means that orb $\left.(\partial J) \cap J^{\circ}=\emptyset\right)$.
- Consider the first return map R to J; it has only onto linear (or Möbius) branches.
- Hence the R-invariant denstity is constant (or Möbius).
- The T-invariant density coincides with T-invariant density (up to a scaling factor).

Matching is typical in parameter space

Some properties of Q_{γ} :

- $x=1$ is fixed for all $s \in \mathbb{R}$ and $\gamma<1$;
- For integer $s \geq 2$, every point $p s^{-m}, p, m \in \mathbb{N}$, eventually maps to 1 ;
- Therefore matching occurs whenever $\gamma=p s^{-m}$;
- Matching occurs on an open dense set!

Matching is typical in parameter space

Some properties of Q_{γ} :

- $x=1$ is fixed for all $s \in \mathbb{R}$ and $\gamma<1$;
- For integer $s \geq 2$, every point $p s^{-m}, p, m \in \mathbb{N}$, eventually maps to 1 ;
- Therefore matching occurs whenever $\gamma=p s^{-m}$;
- Matching occurs on an open dense set!

Something far more general is true:

Theorem: The above families Q_{γ}, S_{α} and A_{α} have matching Lebesgue-a.e., but the set \mathcal{E} of non-matching parameters has Haussdorf dimension 1.

α-continued fractions and the Mandelbrot set

The matching for the α-continued fraction is parallel to renormalization in the logistic family.

Figure: From a paper by Bonanno, Carminati, Isola and Tiozzo: The non-matching set and the real antenna of Mandelbrot set

Proof: Matching is Lebesgue typical

Let

$$
g(x):=s(1-x) \bmod 1
$$

and $R:(0,1) \rightarrow(0,1)$ be the first return of $Q_{\gamma}^{k}(x)$ to $[0,1)$.
Lemma:

$$
R(x)= \begin{cases}g(x) & \text { if } x \in(0, \gamma) \\ g^{2}(x) & \text { if } x \in(\gamma, 1)\end{cases}
$$

Proof: Matching is Lebesgue typical

Lemma: For fixed $\gamma \in[0,1]$, the following conditions are equivalent:
(i) $g^{k}(\gamma)<\gamma$ for some $k \in \mathbb{N}$;
(ii) matching holds for γ.

In other words, the bifurcation set is

$$
\mathcal{E}=\left\{\gamma \in[0,1]: g^{k}(\gamma) \geq \gamma \forall k \in \mathbb{N}\right\} .
$$

Proof: Matching is Lebesgue typical

Proof of the Theorem:

- Lebesgue measure is preserved by g, so the Ergodic Theorem implies that

$$
\inf \left\{g^{k}(\gamma): k \geq 1\right\}=0 \quad \text { for a.e. } \gamma
$$

The previous lemma gives that each such $\gamma \notin \mathcal{E}$.

Proof: Matching is Lebesgue typical

Proof of the Theorem:

- Lebesgue measure is preserved by g, so the Ergodic Theorem implies that

$$
\inf \left\{g^{k}(\gamma): k \geq 1\right\}=0 \quad \text { for a.e. } \gamma
$$

The previous lemma gives that each such $\gamma \notin \mathcal{E}$.

- Define $K(t):=\left\{x \in[0,1]: g^{k}(x) \geq t \forall k \geq 1\right\}$.

Proof: Matching is Lebesgue typical

Proof of the Theorem:

- Lebesgue measure is preserved by g, so the Ergodic Theorem implies that

$$
\inf \left\{g^{k}(\gamma): k \geq 1\right\}=0 \quad \text { for a.e. } \gamma
$$

The previous lemma gives that each such $\gamma \notin \mathcal{E}$.

- Define $K(t):=\left\{x \in[0,1]: g^{k}(x) \geq t \forall k \geq 1\right\}$.
- The Hausdorf dimension $\operatorname{dim}_{H}(K(t)) \rightarrow 1$ and $\operatorname{dim}_{H}(K(t) \cap[0,1]) \rightarrow 1$ as $t \rightarrow 0$.

Proof: Matching is Lebesgue typical

Proof of the Theorem:

- Lebesgue measure is preserved by g, so the Ergodic Theorem implies that

$$
\inf \left\{g^{k}(\gamma): k \geq 1\right\}=0 \quad \text { for a.e. } \gamma
$$

The previous lemma gives that each such $\gamma \notin \mathcal{E}$.

- Define $K(t):=\left\{x \in[0,1]: g^{k}(x) \geq t \forall k \geq 1\right\}$.
- The Hausdorf dimension $\operatorname{dim}_{H}(K(t)) \rightarrow 1$ and $\operatorname{dim}_{H}(K(t) \cap[0,1]) \rightarrow 1$ as $t \rightarrow 0$.
- Combine this with $\mathcal{E} \cap[0, t] \supset K(t)$.

Typical matching for T_{α} : Quadratic Pisot Numbers

For the translated β-transformations, we need β to be Pisot! Then matching holds for Lebesgue-a.e. translation.

Typical matching for T_{α} : Quadratic Pisot Numbers

For the translated β-transformations, we need β to be Pisot! Then matching holds for Lebesgue-a.e. translation.

The quadratic Pisot numbers are those $\beta>1$ satisfying

$$
\beta^{2}-k \beta \pm d=0 \quad \text { with } \begin{cases}k>d+1 & \text { if } d>0 \\ k>d-1 & \text { if } d<0\end{cases}
$$

Theorem: If β is quadratic Pisot, then $\operatorname{dim}_{H}\left(A_{\beta}\right)=\frac{\log d}{\log \beta}$.

Typical matching for T_{α} : Quadratic Pisot Numbers

For the translated β-transformations, we need β to be Pisot! Then matching holds for Lebesgue-a.e. translation.

The quadratic Pisot numbers are those $\beta>1$ satisfying

$$
\beta^{2}-k \beta \pm d=0 \quad \text { with } \begin{cases}k>d+1 & \text { if } d>0 \\ k>d-1 & \text { if } d<0\end{cases}
$$

Theorem: If β is quadratic Pisot, then $\operatorname{dim}_{H}\left(A_{\beta}\right)=\frac{\log d}{\log \beta}$.
Hence $\operatorname{dim}_{H}\left(A_{\beta}\right)=0$ if $d= \pm 1$ (quadratic Pisot units). We conjecture that this is the only situation where $\operatorname{dim}_{H}\left(A_{\beta}\right)=0$.

Proof: Matching for quadratic-Pisot-slope T_{α}

There are integers a_{j}, b_{j} such that

$$
\begin{aligned}
& T_{\alpha}^{n}(0)=\left(\beta^{n-1}+\cdots+1\right) \alpha-a_{n-2} \beta^{n-2}-\cdots-a_{1} \beta-a_{0} \\
& T_{\alpha}^{n}(1)=\left(\beta^{n-1}+\cdots+1\right) \alpha+\beta^{n}-b_{n-1} \beta^{n-1}-\cdots-b_{1} \beta-b_{0}
\end{aligned}
$$

Therefore matching at (minimal) iterate n requires

$$
0=T_{\alpha}^{n}(1)-T_{\alpha}^{n}(0)=\beta^{n}+\sum_{j=0}^{n-1} \beta^{j}\left(b_{j}-a_{j}\right)
$$

Hence β has to be an algebraic integer.

Proof: Matching for quadratic-Pisot-slope T_{α}

There are integers a_{j}, b_{j} such that

$$
\begin{aligned}
& T_{\alpha}^{n}(0)=\left(\beta^{n-1}+\cdots+1\right) \alpha-a_{n-2} \beta^{n-2}-\cdots-a_{1} \beta-a_{0}, \\
& T_{\alpha}^{n}(1)=\left(\beta^{n-1}+\cdots+1\right) \alpha+\beta^{n}-b_{n-1} \beta^{n-1}-\cdots-b_{1} \beta-b_{0} .
\end{aligned}
$$

Therefore matching at (minimal) iterate n requires

$$
0=T_{\alpha}^{n}(1)-T_{\alpha}^{n}(0)=\beta^{n}+\sum_{j=0}^{n-1} \beta^{j}\left(b_{j}-a_{j}\right) .
$$

Hence β has to be an algebraic integer.
The integers b_{j}, a_{j} depend on α, but change only at a finite set. Hence, if matching occurs, it occurs on an entire interval.

Proof: Matching for quadratic-Pisot-slope T_{α}

Since β is an algebraic integer of order n, we can write

$$
T_{\alpha}^{j}(0)-T_{\alpha}^{j}(1)=\sum_{k=1}^{n} \frac{e_{k}(j)}{\beta^{k}} \quad e_{k}(j) \in \mathbb{Z}
$$

The α-dependence is only in the integers $e_{k}(j)=e_{k}(j, \alpha)$

Proof: Matching for quadratic-Pisot-slope T_{α}

Since β is an algebraic integer of order n, we can write

$$
T_{\alpha}^{j}(0)-T_{\alpha}^{j}(1)=\sum_{k=1}^{n} \frac{e_{k}(j)}{\beta^{k}} \quad e_{k}(j) \in \mathbb{Z}
$$

The α-dependence is only in the integers $e_{k}(j)=e_{k}(j, \alpha)$
Lemma (Sample Lemma)
If $\left|T_{\alpha}^{j}(0)-T_{\alpha}^{j}(1)\right|=1 / \beta$, then there is matching at iterate $j+1$.

Proof: Matching for quadratic-Pisot-slope T_{α}

Since β is an algebraic integer of order n, we can write

$$
T_{\alpha}^{j}(0)-T_{\alpha}^{j}(1)=\sum_{k=1}^{n} \frac{e_{k}(j)}{\beta^{k}} \quad e_{k}(j) \in \mathbb{Z}
$$

The α-dependence is only in the integers $e_{k}(j)=e_{k}(j, \alpha)$
Lemma (Sample Lemma)
If $\left|T_{\alpha}^{j}(0)-T_{\alpha}^{j}(1)\right|=1 / \beta$, then there is matching at iterate $j+1$.
Proof.
If $\left|T_{\alpha}^{j}(0)-T_{\alpha}^{j}(1)\right|=1 / \beta$, then $T_{\alpha}^{j}(0)$ and $T_{\alpha}^{j}(1)$ belong to neighbouring branch-domains of T_{α}, and their images are the same.

The maps T_{α}

The maps T_{α}

The maps T_{α}

and g_{α}

Proof: Matching for quadratic-Pisot-slope T_{α}
We sketch the proof for $\beta^{2}-k \beta-d=0, k \in \mathbb{N}$, so $k-1<\beta<k$ and T_{α} has k or $k+1$ branches.

Proof: Matching for quadratic-Pisot-slope T_{α}

We sketch the proof for $\beta^{2}-k \beta-d=0, k \in \mathbb{N}$, so $k-1<\beta<k$ and T_{α} has k or $k+1$ branches.

Lemma: If $\alpha \in[k-\beta, 1)$, then T_{α} has $k+1$ branches, but there is matching after two steps.

Proof: Matching for quadratic-Pisot-slope T_{α}

We sketch the proof for $\beta^{2}-k \beta-d=0, k \in \mathbb{N}$, so $k-1<\beta<k$ and T_{α} has k or $k+1$ branches.

Lemma: If $\alpha \in[k-\beta, 1)$, then T_{α} has $k+1$ branches, but there is matching after two steps.

Hence, take $\alpha \in[0, k-\beta)$ and call the domains of the branches $\Delta_{0}, \ldots, \Delta_{k}$. Compute

$$
T_{\alpha}(1)=\beta+\underbrace{\alpha}_{=T(0)}-(k-1)=T_{\alpha}(0)+\underbrace{\beta-(k-1)}_{\gamma} .
$$

Proof: Matching for quadratic-Pisot-slope T_{α}

We sketch the proof for $\beta^{2}-k \beta-d=0, k \in \mathbb{N}$, so $k-1<\beta<k$ and T_{α} has k or $k+1$ branches.

Lemma: If $\alpha \in[k-\beta, 1)$, then T_{α} has $k+1$ branches, but there is matching after two steps.

Hence, take $\alpha \in[0, k-\beta)$ and call the domains of the branches $\Delta_{0}, \ldots, \Delta_{k}$. Compute

$$
T_{\alpha}(1)=\beta+\underbrace{\alpha}_{=T(0)}-(k-1)=T_{\alpha}(0)+\underbrace{\beta-(k-1)}_{\gamma} .
$$

Lemma: If $T^{\ell}(0) \in \Delta_{i}$ and $T^{\ell}(1) \in \Delta_{i+(k-1)-d}$ for $1 \leq \ell<n, i=i(\ell)$, then

$$
T^{n}(1)-T^{n}(0)=\gamma
$$

Proof: Matching for quadratic-Pisot-slope T_{α}

Lemma: If $T^{n-1}(0) \in \Delta_{i}$ and $T^{n-1}(1) \in \Delta_{i+k-d}$ then the distance $\left|T^{n}(1)-T^{n}(0)\right|=\frac{d}{\beta}$ and there is matching in 2 steps.

Proof: Matching for quadratic-Pisot-slope T_{α}

Lemma: If $T^{n-1}(0) \in \Delta_{i}$ and $T^{n-1}(1) \in \Delta_{i+k-d}$ then the distance $\left|T^{n}(1)-T^{n}(0)\right|=\frac{d}{\beta}$ and there is matching in 2 steps.

Hence, to avoid as matching, $T^{\ell}(0)$ has to avoid the sets

$$
\begin{aligned}
V_{i} & :=\{x \in \Delta(i): x+\gamma \in \Delta(i+k-d)\} \\
& =\left[\frac{i+k-d-\alpha}{\beta_{k}}-\gamma, \frac{i+1-\alpha}{\beta_{k}}\right)
\end{aligned}
$$

Proof: Matching for quadratic-Pisot-slope T_{α}

Lemma: If $T^{n-1}(0) \in \Delta_{i}$ and $T^{n-1}(1) \in \Delta_{i+k-d}$ then the distance $\left|T^{n}(1)-T^{n}(0)\right|=\frac{d}{\beta}$ and there is matching in 2 steps.

Hence, to avoid as matching, $T^{\ell}(0)$ has to avoid the sets

$$
\begin{aligned}
V_{i} & :=\{x \in \Delta(i): x+\gamma \in \Delta(i+k-d)\} \\
& =\left[\frac{i+k-d-\alpha}{\beta_{k}}-\gamma, \frac{i+1-\alpha}{\beta_{k}}\right)
\end{aligned}
$$

Lemma: If

$$
T^{n}(0) \in V=\cup_{i=0}^{d-1} V_{i}
$$

then there is matching in two steps.

Proof: Matching for quadratic-Pisot-slope T_{α}

Lemma: The map $g:[0,1-\beta] \rightarrow[0,1-\beta]$,

$$
g_{\alpha}(x):= \begin{cases}k-\beta & \text { if } x \in V \\ T_{\alpha}(x) & \text { otherwise }\end{cases}
$$

is a non-decreasing degree d circle endomorpism, and $g^{n}(0) \in V$ for some $n>1$ precisely if $k-\beta$ is periodic.

Proof: Matching for quadratic-Pisot-slope T_{α}

Lemma: The map $g:[0,1-\beta] \rightarrow[0,1-\beta]$,

$$
g_{\alpha}(x):= \begin{cases}k-\beta & \text { if } x \in V \\ T_{\alpha}(x) & \text { otherwise }\end{cases}
$$

is a non-decreasing degree d circle endomorpism, and $g^{n}(0) \in V$ for some $n>1$ precisely if $k-\beta$ is periodic.

Lemma: Define

$$
X_{\alpha}=\left\{x \in \mathbb{S}^{1}: g_{\alpha}^{n}(x) \notin V \text { for all } n \geq 0\right\}
$$

If there is no matching, then $\operatorname{dim}_{H}\left(X_{\alpha}\right)=\frac{\log d}{\log \beta}$.

Proof: Matching for quadratic-Pisot-slope T_{α}

Lemma: The map $g:[0,1-\beta] \rightarrow[0,1-\beta]$,

$$
g_{\alpha}(x):= \begin{cases}k-\beta & \text { if } x \in V \\ T_{\alpha}(x) & \text { otherwise }\end{cases}
$$

is a non-decreasing degree d circle endomorpism, and $g^{n}(0) \in V$ for some $n>1$ precisely if $k-\beta$ is periodic.

Lemma: Define

$$
X_{\alpha}=\left\{x \in \mathbb{S}^{1}: g_{\alpha}^{n}(x) \notin V \text { for all } n \geq 0\right\}
$$

If there is no matching, then $\operatorname{dim}_{H}\left(X_{\alpha}\right)=\frac{\log d}{\log \beta}$.
Idea of Proof.
For each n, we cover X_{α} by $O\left(d^{n}\right)$ intervals of length β^{-n}.

Proof: Matching for quadratic-Pisot-slope T_{α}

$$
\text { Proof for } \beta^{2}-k \beta-d=0
$$

- The task is to transfer the previous lemma from dynamical to parameter space.

Proof: Matching for quadratic-Pisot-slope T_{α}

$$
\text { Proof for } \beta^{2}-k \beta-d=0
$$

- The task is to transfer the previous lemma from dynamical to parameter space.
- Use that $\alpha \mapsto T^{n}(\alpha)$ is piecewise linear with slope $\frac{\beta^{n}-1}{\beta-1}$.

Proof: Matching for quadratic-Pisot-slope T_{α}

Proof for $\beta^{2}-k \beta-d=0$.

- The task is to transfer the previous lemma from dynamical to parameter space.
- Use that $\alpha \mapsto T^{n}(\alpha)$ is piecewise linear with slope $\frac{\beta^{n}-1}{\beta-1}$.
- On the other hand, the intervals U in the cover of the previous lemma move with fixed speed (independent of n).

Proof: Matching for quadratic-Pisot-slope T_{α}

Proof for $\beta^{2}-k \beta-d=0$.

- The task is to transfer the previous lemma from dynamical to parameter space.
- Use that $\alpha \mapsto T^{n}(\alpha)$ is piecewise linear with slope $\frac{\beta^{n}-1}{\beta-1}$.
- On the other hand, the intervals U in the cover of the previous lemma move with fixed speed (independent of n).
- Therefore, for each n, the set A_{α} can be covered by $O\left(d^{n}\right)$ intervals of length $O\left(\beta^{-n}\right)$.

Monotonicity of entropy

If T has constant slope β, then the entropy

$$
h_{\text {top }}(T)=h_{\mu}(T)=\log \beta
$$

For Q_{γ} (non-constant slope!) we have the following result:

Monotonicity of entropy

If T has constant slope β, then the entropy

$$
h_{\text {top }}(T)=h_{\mu}(T)=\log \beta
$$

For Q_{γ} (non-constant slope!) we have the following result:

Theorem: Call $\Delta=\kappa_{+}-\kappa_{-}$the matching index of Q_{γ}.
Topological and metric entropy are

$$
h_{\mu}\left(Q_{\gamma}\right) \text { and } h_{\text {top }}\left(Q_{\gamma}\right) \text { are }\left\{\begin{aligned}
\text { decreasing } & \text { if } \Delta<0 \\
\text { constant } & \text { if } \Delta=0 \\
\text { increasing } & \text { if } \Delta>0
\end{aligned}\right.
$$

as function of γ within matching intervals.

Monotonicity of entropy

The numerics for $h_{\text {top }}\left(Q_{\gamma}\right)$ and $h_{\mu}\left(Q_{\gamma}\right)$ suggest self-similarities in the graphs.

Metric and topological entropy for $s=2$

Monotonicity of entropy

The proof is based on the structure of the first return map R to a neighbourhood J of $z:=Q_{\gamma}^{\kappa_{-}}\left(\gamma_{-}\right)=Q_{\gamma}^{\kappa_{+}}\left(\gamma_{+}\right)$which is nice,

Monotonicity of entropy

The proof is based on the structure of the first return map R to a neighbourhood J of $z:=\boldsymbol{Q}_{\gamma}^{\kappa_{-}}\left(\gamma_{-}\right)=\boldsymbol{Q}_{\gamma}^{\kappa_{+}}\left(\gamma_{+}\right)$which is nice,, i.e.:

$$
\operatorname{orb}(\partial J) \cap J^{\circ}=\emptyset .
$$

Monotonicity of entropy

The proof is based on the structure of the first return map R to a neighbourhood J of $z:=Q_{\gamma}^{\kappa_{-}}\left(\gamma_{-}\right)=Q_{\gamma}^{\kappa_{+}}\left(\gamma_{+}\right)$which is nice,, i.e.:

$$
\operatorname{orb}(\partial J) \cap J^{\circ}=\emptyset .
$$

Lemma: All branches of R are monotone onto, also the branches that contain a preimage $y \in Q_{\gamma}^{-N}(\gamma)$.

$$
\begin{aligned}
& R=Q_{\gamma}^{\tau} \text { for first } \\
& \text { return time } \tau:[0,1) \rightarrow \mathbb{N}
\end{aligned}
$$

$$
\begin{aligned}
& \tau\left(A_{-}\right)=N+\kappa_{-} \\
& \tau\left(A_{+}\right)=N+\kappa_{+}
\end{aligned}
$$

Monotonicity of entropy

The proof is based on the structure of the first return map R to a neighbourhood J of $z:=Q_{\gamma}^{\kappa_{-}}\left(\gamma_{-}\right)=Q_{\gamma}^{\kappa_{+}}\left(\gamma_{+}\right)$which is nice,, i.e.:

$$
\operatorname{orb}(\partial J) \cap J^{\circ}=\emptyset .
$$

Lemma: All branches of R are monotone onto, also the branches that contain a preimage $y \in Q_{\gamma}^{-N}(\gamma)$.

$$
\begin{aligned}
& R=Q_{\gamma}^{\tau} \text { for first } \\
& \text { return time } \tau:[0,1) \rightarrow \mathbb{N}
\end{aligned}
$$

$$
\begin{aligned}
& \tau\left(A_{-}\right)=N+\kappa_{-} \\
& \tau\left(A_{+}\right)=N+\kappa_{+}
\end{aligned}
$$

Corollary: R preserves Lebesgue measure m.

Monotonicity of entropy

Proof-sketch of the monotonicity theorem:

- $\int_{J} \tau d m$ increases by an amount proportional to $\eta:=\Delta \times$ increased proportion of $\left|A_{+}\right| /\left|A_{-}\right|$.
- Abramov's Formula: $h_{\mu}\left(Q_{\gamma}\right)=\frac{1}{\int_{J} \tau d m} h_{m}(R)$.
- Therefore $h_{\mu}\left(Q_{\gamma}\right)$ decreases due to increase of η.

Monotonicity of entropy

Proof-sketch of the monotonicity theorem:

- $\int_{J} \tau d m$ increases by an amount proportional to $\eta:=\Delta \times$ increased proportion of $\left|A_{+}\right| /\left|A_{-}\right|$.
- Abramov's Formula: $h_{\mu}\left(Q_{\gamma}\right)=\frac{1}{\int_{\jmath} \tau d m} h_{m}(R)$.
- Therefore $h_{\mu}\left(Q_{\gamma}\right)$ decreases due to increase of η.
- Topological entropy is the exponential growth-rate of number of periodic point.
- As γ moves within a matching interval, periodic points in J don't change,

Monotonicity of entropy

Proof-sketch of the monotonicity theorem:

- $\int_{J} \tau d m$ increases by an amount proportional to $\eta:=\Delta \times$ increased proportion of $\left|A_{+}\right| /\left|A_{-}\right|$.
- Abramov's Formula: $h_{\mu}\left(Q_{\gamma}\right)=\frac{1}{\int_{\jmath} \tau d m} h_{m}(R)$.
- Therefore $h_{\mu}\left(Q_{\gamma}\right)$ decreases due to increase of η.
- Topological entropy is the exponential growth-rate of number of periodic point.
- As γ moves within a matching interval, periodic points in J don't change,
- but their period increases by Δ as A_{+}absorbes them (when they previously belonged to A_{-}).

Monotonicity of entropy

Proof-sketch of the monotonicity theorem:

- $\int_{J} \tau d m$ increases by an amount proportional to $\eta:=\Delta \times$ increased proportion of $\left|A_{+}\right| /\left|A_{-}\right|$.
- Abramov's Formula: $h_{\mu}\left(Q_{\gamma}\right)=\frac{1}{\int_{\jmath} \tau d m} h_{m}(R)$.
- Therefore $h_{\mu}\left(Q_{\gamma}\right)$ decreases due to increase of η.
- Topological entropy is the exponential growth-rate of number of periodic point.
- As γ moves within a matching interval, periodic points in J don't change,
- but their period increases by Δ as A_{+}absorbes them (when they previously belonged to A_{-}).
- Hence the topological entropy decreases accordingly.

Pseudo-centers

Motivation: Find exact formulas for matching intervals J and their matching indices Δ for slope $s=2$ (also works for $2 \leq s \in \mathbb{N}$).

Pseudo-centers

Motivation: Find exact formulas for matching intervals J and their matching indices Δ for slope $s=2$ (also works for $2 \leq s \in \mathbb{N}$).

Let $\mathbb{Q}_{\text {dyd }}$ be the set of dyadic rationals in $(0,1]$.
Definition The pseudocenter of an interval $J \subset(0,1)$ is the (unique) dyadic rational $\xi \in \mathbb{Q}_{\text {dyd }}$ with minimal denominator.

Pseudo-centers

Motivation: Find exact formulas for matching intervals J and their matching indices Δ for slope $s=2$ (also works for $2 \leq s \in \mathbb{N}$).

Let $\mathbb{Q}_{\text {dyd }}$ be the set of dyadic rationals in $(0,1]$.
Definition The pseudocenter of an interval $J \subset(0,1)$ is the (unique) dyadic rational $\xi \in \mathbb{Q}_{\text {dyd }}$ with minimal denominator.

Definition

- For binary string u, let \check{u} be the bitwise negation of u.
- For $\xi \in \mathbb{Q}_{\text {dyd }} \backslash\{1\}$ and let w be the shortest even binary expansion of ξ and v be the shortest odd binary expansion of $1-\xi$.

Pseudo-centers

Motivation: Find exact formulas for matching intervals J and their matching indices Δ for slope $s=2$ (also works for $2 \leq s \in \mathbb{N}$).

Let $\mathbb{Q}_{\text {dyd }}$ be the set of dyadic rationals in $(0,1]$.
Definition The pseudocenter of an interval $J \subset(0,1)$ is the (unique) dyadic rational $\xi \in \mathbb{Q}_{\text {dyd }}$ with minimal denominator.

Definition

- For binary string u, let \check{u} be the bitwise negation of u.
- For $\xi \in \mathbb{Q}_{\text {dyd }} \backslash\{1\}$ and let w be the shortest even binary expansion of ξ and v be the shortest odd binary expansion of $1-\xi$.
- Define the interval $I_{\xi}:=\left(\xi_{L}, \xi_{R}\right)$ containing ξ where,
- $\xi_{L}:=. \bar{v} v, \quad \xi_{R}:=. \bar{w}$.
- Also define the "degenerate" interval $I_{1}:=(2 / 3,+\infty)$.

Pseudo-centers

In short: $I_{\xi}:=\left(\xi_{L}, \xi_{R}\right)$ with $\xi_{L}:=. \bar{v} v, \quad \xi_{R}:=. \bar{w}$.

Pseudo-centers

In short: $I_{\xi}:=\left(\xi_{L}, \xi_{R}\right)$ with $\xi_{L}:=\bar{v} v, \quad \xi_{R}:=. \bar{w}$.
If $\xi=1 / 2$ then $w=10, v=1$ and $\xi_{L}=\overline{01}, \xi_{R}=. \overline{10}$.
(01) $w=u 01 \Rightarrow \xi_{L}=. \overline{u 001 u ̌ 110}$;
(11) $w=u 11 \Rightarrow \xi_{L}=. \overline{u 101 u ̌ 010 ;}$
(010) $w=u 010 \Rightarrow \xi_{L}=. \overline{u 00 u ̌ 11 ; ~}$
(110) $w=u 110 \Rightarrow \xi_{L}=. \overline{u 10 u ̌ 01}$.

Pseudo-centers

In short: $I_{\xi}:=\left(\xi_{L}, \xi_{R}\right)$ with $\xi_{L}:=\bar{v} v, \quad \xi_{R}:=. \bar{w}$.
If $\xi=1 / 2$ then $w=10, v=1$ and $\xi_{L}=. \overline{01}, \xi_{R}=. \overline{10}$.
(01) $w=u 01 \Rightarrow \xi_{L}=. \overline{u 001 u ̌ 110 ;}$;
(11) $w=u 11 \Rightarrow \xi_{L}=. \overline{u 101 u ̌ 010 ;}$
(010) $w=u 010 \Rightarrow \xi_{L}=. \overline{u 00 u ̌ 11 ;} ;$
(110) $w=u 110 \Rightarrow \xi_{L}=. \overline{u 10 u ̌ 01}$.

ξ		ξ_{R}	ξ	
$\frac{1}{2}$	$=.10$	$\frac{2}{3}=. \overline{10}$		$=. \overline{01}$
$\frac{1}{4}$	$=.01$	$\frac{1}{3}=. \overline{01}$		$=. \overline{001110}$
$\frac{7}{32}$	$=.001110$	$\frac{2}{9}=. \overline{001110}$	3	$=. \overline{0011011001}$
$\frac{3}{16}$	$=.0011$	$\frac{1}{5}=. \overline{0011}$	$\frac{2}{11}$	$=. \overline{0010111010}$
$\frac{9}{64}$	$=.001001$	$\frac{1}{7}=. \overline{001}$	$\frac{4334}{16383}$	$=. \overline{00100011101110}$
$\frac{1}{8}$	$=.0010$	$\frac{2}{15}=. \overline{0010}$		$=. \overline{000111}$

Pseudo-centers

Theorem:

- All matching intervals have the form I_{ξ}, where $\xi \in \mathbb{Q}_{\text {dyd }}$ are precisely the pseudo-centers of the components of $\left[0, \frac{2}{3}\right] \backslash \mathcal{E}$.
- The matching index is

$$
\Delta(\xi)=\frac{3}{2}\left(|w|_{0}-|w|_{1}\right)
$$

where $|w|_{a}$ is the number of symbols a in w (the shortest even binary expansion of ξ).

Pseudo-centers

Theorem:

- All matching intervals have the form I_{ξ}, where $\xi \in \mathbb{Q}_{\text {dyd }}$ are precisely the pseudo-centers of the components of $\left[0, \frac{2}{3}\right] \backslash \mathcal{E}$.
- The matching index is

$$
\Delta(\xi)=\frac{3}{2}\left(|w|_{0}-|w|_{1}\right)
$$

where $|w|_{a}$ is the number of symbols a in w (the shortest even binary expansion of ξ).

Proposition: If $g^{k}(\gamma) \geq \frac{1}{6}$, then $\left|w_{0}\right|=|w|_{1}$. In particular, all matching intervals in $\left(\frac{1}{6}, \frac{2}{3}\right)$ have matching index $\Delta=0$.

Pseudo-centers

Metric and topological entropy for $\mathrm{s}=2$

Remark: This proposition explains constant entropy on all matching intervals in $\left(\frac{1}{6}, \frac{2}{3}\right)$. A no devil's staircase argument would give:

$$
h_{\mu}\left(Q_{\gamma}\right)=\log \left(\frac{1+\sqrt{5}}{2}\right) \quad \text { and } h_{\text {top }}\left(Q_{\gamma}\right)=\frac{2}{3} \log 2, \operatorname{quad}(\alpha=0)
$$

for all $\gamma \in\left[\frac{1}{6}, \frac{2}{3}\right]$.

Pseudo-centers (period doubling)

Pseudo-center $\xi=. w$ (even expansion) and $1-\xi=. v$ (odd exp). The matching interval is $I_{\xi}=\left[\xi_{L}, \xi_{R}\right]$ for $\xi_{L}=. \bar{v} v$ and $\xi_{R}=. \bar{w}$.

Pseudo-centers (period doubling)

Pseudo-center $\xi=. w$ (even expansion) and $1-\xi=. v$ (odd exp). The matching interval is $I_{\xi}=\left[\xi_{L}, \xi_{R}\right]$ for $\xi_{L}=. \bar{v} v$ and $\xi_{R}=. \bar{w}$. But ξ_{L} is also the right end-point of $I_{\xi_{1}}$ for $\xi_{1}=. \check{v} v$. We call this "period doubling". It repeats countably often, converging to ξ_{∞}.

$$
\underbrace{\xi_{\infty} \quad\left(\xi_{2}\right)_{L}=\left(\xi_{3}\right)_{R} \quad\left(\xi_{1}\right)_{L}=\left(\xi_{2}\right)_{R} \quad \xi_{L}=\left(\xi_{1}\right)_{R}}_{\xi_{\xi_{2}}} \quad \underset{\xi_{1}}{\xi} \quad \boldsymbol{I}_{\xi}
$$

Pseudo-centers (period doubling)

Pseudo-center $\xi=. w$ (even expansion) and $1-\xi=. v$ (odd exp).
The matching interval is $I_{\xi}=\left[\xi_{L}, \xi_{R}\right]$ for $\xi_{L}=. \bar{v} v$ and $\xi_{R}=. \bar{w}$. But ξ_{L} is also the right end-point of $I_{\xi_{1}}$ for $\xi_{1}=. \check{v} v$. We call this "period doubling". It repeats countably often, converging to ξ_{∞}.

$$
\underbrace{\xi_{\infty} \quad\left(\xi_{2}\right)_{L}=\left(\xi_{3}\right)_{R} \quad\left(\xi_{1}\right)_{L}=\left(\xi_{2}\right)_{R} \quad \xi_{L}=\left(\xi_{1}\right)_{R}}_{\xi_{\xi_{2}}} \quad \underset{\xi_{1}}{\xi} \quad \boldsymbol{I}_{\xi}
$$

Lemma: The pseudo-center of the next period doubling can be obtained from the previous using the substitution:

$$
\chi: \begin{array}{ll}
w \mapsto \check{v} v & \check{w} \mapsto v \check{v} \\
v \mapsto v w & \check{v} \mapsto \check{v} \check{w}
\end{array} .
$$

Thus the limit ξ_{∞} has s-adic expansion

$$
\xi_{\infty}=. \check{v} \check{w} v \check{v} v w \check{v} \check{w} v w \check{v} v \check{v} \check{w} \ldots
$$

Pseudo-centers (tuning windows)

Pseudo-center $\xi=. w$ (even expansion) and $1-\xi=. v$ (odd exp). The matching interval is $I_{\xi}=\left[\xi_{L}, \xi_{R}\right]$ for $\xi_{L}=. \overline{\bar{v} v}$ and $\xi_{R}=. \bar{w}$. The tuning interval is $T_{\xi}=\left[\xi_{T}, \xi_{R}\right]$ for $\xi_{T}=. \check{v} \overline{\mathscr{W}}$.
ξ_{T}

Pseudo-centers (tuning windows)

Pseudo-center $\xi=. w$ (even expansion) and $1-\xi=. v$ (odd exp). The matching interval is $I_{\xi}=\left[\xi_{L}, \xi_{R}\right]$ for $\xi_{L}=. \overline{\bar{v} v}$ and $\xi_{R}=. \bar{w}$. The tuning interval is $T_{\xi}=\left[\xi_{T}, \xi_{R}\right]$ for $\xi_{T}=. \check{v} \overline{\mathscr{W}}$.

Theorem: Let $K\left(\xi_{T}\right)=\left\{x: g^{k}(x) \geq \xi_{T} \forall k\right\}$. Then $x \in K\left(\xi_{T}\right) \cap T_{\xi}$ if and only if

$$
x=. \sigma_{1} \sigma_{2} \sigma_{3} \sigma_{4} \cdots
$$

for $\sigma_{1} \in\{w, \check{v}\}, \sigma_{j} \in\{w, v, \check{w}, \check{v}\}$ describing a path in the diagram.

Pseudo-centers (tuning windows)

Pseudo-center $\xi=. w$ (even expansion) and $1-\xi=. v$ (odd exp). The matching interval is $I_{\xi}=\left[\xi_{L}, \xi_{R}\right]$ for $\xi_{L}=. \overline{\bar{v} v}$ and $\xi_{R}=. \bar{w}$. The tuning interval is $T_{\xi}=\left[\xi_{T}, \xi_{R}\right]$ for $\xi_{T}=. \check{v} \overline{\mathscr{W}}$.

Theorem: Let $K\left(\xi_{T}\right)=\left\{x: g^{k}(x) \geq \xi_{T} \forall k\right\}$. Then $x \in K\left(\xi_{T}\right) \cap T_{\xi}$ if and only if

$$
x=. \sigma_{1} \sigma_{2} \sigma_{3} \sigma_{4} \cdots
$$

for $\sigma_{1} \in\{w, \check{v}\}, \sigma_{j} \in\{w, v, \check{w}, \check{v}\}$ describing a path in the diagram.
If $\Delta(\xi)=0$, all matching in T_{ξ} is neutral.

Shape of the entropy function

Question: We know that $\gamma \mapsto h\left(\mu_{\gamma}\right)$ is Hölder. Is $\gamma \mapsto h_{\text {top }}\left(Q_{\gamma}\right)$ Hölder?

Shape of the entropy function

Metric and topological entropy for $s=2$

Question: We know that $\gamma \mapsto h\left(\mu_{\gamma}\right)$ is Hölder. Is $\gamma \mapsto h_{\text {top }}\left(Q_{\gamma}\right)$ Hölder?

Conjecture: The neutral tuning windows are exactly the plateaus of (topological and metric) entropy.

Shape of the entropy function

Metric and topological entropy for $s=2$

Question: We know that $\gamma \mapsto h\left(\mu_{\gamma}\right)$ is Hölder. Is $\gamma \mapsto h_{\text {top }}\left(Q_{\gamma}\right)$ Hölder?

Conjecture: The neutral tuning windows are exactly the plateaus of (topological and metric) entropy.

References

冨 C. Bonanno, C. Carminati, S. Isola, G. Tiozzo, Dynamics of continued fractions and kneading sequences of unimodal maps, Discrete Contin. Dyn. Syst. 33 (2013), no. 4, 1313-1332.
V. Botella-Soler, J. A. Oteo, J. Ros, P. Glendinning, Families of piecewise linear maps with constant Lyapunov exponents, J. Phys. A: Math. Theor. 46125101
國 H. Bruin, C. Carminati, C. Kalle, Matching for generalised β-transformations, Indagationes Mathematicae, 28 (2017), no. 1, 55-73.
H. Bruin, C. Carminati, S. Marmi, A. Profeti, Matching in a family of piecewise affine interval maps, Preprint July 2016
C. Carminati, G. Tiozzo, Tuning and plateaux for the entropy of α-continued fractions, Nonlinearity 26 (2013), no. 4, 1049-1070.

囯 K. Dajani, C. Kalle, Invariant measures, matching and the frequency of O for signed binary expansions, Preprint 2017, arXiv:1703.06335.
H. Nakada, Metrical theory for a class of continued fraction transformations and their natural extensions, Tokyo J. Math. 4 (1981), 399-426

囲 H. Nakada, R. Natsui, The non-monotonicity of the entropy of α-continued fraction transformations, Nonlinearity, 21 (2008), 1207-1225.

