Matching for translated  $\beta$ -transformations.

Henk Bruin (University of Vienna)

joint with

Carlo Carminati (University of Pisa) Charlene Kalle (University of Leiden)



San Diego, January 2018

## Survey on Matching in 1D dynamics

#### including work of Dajani, Kalle and Bruin, Carminati, Marmi, Profeti





・ロト (四) (目) (目) (日) (日)

#### Conference in Hillerød, Denmark, 1993.



#### Translated $\beta$ -transformations

The translated  $\beta\text{-transformation}$  is defined as

$$T_{\beta, \alpha}: x \mapsto \beta x + \alpha \pmod{1}$$

We fix  $|\beta| > 1$ . Then  $T_{\alpha} : \mathbb{S}^1 \to \mathbb{S}^1$  has an acip  $\mu$  for all  $\alpha$ .

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

#### Translated $\beta$ -transformations

The translated  $\beta$ -transformation is defined as

$$T_{\beta,lpha}: x \mapsto \beta x + lpha \pmod{1}$$

We fix  $|\beta| > 1$ . Then  $T_{\alpha} : \mathbb{S}^1 \to \mathbb{S}^1$  has an acip  $\mu$  for all  $\alpha$ .



Figure: Density  $\frac{d\mu}{dx}$  for  $\beta = \frac{1}{2}(\sqrt{5}+1)$  and  $\beta = \sqrt[3]{7}$ .

The density is only? locally constant, if there is a Markov partition.

### Not Markov but Matching

For the family  $T_{\alpha}$ , there is no Markov partition in general, but something called matching takes can occur:

Definition: There is matching if there is an iterate  $\kappa > 0$  such that

 $\lim_{x\uparrow 0} T^{\kappa}_{\alpha}(x) = \lim_{x\downarrow 0} T^{\kappa}_{\alpha}(x)$ 

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

## Not Markov but Matching

For the family  $T_{\alpha}$ , there is no Markov partition in general, but something called matching takes can occur:

Definition: There is matching if there is an iterate  $\kappa > 0$  such that

 $\lim_{x\uparrow 0} T^{\kappa}_{\alpha}(x) = \lim_{x\downarrow 0} T^{\kappa}_{\alpha}(x)$ 

The pre-matching partition plays the role of Markov partition:

 $\{T^{j}_{\alpha}(0^{-})\}_{j=0}^{\kappa-1}\} \cup \{T^{j}_{\alpha}(0^{+})\}_{j=0}^{\kappa-1}\};$ 

#### Not Markov but Matching

For the family  $T_{\alpha}$ , there is no Markov partition in general, but something called matching takes can occur:

Definition: There is matching if there is an iterate  $\kappa > 0$  such that

 $\lim_{x\uparrow 0} T^{\kappa}_{\alpha}(x) = \lim_{x\downarrow 0} T^{\kappa}_{\alpha}(x)$ 

The pre-matching partition plays the role of Markov partition:

 $\{T^{j}_{\alpha}(0^{-})\}_{j=0}^{\kappa-1}\} \cup \{T^{j}_{\alpha}(0^{+})\}_{j=0}^{\kappa-1}\};$ 

Theorem: If  $T_{\alpha}$  has matching, then  $\rho = \frac{d\mu}{dx}$  is constant on each element of the pre-matching partition.

# The family $Q_{\gamma}$

The following family is conjuagte to the one studied by Botella-Soler, Oteo, Ros & Glendinning.

For fixed slope s > 1, take:

$$\mathcal{Q}_\gamma(x) = egin{cases} x+1, & x\leq\gamma\ 1+s(1-x), & x>\gamma \end{cases}$$



・ロッ ・雪 ・ ・ ヨ ・ ・ ヨ ・

# The family $Q_{\gamma}$

The following family is conjuagte to the one studied by Botella-Soler, Oteo, Ros & Glendinning.

For fixed slope s > 1, take:

$$Q_\gamma(x) = egin{cases} x+1, & x \leq \gamma \ 1+s(1-x), & x > \gamma \end{cases}$$



うして ふゆう ふほう ふほう うらつ

Matching occurs when there are  $\kappa_{\pm} \in \mathbb{N}$  such that

 $\lim_{x\uparrow\gamma} Q^{\kappa_-}_\gamma(x) = \lim_{x\downarrow\gamma} Q^{\kappa_+}_\gamma(x) \quad \text{ and } \quad \lim_{x\uparrow\gamma} DQ^{\kappa_-}_\gamma(x) = \lim_{x\downarrow\gamma} DQ^{\kappa_+}_\gamma(x)$ 

### The family $S_{\alpha}$ (Dajani & Kalle)

Dajani and Kalle study the following map:

$$\mathcal{S}_{lpha}(x) = egin{cases} 2x + lpha & x \in [-1, rac{1}{2}) \ 2x & x \in [-rac{1}{2}, rac{1}{2}] \ 2x - lpha & x \in (rac{1}{2}, 1] \end{cases}$$



▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

For  $\alpha \in (\frac{1}{2}, 1]$  there is a unique acip. There is a symmetry  $S_{\alpha}(-x) = -S_{\alpha}(x)$ .

## The family $S_{\alpha}$ (Dajani & Kalle)

Dajani and Kalle study the following map:

$$S_{\alpha}(x) = \begin{cases} 2x + \alpha & x \in [-1, \frac{1}{2}) \\ 2x & x \in [-\frac{1}{2}, \frac{1}{2}] \\ 2x - \alpha & x \in (\frac{1}{2}, 1] \end{cases}$$

For  $\alpha \in (\frac{1}{2}, 1]$  there is a unique acip. There is a symmetry  $S_{\alpha}(-x) = -S_{\alpha}(x)$ .

Matching occurs when there is  $\kappa \in \mathbb{N}$  such that

$$\lim_{x\uparrow \frac{1}{2}} S^{\kappa}_{\alpha}(x) = \lim_{x\downarrow \frac{1}{2}} S^{\kappa}_{\alpha}(x)$$

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ う へ つ ・

A generalization of the Gauß map stems from Nakada (and Natsui).



◆□▶ ◆◎▶ ◆□▶ ◆□▶ ─ □

A generalization of the Gauß map stems from Nakada (and Natsui).

◆□▶ ◆◎▶ ◆□▶ ◆□▶ ─ □



A generalization of the Gauß map stems from Nakada (and Natsui).

<ロ> (四) (四) (三) (三) (三) (三)



A generalization of the Gauß map stems from Nakada (and Natsui).

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで



A generalization of the Gauß map stems from Nakada (and Natsui).



Figure:  $A_{\alpha} : [\alpha - 1, \alpha] \to [\alpha - 1, \alpha], x \mapsto \left|\frac{1}{x}\right| - \left\lfloor\frac{1}{x} + 1 - \alpha\right\rfloor.$ 

うして ふゆう ふほう ふほう うらつ

All of them have invariant densities (infinite if  $\alpha = 0$ ).

A generalization of the Gauß map stems from Nakada (and Natsui).



Figure:  $A_{\alpha} : [\alpha - 1, \alpha] \to [\alpha - 1, \alpha], x \mapsto |\frac{1}{x}| - \lfloor \frac{1}{x} + 1 - \alpha \rfloor.$ 

All of them have invariant densities (infinite if  $\alpha = 0$ ).

Matching occurs if  $A_{\alpha}^{\kappa}(\alpha) = A_{\alpha}^{\kappa}(\alpha-1)$  for some  $\kappa \geq 1$ .

The pre-matching partition plays the role of Markov partition:

$$\{T^{j}_{\alpha}(0^{-})\}_{j=0}^{\kappa_{-}-1}\} \cup \{T^{j}_{\alpha}(0^{+})\}_{j=0}^{\kappa_{+}-1}\};$$

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

The pre-matching partition plays the role of Markov partition:

$$\{T^{j}_{\alpha}(0^{-})\}_{j=0}^{\kappa_{-}-1}\} \cup \{T^{j}_{\alpha}(0^{+})\}_{j=0}^{\kappa_{+}-1}\};$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ● ● ●

Theorem: If  $T_{\alpha}$  has matching, then  $\frac{d\mu}{dx}$  is constant on each element of the pre-matching partition.

The pre-matching partition plays the role of Markov partition:

 $\{T^{j}_{\alpha}(0^{-})\}_{j=0}^{\kappa_{-}-1}\} \cup \{T^{j}_{\alpha}(0^{+})\}_{j=0}^{\kappa_{+}-1}\};$ 

Theorem: If  $T_{\alpha}$  has matching, then  $\frac{d\mu}{dx}$  is constant on each element of the pre-matching partition.

This is a general theorem: If a piecewise affine expanding interval map  $T : [0,1] \rightarrow [0,1]$  has matching at all its discontinuity points, then  $\frac{d\mu}{dx}$  is constant on each element of the pre-matching partition.

The pre-matching partition plays the role of Markov partition:

 $\{T^{j}_{\alpha}(0^{-})\}_{j=0}^{\kappa_{-}-1}\} \cup \{T^{j}_{\alpha}(0^{+})\}_{j=0}^{\kappa_{+}-1}\};$ 

Theorem: If  $T_{\alpha}$  has matching, then  $\frac{d\mu}{dx}$  is constant on each element of the pre-matching partition.

This is a general theorem: If a piecewise affine expanding interval map  $T : [0,1] \rightarrow [0,1]$  has matching at all its discontinuity points, then  $\frac{d\mu}{dx}$  is constant on each element of the pre-matching partition.

The family of  $\alpha$ -continued fraction maps has Möbius branches. The density is piecewise Möbius, accordingly.



- Take a nice interval J disjoint from the matching set. (nice means that orb(∂J) ∩ J° = Ø).
- Consider the first return map R to J; it has only onto linear (or Möbius) branches.
- ▶ Hence the *R*-invariant denstity is constant (or Möbius).
- The *T*-invariant density coincides with *T*-invariant density (up to a scaling factor).

Matching is typical in parameter space



- x = 1 is fixed for all  $s \in \mathbb{R}$  and  $\gamma < 1$ ;
- For integer s ≥ 2, every point ps<sup>-m</sup>, p, m ∈ N, eventually maps to 1;

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

- Therefore matching occurs whenever  $\gamma = ps^{-m}$ ;
- Matching occurs on an open dense set!

Matching is typical in parameter space



- x = 1 is fixed for all  $s \in \mathbb{R}$  and  $\gamma < 1$ ;
- For integer s ≥ 2, every point ps<sup>-m</sup>, p, m ∈ N, eventually maps to 1;
- Therefore matching occurs whenever  $\gamma = ps^{-m}$ ;
- Matching occurs on an open dense set!

#### Something far more general is true:

Theorem: The above families  $Q_{\gamma}$ ,  $S_{\alpha}$  and  $A_{\alpha}$  have matching Lebesgue-a.e., but the set  $\mathcal{E}$  of non-matching parameters has Haussdorf dimension 1.

### $\alpha\text{-}\mathrm{continued}$ fractions and the Mandelbrot set

The matching for the  $\alpha$ -continued fraction is parallel to renormalization in the logistic family.



Figure: From a paper by Bonanno, Carminati, Isola and Tiozzo: The non-matching set and the real antenna of Mandelbrot set

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Let

 $g(x) := s(1-x) \bmod 1$ 

and R:(0,1)
ightarrow (0,1) be the first return of  $Q^k_\gamma(x)$  to [0,1).

Lemma:

$$R(x) = egin{cases} g(x) & ext{if } x \in (0,\gamma) \ g^2(x) & ext{if } x \in (\gamma,1) \end{cases}$$





Lemma: For fixed  $\gamma \in [0, 1]$ , the following conditions are equivalent:

(i)  $g^k(\gamma) < \gamma$  for some  $k \in \mathbb{N}$ ;

(ii) matching holds for  $\gamma$ .

In other words, the bifurcation set is

 $\mathcal{E} = \{ \gamma \in [0,1] : g^k(\gamma) \ge \gamma \ \forall k \in \mathbb{N} \}.$ 

・ロット 本語 医・本語 医・本語 マクク



▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

#### Proof of the Theorem:

 Lebesgue measure is preserved by g, so the Ergodic Theorem implies that

$$\inf\{g^k(\gamma): k \ge 1\} = 0$$
 for a.e.  $\gamma$ .

The previous lemma gives that each such  $\gamma \notin \mathcal{E}$ .



◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

#### Proof of the Theorem:

 Lebesgue measure is preserved by g, so the Ergodic Theorem implies that

$$\inf\{g^k(\gamma): k \ge 1\} = 0$$
 for a.e.  $\gamma$ .

The previous lemma gives that each such  $\gamma \notin \mathcal{E}$ .

• Define  $K(t) := \{x \in [0,1] : g^k(x) \ge t \ \forall k \ge 1\}.$ 



#### Proof of the Theorem:

 Lebesgue measure is preserved by g, so the Ergodic Theorem implies that

$$\inf\{g^k(\gamma): k \ge 1\} = 0$$
 for a.e.  $\gamma$ .

The previous lemma gives that each such  $\gamma \notin \mathcal{E}$ .

- Define  $K(t) := \{x \in [0,1] : g^k(x) \ge t \ \forall k \ge 1\}.$
- The Hausdorf dimension dim<sub>H</sub>(K(t)) → 1 and dim<sub>H</sub>(K(t) ∩ [0, 1]) → 1 as t → 0.



#### Proof of the Theorem:

 Lebesgue measure is preserved by g, so the Ergodic Theorem implies that

$$\inf\{g^k(\gamma): k \ge 1\} = 0$$
 for a.e.  $\gamma$ .

The previous lemma gives that each such  $\gamma \notin \mathcal{E}$ .

- Define  $K(t) := \{x \in [0,1] : g^k(x) \ge t \ \forall k \ge 1\}.$
- The Hausdorf dimension dim<sub>H</sub>(K(t)) → 1 and dim<sub>H</sub>(K(t) ∩ [0, 1]) → 1 as t → 0.
- Combine this with  $\mathcal{E} \cap [0, t] \supset K(t)$ .

## Typical matching for $T_{\alpha}$ : Quadratic Pisot Numbers

For the translated  $\beta$ -transformations, we need  $\beta$  to be Pisot! Then matching holds for Lebesgue-a.e. translation.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Typical matching for  $T_{\alpha}$ : Quadratic Pisot Numbers

For the translated  $\beta$ -transformations, we need  $\beta$  to be Pisot! Then matching holds for Lebesgue-a.e. translation.

The quadratic Pisot numbers are those  $\beta > 1$  satisfying

$$eta^2 - keta \pm d = 0$$
 with  $\begin{cases} k > d+1 & ext{if } d > 0, \\ k > d-1 & ext{if } d < 0. \end{cases}$ 

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ う へ つ ・

Theorem: If  $\beta$  is quadratic Pisot, then  $\dim_H(A_\beta) = \frac{\log d}{\log \beta}$ .

Typical matching for  $T_{\alpha}$ : Quadratic Pisot Numbers

For the translated  $\beta$ -transformations, we need  $\beta$  to be Pisot! Then matching holds for Lebesgue-a.e. translation.

The quadratic Pisot numbers are those  $\beta > 1$  satisfying

$$eta^2 - keta \pm d = 0$$
 with  $\begin{cases} k > d+1 & ext{if } d > 0, \\ k > d-1 & ext{if } d < 0. \end{cases}$ 

Theorem: If  $\beta$  is quadratic Pisot, then  $\dim_H(A_\beta) = \frac{\log d}{\log \beta}$ .

Hence dim<sub>*H*</sub>( $A_\beta$ ) = 0 if  $d = \pm 1$  (quadratic Pisot units). We conjecture that this is the only situation where dim<sub>*H*</sub>( $A_\beta$ ) = 0.

Proof: Matching for quadratic-Pisot-slope  $T_{\alpha}$ 

There are integers  $a_j$ ,  $b_j$  such that

 $T_{\alpha}^{n}(0) = (\beta^{n-1} + \dots + 1)\alpha - a_{n-2}\beta^{n-2} - \dots - a_{1}\beta - a_{0},$  $T_{\alpha}^{n}(1) = (\beta^{n-1} + \dots + 1)\alpha + \beta^{n} - b_{n-1}\beta^{n-1} - \dots - b_{1}\beta - b_{0}.$ 

Therefore matching at (minimal) iterate n requires

$$0 = T_{\alpha}^{n}(1) - T_{\alpha}^{n}(0) = \beta^{n} + \sum_{j=0}^{n-1} \beta^{j}(b_{j} - a_{j}).$$

Hence  $\beta$  has to be an algebraic integer.
There are integers  $a_j$ ,  $b_j$  such that

 $T_{\alpha}^{n}(0) = (\beta^{n-1} + \dots + 1)\alpha - a_{n-2}\beta^{n-2} - \dots - a_{1}\beta - a_{0},$  $T_{\alpha}^{n}(1) = (\beta^{n-1} + \dots + 1)\alpha + \beta^{n} - b_{n-1}\beta^{n-1} - \dots - b_{1}\beta - b_{0}.$ 

Therefore matching at (minimal) iterate *n* requires

$$0 = T_{\alpha}^{n}(1) - T_{\alpha}^{n}(0) = \beta^{n} + \sum_{j=0}^{n-1} \beta^{j}(b_{j} - a_{j}).$$

Hence  $\beta$  has to be an algebraic integer.

The integers  $b_j$ ,  $a_j$  depend on  $\alpha$ , but change only at a finite set. Hence, if matching occurs, it occurs on an entire interval.

Since  $\beta$  is an algebraic integer of order *n*, we can write

$$T^j_{lpha}(0)-T^j_{lpha}(1)=\sum_{k=1}^nrac{e_k(j)}{eta^k}\qquad e_k(j)\in\mathbb{Z}.$$

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ うらつ

The  $\alpha$ -dependence is only in the integers  $e_k(j) = e_k(j, \alpha)$ 

Since  $\beta$  is an algebraic integer of order *n*, we can write

$$T^j_lpha(0)-T^j_lpha(1)=\sum_{k=1}^nrac{e_k(j)}{eta^k}\qquad e_k(j)\in\mathbb{Z}.$$

The  $\alpha$ -dependence is only in the integers  $e_k(j) = e_k(j, \alpha)$ Lemma (Sample Lemma) If  $|T^j_{\alpha}(0) - T^j_{\alpha}(1)| = 1/\beta$ , then there is matching at iterate j + 1.

うして ふゆう ふほう ふほう うらつ

Since  $\beta$  is an algebraic integer of order *n*, we can write

$$T^j_lpha(0)-T^j_lpha(1)=\sum_{k=1}^nrac{e_k(j)}{eta^k}\qquad e_k(j)\in\mathbb{Z}.$$

The  $\alpha$ -dependence is only in the integers  $e_k(j) = e_k(j, \alpha)$ Lemma (Sample Lemma) If  $|T^j_{\alpha}(0) - T^j_{\alpha}(1)| = 1/\beta$ , then there is matching at iterate j + 1.

Proof. If  $|T_{\alpha}^{j}(0) - T_{\alpha}^{j}(1)| = 1/\beta$ , then  $T_{\alpha}^{j}(0)$  and  $T_{\alpha}^{j}(1)$  belong to neighbouring branch-domains of  $T_{\alpha}$ , and their images are the same.

うして ふゆう ふほう ふほう うらつ

# The maps $T_{\alpha}$



# The maps $T_{\alpha}$



▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへの

## The maps $T_{\alpha}$



and  $g_{\alpha}$ 

We sketch the proof for  $\beta^2 - k\beta - d = 0$ ,  $k \in \mathbb{N}$ , so  $k - 1 < \beta < k$  and  $T_{\alpha}$  has k or k + 1 branches.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

We sketch the proof for  $\beta^2 - k\beta - d = 0$ ,  $k \in \mathbb{N}$ , so  $k - 1 < \beta < k$  and  $T_{\alpha}$  has k or k + 1 branches.

Lemma: If  $\alpha \in [k - \beta, 1)$ , then  $T_{\alpha}$  has k + 1 branches, but there is matching after two steps.

We sketch the proof for  $\beta^2 - k\beta - d = 0$ ,  $k \in \mathbb{N}$ , so  $k - 1 < \beta < k$  and  $T_{\alpha}$  has k or k + 1 branches.

Lemma: If  $\alpha \in [k - \beta, 1)$ , then  $T_{\alpha}$  has k + 1 branches, but there is matching after two steps.

Hence, take  $\alpha \in [0, k - \beta)$  and call the domains of the branches  $\Delta_0, \ldots, \Delta_k$ . Compute

$$T_{lpha}(1)=eta+lpha_{=T(0)}-(k-1)=T_{lpha}(0)+ec{eta-(k-1)}{\gamma},$$

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ うらつ

We sketch the proof for  $\beta^2 - k\beta - d = 0$ ,  $k \in \mathbb{N}$ , so  $k - 1 < \beta < k$  and  $T_{\alpha}$  has k or k + 1 branches.

Lemma: If  $\alpha \in [k - \beta, 1)$ , then  $T_{\alpha}$  has k + 1 branches, but there is matching after two steps.

Hence, take  $\alpha \in [0, k - \beta)$  and call the domains of the branches  $\Delta_0, \ldots, \Delta_k$ . Compute

$$\mathcal{T}_{lpha}(1)=eta+ \underbrace{lpha}_{=\mathcal{T}(0)}-(k-1)=\mathcal{T}_{lpha}(0)+ \underbrace{eta-(k-1)}_{\gamma}.$$

Lemma: If  $T^{\ell}(0) \in \Delta_i$  and  $T^{\ell}(1) \in \Delta_{i+(k-1)-d}$  for  $1 \leq \ell < n, i = i(\ell)$ , then

 $T^n(1) - T^n(0) = \gamma.$ 

Lemma: If  $T^{n-1}(0) \in \Delta_i$  and  $T^{n-1}(1) \in \Delta_{i+k-d}$  then the distance  $|T^n(1) - T^n(0)| = \frac{d}{\beta}$  and there is matching in 2 steps.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Lemma: If  $T^{n-1}(0) \in \Delta_i$  and  $T^{n-1}(1) \in \Delta_{i+k-d}$  then the distance  $|T^n(1) - T^n(0)| = \frac{d}{\beta}$  and there is matching in 2 steps.

Hence, to avoid as matching,  $T^{\ell}(0)$  has to avoid the sets

$$V_i := \{x \in \Delta(i) : x + \gamma \in \Delta(i + k - d)\} \\ = \left[\frac{i + k - d - \alpha}{\beta_k} - \gamma, \frac{i + 1 - \alpha}{\beta_k}\right].$$

Lemma: If  $T^{n-1}(0) \in \Delta_i$  and  $T^{n-1}(1) \in \Delta_{i+k-d}$  then the distance  $|T^n(1) - T^n(0)| = \frac{d}{\beta}$  and there is matching in 2 steps.

Hence, to avoid as matching,  $T^{\ell}(0)$  has to avoid the sets

$$V_i := \{x \in \Delta(i) : x + \gamma \in \Delta(i + k - d)\} \\= \left[\frac{i + k - d - \alpha}{\beta_k} - \gamma, \frac{i + 1 - \alpha}{\beta_k}\right].$$

Lemma: If

$$T^n(0) \in V = \cup_{i=0}^{d-1} V_i$$

then there is matching in two steps.

Lemma: The map  $g: [0, 1-\beta] \rightarrow [0, 1-\beta]$ ,

$$g_{lpha}(x) := egin{cases} k-eta & ext{if } x \in V, \ T_{lpha}(x) & ext{otherwise.} \end{cases}$$

is a non-decreasing degree d circle endomorpism, and  $g^n(0) \in V$  for some n > 1 precisely if  $k - \beta$  is periodic.

ション ふゆ アメリア メリア しょうくの

Lemma: The map  $g : [0, 1 - \beta] \rightarrow [0, 1 - \beta]$ ,

$$g_{lpha}(x) := egin{cases} k-eta & ext{if } x \in V, \ T_{lpha}(x) & ext{otherwise.} \end{cases}$$

is a non-decreasing degree d circle endomorpism, and  $g^n(0) \in V$  for some n > 1 precisely if  $k - \beta$  is periodic.

Lemma: Define

 $X_{\alpha} = \{x \in \mathbb{S}^1 : g_{\alpha}^n(x) \notin V \text{ for all } n \ge 0\}.$ 

If there is no matching, then  $\dim_H(X_\alpha) = \frac{\log d}{\log \beta}$ .

Lemma: The map  $g : [0, 1 - \beta] \rightarrow [0, 1 - \beta]$ ,

$$g_{lpha}(x) := egin{cases} k-eta & ext{if } x \in V, \ T_{lpha}(x) & ext{otherwise}. \end{cases}$$

is a non-decreasing degree d circle endomorpism, and  $g^n(0) \in V$  for some n > 1 precisely if  $k - \beta$  is periodic.

Lemma: Define

 $X_{\alpha} = \{x \in \mathbb{S}^1 : g_{\alpha}^n(x) \notin V \text{ for all } n \geq 0\}.$ 

If there is no matching, then  $\dim_H(X_{\alpha}) = \frac{\log d}{\log \beta}$ .

Idea of Proof. For each *n*, we cover  $X_{\alpha}$  by  $O(d^n)$  intervals of length  $\beta^{-n}$ .

Proof for  $\beta^2 - k\beta - d = 0$ .

The task is to transfer the previous lemma from dynamical to parameter space.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Proof for  $\beta^2 - k\beta - d = 0$ .

The task is to transfer the previous lemma from dynamical to parameter space.

ション ふゆ アメリア メリア しょうくの

• Use that  $\alpha \mapsto T^n(\alpha)$  is piecewise linear with slope  $\frac{\beta^n-1}{\beta-1}$ .

Proof for  $\beta^2 - k\beta - d = 0$ .

- The task is to transfer the previous lemma from dynamical to parameter space.
- Use that  $\alpha \mapsto T^n(\alpha)$  is piecewise linear with slope  $\frac{\beta^n-1}{\beta-1}$ .
- ► On the other hand, the intervals U in the cover of the previous lemma move with fixed speed (independent of n).

うして ふゆう ふほう ふほう うらつ

Proof for  $\beta^2 - k\beta - d = 0$ .

- The task is to transfer the previous lemma from dynamical to parameter space.
- Use that  $\alpha \mapsto T^n(\alpha)$  is piecewise linear with slope  $\frac{\beta^n-1}{\beta-1}$ .
- ► On the other hand, the intervals U in the cover of the previous lemma move with fixed speed (independent of n).

Therefore, for each n, the set A<sub>α</sub> can be covered by O(d<sup>n</sup>) intervals of length O(β<sup>-n</sup>).

If T has constant slope  $\beta$ , then the entropy

$$h_{top}(T) = h_{\mu}(T) = \log \beta.$$

For  $Q_{\gamma}$  (non-constant slope!) we have the following result:



If T has constant slope  $\beta$ , then the entropy

$$h_{top}(T) = h_{\mu}(T) = \log \beta.$$

For  $Q_{\gamma}$  (non-constant slope!) we have the following result:



Theorem: Call  $\Delta = \kappa_+ - \kappa_-$  the matching index of  $Q_{\gamma}$ . Topological and metric entropy are

$$h_{\mu}(Q_{\gamma}) ext{ and } h_{top}(Q_{\gamma}) ext{ are } \left\{ egin{array}{ll} ext{decreasing} & ext{if } \Delta < 0; \ ext{constant} & ext{if } \Delta = 0; \ ext{increasing} & ext{if } \Delta > 0, \end{array} 
ight.$$

as function of  $\gamma$  within matching intervals.

The numerics for  $h_{top}(Q_{\gamma})$  and  $h_{\mu}(Q_{\gamma})$  suggest self-similarities in the graphs.



▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … 釣�?

The proof is based on the structure of the first return map R to a neighbourhood J of  $z := Q_{\gamma}^{\kappa_{-}}(\gamma_{-}) = Q_{\gamma}^{\kappa_{+}}(\gamma_{+})$  which is nice,

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

The proof is based on the structure of the first return map R to a neighbourhood J of  $z := Q_{\gamma}^{\kappa_{-}}(\gamma_{-}) = Q_{\gamma}^{\kappa_{+}}(\gamma_{+})$  which is nice,, i.e.:

 $\operatorname{orb}(\partial J) \cap J^{\circ} = \emptyset.$ 

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

The proof is based on the structure of the first return map R to a neighbourhood J of  $z := Q_{\gamma}^{\kappa_{-}}(\gamma_{-}) = Q_{\gamma}^{\kappa_{+}}(\gamma_{+})$  which is nice,, i.e.:

 $\operatorname{orb}(\partial J) \cap J^{\circ} = \emptyset.$ 

Lemma: All branches of R are monotone onto, also the branches that contain a preimage  $y \in Q_{\gamma}^{-N}(\gamma)$ .

 $egin{aligned} R &= Q_{\gamma}^{ au} ext{ for first} \ ext{return time } au: [0,1) o \mathbb{N} \ && \ au(A_{-}) = N + \kappa_{-} \ && \ au(A_{+}) = N + \kappa_{+} \end{aligned}$ 



◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

The proof is based on the structure of the first return map R to a neighbourhood J of  $z := Q_{\gamma}^{\kappa_{-}}(\gamma_{-}) = Q_{\gamma}^{\kappa_{+}}(\gamma_{+})$  which is nice,, i.e.:

 $\operatorname{orb}(\partial J) \cap J^{\circ} = \emptyset.$ 

Lemma: All branches of *R* are monotone onto, also the branches that contain a preimage  $y \in Q_{\gamma}^{-N}(\gamma)$ .



うして 山口 マル・ト・ トレート

Corollary: R preserves Lebesgue measure m.

#### Proof-sketch of the monotonicity theorem:

- $\int_J \tau \, dm$  increases by an amount proportional to  $\eta := \Delta \times$  increased proportion of  $|A_+|/|A_-|$ .
- Abramov's Formula:  $h_{\mu}(Q_{\gamma}) = \frac{1}{\int_{L^{\tau}} dm} h_{m}(R)$ .
- Therefore  $h_{\mu}(Q_{\gamma})$  decreases due to increase of  $\eta$ .

うして ふゆう ふほう ふほう うらつ

#### Proof-sketch of the monotonicity theorem:

- $\int_J \tau \, dm$  increases by an amount proportional to  $\eta := \Delta \times$  increased proportion of  $|A_+|/|A_-|$ .
- Abramov's Formula:  $h_{\mu}(Q_{\gamma}) = \frac{1}{\int_{L^{\tau}} dm} h_{m}(R)$ .
- Therefore  $h_{\mu}(Q_{\gamma})$  decreases due to increase of  $\eta$ .
- Topological entropy is the exponential growth-rate of number of periodic point.
- As γ moves within a matching interval, periodic points in J don't change,

#### Proof-sketch of the monotonicity theorem:

- $\int_J \tau \ dm$  increases by an amount proportional to  $\eta := \Delta \times$  increased proportion of  $|A_+|/|A_-|$ .
- Abramov's Formula:  $h_{\mu}(Q_{\gamma}) = \frac{1}{\int_{L^{\tau}} dm} h_{m}(R)$ .
- Therefore  $h_{\mu}(Q_{\gamma})$  decreases due to increase of  $\eta$ .
- Topological entropy is the exponential growth-rate of number of periodic point.
- As γ moves within a matching interval, periodic points in J don't change,
- but their period increases by ∆ as A<sub>+</sub> absorbes them (when they previously belonged to A<sub>-</sub>).

#### Proof-sketch of the monotonicity theorem:

- $\int_J \tau \ dm$  increases by an amount proportional to  $\eta := \Delta \times$  increased proportion of  $|A_+|/|A_-|$ .
- Abramov's Formula:  $h_{\mu}(Q_{\gamma}) = \frac{1}{\int_{L^{\tau}} dm} h_{m}(R)$ .
- Therefore  $h_{\mu}(Q_{\gamma})$  decreases due to increase of  $\eta$ .
- Topological entropy is the exponential growth-rate of number of periodic point.
- As γ moves within a matching interval, periodic points in J don't change,
- but their period increases by ∆ as A<sub>+</sub> absorbes them (when they previously belonged to A<sub>-</sub>).
- ► Hence the topological entropy decreases accordingly.

Motivation: Find exact formulas for matching intervals J and their matching indices  $\Delta$  for slope s = 2 (also works for  $2 \le s \in \mathbb{N}$ ).

Motivation: Find exact formulas for matching intervals J and their matching indices  $\Delta$  for slope s = 2 (also works for  $2 \le s \in \mathbb{N}$ ).

Let  $\mathbb{Q}_{dyd}$  be the set of dyadic rationals in (0, 1].

Definition The pseudocenter of an interval  $J \subset (0, 1)$  is the (unique) dyadic rational  $\xi \in \mathbb{Q}_{dyd}$  with minimal denominator.

ション ふゆ アメリア メリア しょうくの

Motivation: Find exact formulas for matching intervals J and their matching indices  $\Delta$  for slope s = 2 (also works for  $2 \le s \in \mathbb{N}$ ).

Let  $\mathbb{Q}_{dyd}$  be the set of dyadic rationals in (0, 1].

Definition The pseudocenter of an interval  $J \subset (0, 1)$  is the (unique) dyadic rational  $\xi \in \mathbb{Q}_{dyd}$  with minimal denominator.

#### Definition

- For binary string u, let  $\check{u}$  be the bitwise negation of u.
- For ξ ∈ Q<sub>dyd</sub> \ {1} and let w be the shortest even binary expansion of ξ and v be the shortest odd binary expansion of 1 − ξ.

Motivation: Find exact formulas for matching intervals J and their matching indices  $\Delta$  for slope s = 2 (also works for  $2 \le s \in \mathbb{N}$ ).

Let  $\mathbb{Q}_{dyd}$  be the set of dyadic rationals in (0, 1].

Definition The pseudocenter of an interval  $J \subset (0, 1)$  is the (unique) dyadic rational  $\xi \in \mathbb{Q}_{dyd}$  with minimal denominator.

#### Definition

- For binary string u, let  $\check{u}$  be the bitwise negation of u.
- For ξ ∈ Q<sub>dyd</sub> \ {1} and let w be the shortest even binary expansion of ξ and v be the shortest odd binary expansion of 1 − ξ.

- Define the interval  $I_{\xi} := (\xi_L, \xi_R)$  containing  $\xi$  where,
- $\blacktriangleright \ \xi_L := . \overline{\check{v}v}, \quad \xi_R := . \overline{w}.$
- Also define the "degenerate" interval  $I_1 := (2/3, +\infty)$ .
In short: 
$$I_{\xi} := (\xi_L, \xi_R)$$
 with  $\xi_L := .\overline{v}v$ ,  $\xi_R := .\overline{w}$ .

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

In short:  $l_{\xi} := (\xi_L, \xi_R)$  with  $\xi_L := .\overline{v}v$ ,  $\xi_R := .\overline{w}$ . If  $\xi = 1/2$  then w = 10, v = 1 and  $\xi_L = .\overline{01}$ ,  $\xi_R = .\overline{10}$ . (01)  $w = u01 \Rightarrow \xi_L = .\overline{u001}\overline{u110}$ ; (11)  $w = u11 \Rightarrow \xi_L = .\overline{u101}\overline{u010}$ ; (010)  $w = u010 \Rightarrow \xi_L = .\overline{u00}\overline{u11}$ ; (110)  $w = u110 \Rightarrow \xi_L = .\overline{u10}\overline{u01}$ .

| In short: $I_{\xi} := (\xi_L, \xi_R)$ with $\xi_L := .\overline{\check{v}v},  \xi_R := .\overline{w}.$ |                                                                                                                                                  |                                                                                                                 |
|--------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|
| If $\xi = 1/2$ then $w = 10$ , $v = 1$ and $\xi_L = .\overline{01}$ , $\xi_R = .\overline{10}$ .       |                                                                                                                                                  |                                                                                                                 |
| (01) $w = u01 \Rightarrow \xi_L = .\overline{u001}\check{u}110;$                                       |                                                                                                                                                  |                                                                                                                 |
| (11) $w = u11 \Rightarrow \xi_L = .\overline{u101\check{u}010};$                                       |                                                                                                                                                  |                                                                                                                 |
| $(010)  w = u010 \Rightarrow \xi_L = .\overline{u00\check{u}11};$                                      |                                                                                                                                                  |                                                                                                                 |
| (110) $w = u 110 \Rightarrow \xi_L = .\overline{u 10 \check{u} 01}.$                                   |                                                                                                                                                  |                                                                                                                 |
| ξ                                                                                                      | ξR                                                                                                                                               | ξL                                                                                                              |
| $\frac{\frac{1}{2}}{\frac{1}{4}} = .10$ $\frac{\frac{1}{4}}{\frac{7}{32}} = .001$                      | $\begin{array}{rcl} \frac{2}{3} & = & .\overline{10} \\ \frac{1}{3} & = & .\overline{01} \\ \frac{2}{9} & = & .\overline{001110} \\ \end{array}$ | $ \frac{\frac{1}{3}}{\frac{2}{9}} = .\overline{01} $ $ \frac{\frac{7}{33}}{\frac{7}{33}} = .\overline{001101} $ |
| $\frac{\frac{3}{16}}{\frac{9}{64}} = .0011$ $\frac{9}{64} = .001001$                                   | $\frac{1}{5} = .\overline{0011}$ $\frac{1}{7} = .\overline{001}$ $\frac{1}{2} = .\overline{0010}$                                                | $\frac{\frac{2}{11}}{\frac{4334}{16383}} = .\overline{00100111010}$                                             |
| $\frac{1}{8}$ – .0010                                                                                  | $ \frac{1}{15}0010$                                                                                                                              | $\frac{1}{9}$ – .000111                                                                                         |

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

#### Theorem:

- All matching intervals have the form *I<sub>ξ</sub>*, where *ξ* ∈ Q<sub>dyd</sub> are precisely the pseudo-centers of the components of [0, <sup>2</sup>/<sub>3</sub>] \ *E*.
- The matching index is

$$\Delta(\xi) = \frac{3}{2}(|w|_0 - |w|_1),$$

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ うらつ

where  $|w|_a$  is the number of symbols *a* in *w* (the shortest even binary expansion of  $\xi$ ).

#### Theorem:

- All matching intervals have the form *I*<sub>ξ</sub>, where ξ ∈ Q<sub>dyd</sub> are precisely the pseudo-centers of the components of [0, <sup>2</sup>/<sub>3</sub>] \ ε.
- The matching index is

$$\Delta(\xi) = \frac{3}{2}(|w|_0 - |w|_1),$$

where  $|w|_a$  is the number of symbols *a* in *w* (the shortest even binary expansion of  $\xi$ ).

Proposition: If  $g^k(\gamma) \ge \frac{1}{6}$ , then  $|w_0| = |w|_1$ . In particular, all matching intervals in  $(\frac{1}{6}, \frac{2}{3})$  have matching index  $\Delta = 0$ .



**Remark**: This proposition explains constant entropy on all matching intervals in  $(\frac{1}{6}, \frac{2}{3})$ . A no devil's staircase argument would give:

$$h_{\mu}(Q_{\gamma}) = \log(\frac{1+\sqrt{5}}{2}) \quad \text{and} \ h_{top}(Q_{\gamma}) = \frac{2}{3}\log 2, quad(\alpha = 0)$$
for all  $\gamma \in [\frac{1}{6}, \frac{2}{3}].$ 

### Pseudo-centers (period doubling)

Pseudo-center  $\xi = .w$  (even expansion) and  $1 - \xi = .v$  (odd exp). The matching interval is  $I_{\xi} = [\xi_L, \xi_R]$  for  $\xi_L = .\overline{v}v$  and  $\xi_R = .\overline{w}$ .

(ロ) (型) (E) (E) (E) (O)

#### Pseudo-centers (period doubling)

Pseudo-center  $\xi = .w$  (even expansion) and  $1 - \xi = .v$  (odd exp). The matching interval is  $I_{\xi} = [\xi_L, \xi_R]$  for  $\xi_L = .\overline{v}\overline{v}$  and  $\xi_R = .\overline{w}$ . But  $\xi_L$  is also the right end-point of  $I_{\xi_1}$  for  $\xi_1 = .vv$ . We call this "period doubling". It repeats countably often, converging to  $\xi_{\infty}$ .

$$\xi_{\infty} \quad (\xi_2)_L = (\xi_3)_R \quad (\xi_1)_L = (\xi_2)_R \quad \xi_L = (\xi_1)_R \quad \xi \qquad \xi_R$$

#### Pseudo-centers (period doubling)

Pseudo-center  $\xi = .w$  (even expansion) and  $1 - \xi = .v$  (odd exp). The matching interval is  $I_{\xi} = [\xi_L, \xi_R]$  for  $\xi_L = .\overline{v}v$  and  $\xi_R = .\overline{w}$ . But  $\xi_L$  is also the right end-point of  $I_{\xi_1}$  for  $\xi_1 = .vv$ . We call this "period doubling". It repeats countably often, converging to  $\xi_{\infty}$ .

$$\xi_{\infty} \quad (\xi_2)_L = (\xi_3)_R \quad (\xi_1)_L = (\xi_2)_R \quad \xi_L = (\xi_1)_R \quad \xi \qquad \xi_R$$

Lemma: The pseudo-center of the next period doubling can be obtained from the previous using the substitution:

$$\chi: \begin{array}{ccc} w \mapsto \check{v}v & \check{w} \mapsto v\check{v} \\ v \mapsto vw & \check{v} \mapsto \check{v}\check{w} \end{array}$$

Thus the limit  $\xi_{\infty}$  has *s*-adic expansion

$$\xi_{\infty} = .\check{v}\check{w}v\check{v}vw\check{v}\check{w}vw\check{v}v\check{v}\check{w}\dots$$

ション ふゆ く 山 マ チャット しょうくしゃ

### Pseudo-centers (tuning windows)

Pseudo-center  $\xi = .w$  (even expansion) and  $1 - \xi = .v$  (odd exp). The matching interval is  $I_{\xi} = [\xi_L, \xi_R]$  for  $\xi_L = .\overline{v}\overline{v}$  and  $\xi_R = .\overline{w}$ . The tuning interval is  $T_{\xi} = [\xi_T, \xi_R]$  for  $\xi_T = .\overline{v}\overline{w}$ .



## Pseudo-centers (tuning windows)

Pseudo-center  $\xi = .w$  (even expansion) and  $1 - \xi = .v$  (odd exp). The matching interval is  $I_{\xi} = [\xi_L, \xi_R]$  for  $\xi_L = .\overline{v}\overline{v}$  and  $\xi_R = .\overline{w}$ . The tuning interval is  $T_{\xi} = [\xi_T, \xi_R]$  for  $\xi_T = .\overline{v}\overline{w}$ .



Theorem: Let  $K(\xi_T) = \{x : g^k(x) \ge \xi_T \ \forall k\}$ . Then  $x \in K(\xi_T) \cap T_{\xi}$  if and only if  $x = .\sigma_1 \sigma_2 \sigma_3 \sigma_4 ...$ for  $\sigma_1 \in \{w, \check{v}\}, \sigma_j \in \{w, v, \check{w}, \check{v}\}$ describing a path in the diagram.  $\check{v}$ 

## Pseudo-centers (tuning windows)

Pseudo-center  $\xi = .w$  (even expansion) and  $1 - \xi = .v$  (odd exp). The matching interval is  $I_{\xi} = [\xi_L, \xi_R]$  for  $\xi_L = .\overline{v}\overline{v}$  and  $\xi_R = .\overline{w}$ . The tuning interval is  $T_{\xi} = [\xi_T, \xi_R]$  for  $\xi_T = .\overline{v}\overline{w}$ .



Theorem: Let  $K(\xi_T) = \{x : g^k(x) \ge \xi_T \ \forall k\}$ . Then  $x \in K(\xi_T) \cap T_{\xi}$  if and only if  $x = .\sigma_1 \sigma_2 \sigma_3 \sigma_4 ...$ for  $\sigma_1 \in \{w, \check{v}\}, \sigma_j \in \{w, v, \check{w}, \check{v}\}$   $\circlearrowright$   $\overleftrightarrow$ describing a path in the diagram. If  $\Delta(\xi) = 0$ , all matching in  $T_{\xi}$  is neutral.  $\widecheck{v}$ 

## Shape of the entropy function



Question: We know that  $\gamma \mapsto h(\mu_{\gamma})$  is Hölder. Is  $\gamma \mapsto h_{top}(Q_{\gamma})$  Hölder?

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

# Shape of the entropy function



Question: We know that  $\gamma \mapsto h(\mu_{\gamma})$  is Hölder. Is  $\gamma \mapsto h_{top}(Q_{\gamma})$  Hölder?

Conjecture: The neutral tuning windows are exactly the plateaus of (topological and metric) entropy.

# Shape of the entropy function



Question: We know that  $\gamma \mapsto h(\mu_{\gamma})$  is Hölder. Is  $\gamma \mapsto h_{top}(Q_{\gamma})$  Hölder?

Conjecture: The neutral tuning windows are exactly the plateaus of (topological and metric) entropy.

#### References

- C. Bonanno, C. Carminati, S. Isola, G. Tiozzo, *Dynamics of continued fractions and kneading sequences of unimodal maps,* Discrete Contin. Dyn. Syst. **33** (2013), no. 4, 1313–1332.
- V. Botella-Soler, J. A. Oteo, J. Ros, P. Glendinning, Families of piecewise linear maps with constant Lyapunov exponents, J. Phys. A: Math. Theor. 46 125101
- H. Bruin, C. Carminati, C. Kalle, *Matching for generalised* β-transformations, Indagationes Mathematicae, 28 (2017), no. 1, 55-73.
- H. Bruin, C. Carminati, S. Marmi, A. Profeti, Matching in a family of piecewise affine interval maps, Preprint July 2016
- C. Carminati, G. Tiozzo, Tuning and plateaux for the entropy of α-continued fractions, Nonlinearity 26 (2013), no. 4, 1049–1070.

- K. Dajani, C. Kalle, *Invariant measures, matching and the frequency* of 0 for signed binary expansions, Preprint 2017, arXiv:1703.06335.
- H. Nakada, Metrical theory for a class of continued fraction transformations and their natural extensions, Tokyo J. Math. 4 (1981), 399–426
  - H. Nakada, R. Natsui, The non-monotonicity of the entropy of α-continued fraction transformations, Nonlinearity, 21 (2008), 1207–1225.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●