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Translated β-transformations
The translated β-transformation is defined as














Tβ,α : x 7→ βx + α (mod 1)

We fix |β| > 1. Then Tα : S1 → S1 has an acip µ for all α.
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The density is only? locally constant, if there is a Markov partition.
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Not Markov but Matching

For the family Tα, there is no Markov partition in general, but
something called matching takes can occur:

Definition: There is matching if there is an iterate κ > 0 such that

lim
x↑0

Tκ
α (x) = lim

x↓0
Tκ
α (x)

The pre-matching partition plays the role of Markov partition:

{T j
α(0−)}κ−1

j=0 } ∪ {T
j
α(0+)}κ−1

j=0 };

Theorem: If Tα has matching, then ρ = dµ
dx is constant on each

element of the pre-matching partition.
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The family Qγ

The following family is conjuagte to the one studied by
Botella-Soler, Oteo, Ros & Glendinning.

For fixed slope s > 1, take:
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Qγ(x) =

{
x + 1, x ≤ γ
1 + s(1− x), x > γ

Matching occurs when there are κ± ∈ N such that

lim
x↑γ

Qκ−
γ (x) = lim

x↓γ
Qκ+
γ (x) and lim

x↑γ
DQκ−

γ (x) = lim
x↓γ

DQκ+
γ (x)
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The family Sα (Dajani & Kalle)

Dajani and Kalle study the following map:
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Sα(x) =


2x + α x ∈ [−1, 1

2)

2x x ∈ [−1
2 ,

1
2 ]

2x − α x ∈ (1
2 , 1]

For α ∈ (1
2 , 1] there is a unique acip. There is a symmetry

Sα(−x) = −Sα(x).

Matching occurs when there is κ ∈ N such that

lim
x↑ 1

2

Sκα(x) = lim
x↓ 1

2

Sκα(x)
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The α-continued fraction map Aα.

A generalization of the Gauß map stems from Nakada (and Natsui).
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Figure: Aα : [α− 1, α]→ [α− 1, α], x 7→ | 1x | − b
1
x + 1− αc.

All of them have invariant densities (infinite if α = 0).

Matching occurs if Aκα(α) = Aκα(α− 1) for some κ ≥ 1.
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Matching and piecewise constant densities

The pre-matching partition plays the role of Markov partition:

{T j
α(0−)}κ−−1

j=0 } ∪ {T
j
α(0+)}κ+−1

j=0 };

Theorem: If Tα has matching, then dµ
dx is constant on each

element of the pre-matching partition.

This is a general theorem: If a piecewise affine expanding interval
map T : [0, 1]→ [0, 1] has matching at all its discontinuity points,
then dµ

dx is constant on each element of the pre-matching partition.

The family of α-continued fraction maps has Möbius branches. The
density is piecewise Möbius, accordingly.
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Matching and piecewise constant densities
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Sketch of proof:

I Take a nice interval J disjoint from the matching set. (nice
means that orb(∂J) ∩ J◦ = ∅).

I Consider the first return map R to J; it has only onto linear
(or Möbius) branches.

I Hence the R-invariant denstity is constant (or Möbius).
I The T -invariant density coincides with T -invariant density (up

to a scaling factor).



Matching is typical in parameter space
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Some properties of Qγ :

I x = 1 is fixed for all s ∈ R and γ < 1;
I For integer s ≥ 2, every point ps−m, p,m ∈ N, eventually

maps to 1;
I Therefore matching occurs whenever γ = ps−m;
I Matching occurs on an open dense set!

Something far more general is true:

Theorem: The above families Qγ , Sα and Aα have matching
Lebesgue-a.e., but the set E of non-matching parameters has
Haussdorf dimension 1.
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α-continued fractions and the Mandelbrot set
The matching for the α-continued fraction is parallel to
renormalization in the logistic family.

Figure: From a paper by Bonanno, Carminati, Isola and Tiozzo: The
non-matching set and the real antenna of Mandelbrot set



Proof: Matching is Lebesgue typical

Let
g(x) := s(1− x) mod 1

and R : (0, 1)→ (0, 1) be the first return of Qk
γ (x) to [0, 1).

Lemma:
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γ = 1
8

R(x) =

{
g(x) if x ∈ (0, γ)

g2(x) if x ∈ (γ, 1)

s = 2



Proof: Matching is Lebesgue typical
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Return map R

Lemma: For fixed γ ∈ [0, 1], the following conditions are
equivalent:
(i) gk(γ) < γ for some k ∈ N;
(ii) matching holds for γ.
In other words, the bifurcation set is

E = {γ ∈ [0, 1] : gk(γ) ≥ γ ∀k ∈ N}.



Proof: Matching is Lebesgue typical
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Proof of the Theorem:
I Lebesgue measure is preserved by g , so the Ergodic Theorem

implies that

inf{gk(γ) : k ≥ 1} = 0 for a.e. γ.

The previous lemma gives that each such γ /∈ E .

I Define K (t) := {x ∈ [0, 1] : gk(x) ≥ t ∀k ≥ 1}.
I The Hausdorf dimension dimH(K (t))→ 1 and

dimH(K (t) ∩ [0, 1])→ 1 as t → 0.
I Combine this with E ∩ [0, t] ⊃ K (t).
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Typical matching for Tα: Quadratic Pisot Numbers

For the translated β-transformations, we need β to be Pisot! Then
matching holds for Lebesgue-a.e. translation.

The quadratic Pisot numbers are those β > 1 satisfying

β2 − kβ ± d = 0 with

{
k > d + 1 if d > 0,
k > d − 1 if d < 0.

Theorem: If β is quadratic Pisot, then dimH(Aβ) = log d
log β .

Hence dimH(Aβ) = 0 if d = ±1 (quadratic Pisot units). We
conjecture that this is the only situation where dimH(Aβ) = 0.
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Proof: Matching for quadratic-Pisot-slope Tα

There are integers aj , bj such that

T n
α(0) = (βn−1 + · · ·+ 1)α− an−2β

n−2 − · · · − a1β − a0,

T n
α(1) = (βn−1 + · · ·+ 1)α + βn − bn−1β

n−1 − · · · − b1β − b0.

Therefore matching at (minimal) iterate n requires

0 = T n
α(1)− T n

α(0) = βn +
n−1∑
j=0

βj(bj − aj).

Hence β has to be an algebraic integer.

The integers bj , aj depend on α, but change only at a finite set.
Hence, if matching occurs, it occurs on an entire interval.
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Proof: Matching for quadratic-Pisot-slope Tα

Since β is an algebraic integer of order n, we can write

T j
α(0)− T j

α(1) =
n∑

k=1

ek(j)

βk
ek(j) ∈ Z.

The α-dependence is only in the integers ek(j) = ek(j , α)

Lemma (Sample Lemma)
If |T j

α(0)− T j
α(1)| = 1/β, then there is matching at iterate j + 1.

Proof.
If |T j

α(0)− T j
α(1)| = 1/β, then T j

α(0) and T j
α(1) belong to

neighbouring branch-domains of Tα, and their images are the
same.
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The maps Tα
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Proof: Matching for quadratic-Pisot-slope Tα

We sketch the proof for β2 − kβ − d = 0, k ∈ N, so
k − 1 < β < k and Tα has k or k + 1 branches.

Lemma: If α ∈ [k − β, 1), then Tα has k + 1 branches, but there is
matching after two steps.

Hence, take α ∈ [0, k − β) and call the domains of the branches
∆0, . . . ,∆k . Compute

Tα(1) = β + α︸︷︷︸
=T (0)

−(k − 1) = Tα(0) + β − (k − 1)︸ ︷︷ ︸
γ

.

Lemma: If T `(0) ∈ ∆i and T `(1) ∈ ∆i+(k−1)−d for
1 ≤ ` < n, i = i(`), then

T n(1)− T n(0) = γ.
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Proof: Matching for quadratic-Pisot-slope Tα

Lemma: If T n−1(0) ∈ ∆i and T n−1(1) ∈ ∆i+k−d then the
distance |T n(1)− T n(0)| = d

β and there is matching in 2 steps.

Hence, to avoid as matching, T `(0) has to avoid the sets

Vi := {x ∈ ∆(i) : x + γ ∈ ∆(i + k − d)}

=
[ i + k − d − α

βk
− γ , i + 1− α

βk

)
.

Lemma: If
T n(0) ∈ V = ∪d−1

i=0 Vi

then there is matching in two steps.
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Proof: Matching for quadratic-Pisot-slope Tα

Lemma: The map g : [0, 1− β]→ [0, 1− β],

gα(x) :=

{
k − β if x ∈ V ,

Tα(x) otherwise.

is a non-decreasing degree d circle endomorpism, and gn(0) ∈ V
for some n > 1 precisely if k − β is periodic.

Lemma: Define

Xα = {x ∈ S1 : gn
α(x) /∈ V for all n ≥ 0}.

If there is no matching, then dimH(Xα) = log d
log β .

Idea of Proof.
For each n, we cover Xα by O(dn) intervals of length β−n.
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Proof: Matching for quadratic-Pisot-slope Tα

Proof for β2 − kβ − d = 0.

I The task is to transfer the previous lemma from dynamical to
parameter space.

I Use that α 7→ T n(α) is piecewise linear with slope βn−1
β−1 .

I On the other hand, the intervals U in the cover of the previous
lemma move with fixed speed (independent of n).

I Therefore, for each n, the set Aα can be covered by O(dn)
intervals of length O(β−n).
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Monotonicity of entropy
If T has constant slope β, then the entropy

htop(T ) = hµ(T ) = log β.
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For Qγ (non-constant slope!)
we have the following result:

Theorem: Call ∆ = κ+ − κ− the matching index of Qγ .
Topological and metric entropy are

hµ(Qγ) and htop(Qγ) are


decreasing if ∆ < 0;

constant if ∆ = 0;

increasing if ∆ > 0,

as function of γ within matching intervals.
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Monotonicity of entropy

The numerics for htop(Qγ) and hµ(Qγ) suggest self-similarities in
the graphs.
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Monotonicity of entropy
The proof is based on the structure of the first return map R to a
neighbourhood J of z := Q

κ−
γ (γ−) = Qκ+

γ (γ+) which is nice,

, i.e.:

orb(∂J) ∩ J◦ = ∅.

Lemma: All branches of R are monotone onto, also the branches
that contain a preimage y ∈ Q−Nγ (γ).

�
�
�
�
�
�
�
�
��

�
�
�
�
�

A−

�
�
�
�
�

A+�
�
�
�
�
�
�
�
�� E
E
E
E
E
E
E
E
EE

y

z

R = Qτ
γ for first

return time τ : [0, 1)→ N

τ(A−) = N + κ−

τ(A+) = N + κ+

Corollary: R preserves Lebesgue measure m.
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Monotonicity of entropy

Proof-sketch of the monotonicity theorem:
I
∫
J τ dm increases by an amount proportional to
η := ∆× increased proportion of |A+|/|A−|.

I Abramov’s Formula: hµ(Qγ) = 1∫
J τ dm

hm(R).

I Therefore hµ(Qγ) decreases due to increase of η.

I Topological entropy is the exponential growth-rate of number
of periodic point.

I As γ moves within a matching interval, periodic points in J
don’t change,

I but their period increases by ∆ as A+ absorbes them (when
they previously belonged to A−).

I Hence the topological entropy decreases accordingly.
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Pseudo-centers
Motivation: Find exact formulas for matching intervals J and their
matching indices ∆ for slope s = 2 (also works for 2 ≤ s ∈ N).

Let Qdyd be the set of dyadic rationals in (0, 1].

Definition The pseudocenter of an interval J ⊂ (0, 1) is the
(unique) dyadic rational ξ ∈ Qdyd with minimal denominator.

Definition
I For binary string u, let ǔ be the bitwise negation of u.
I For ξ ∈ Qdyd \ {1} and let w be the shortest even binary

expansion of ξ and v be the shortest odd binary expansion of
1− ξ.

I Define the interval Iξ := (ξL, ξR) containing ξ where,
I ξL := .v̌ v , ξR := .w .

I Also define the “degenerate” interval I1 := (2/3,+∞).
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Pseudo-centers
In short: Iξ := (ξL, ξR) with ξL := .v̌ v , ξR := .w .

If ξ = 1/2 then w = 10, v = 1 and ξL = .01, ξR = .10.
(01) w = u01⇒ ξL = .u001ǔ110;
(11) w = u11⇒ ξL = .u101ǔ010;

(010) w = u010⇒ ξL = .u00ǔ11;
(110) w = u110⇒ ξL = .u10ǔ01.

ξ ξR ξL

1
2 = .10 2

3 = .10 1
3 = .01

1
4 = .01 1

3 = .01 2
9 = .001110

7
32 = .001110 2

9 = .001110 7
33 = .0011011001

3
16 = .0011 1

5 = .0011 2
11 = .0010111010

9
64 = .001001 1

7 = .001 4334
16383 = .00100011101110

1
8 = .0010 2

15 = .0010 1
9 = .000111
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(110) w = u110⇒ ξL = .u10ǔ01.
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Pseudo-centers

Theorem:
I All matching intervals have the form Iξ, where ξ ∈ Qdyd are

precisely the pseudo-centers of the components of [0, 2
3 ] \ E .

I The matching index is

∆(ξ) =
3
2

(|w |0 − |w |1),

where |w |a is the number of symbols a in w (the shortest
even binary expansion of ξ).

Proposition: If gk(γ) ≥ 1
6 , then |w0| = |w |1. In particular, all

matching intervals in (1
6 ,

2
3) have matching index ∆ = 0.
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Remark: This proposition explains constant entropy on all matching
intervals in (1

6 ,
2
3). A no devil’s staircase argument would give:

hµ(Qγ) = log(
1 +
√
5

2
) and htop(Qγ) =

2
3
log 2, quad(α = 0)

for all γ ∈ [1
6 ,

2
3 ].



Pseudo-centers (period doubling)
Pseudo-center ξ = .w (even expansion) and 1− ξ = .v (odd exp).
The matching interval is Iξ = [ξL, ξR ] for ξL = .v̌ v and ξR = .w .

But ξL is also the right end-point of Iξ1 for ξ1 = .v̌ v . We call this
“period doubling“. It repeats countably often, converging to ξ∞.

ξR

IξIξ1Iξ2

ξξL = (ξ1)R(ξ1)L = (ξ2)R(ξ2)L = (ξ3)Rξ∞

Lemma: The pseudo-center of the next period doubling can be
obtained from the previous using the substitution:

χ :
w 7→ v̌ v w̌ 7→ v v̌
v 7→ vw v̌ 7→ v̌ w̌

.

Thus the limit ξ∞ has s-adic expansion

ξ∞ = .v̌ w̌v v̌vwv̌w̌vwv̌v v̌ w̌ . . .
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obtained from the previous using the substitution:
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.

Thus the limit ξ∞ has s-adic expansion

ξ∞ = .v̌ w̌v v̌vwv̌w̌vwv̌v v̌ w̌ . . .
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Pseudo-centers (tuning windows)
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for σ1 ∈ {w , v̌}, σj ∈ {w , v , w̌ , v̌}
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If ∆(ξ) = 0, all matching in Tξ is neutral.
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Shape of the entropy function
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Question: We know that γ 7→ h(µγ) is Hölder. Is γ 7→ htop(Qγ)
Hölder?

Conjecture: The neutral tuning windows are exactly the plateaus of
(topological and metric) entropy.

Conjecture: The shape of the entire entropy function (i.e., pattern
of increase/decrease) is repeated in every tuning window Tξ with
∆(ξ) > 0, and reversed in every tuning window Tξ with ∆(ξ) < 0.
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