Self-similarity in the entropy graph for a family of piecewise linear maps.

Henk Bruin (University of Vienna)
Carlo Carminati (University of Pisa)
Stefano Marmi (Scuola Normale di Pisa)
Alessandro Profeti (University of Pisa)
Sarajevo, July 2018

The family Q_{γ}

For fixed slope $s>1$ and $\gamma \in[0,1]$, take:

$$
Q_{\gamma}(x)= \begin{cases}x+1, & x \leq \gamma \\ 1+s(1-x), & x>\gamma\end{cases}
$$

There is matching if there are $\kappa^{ \pm} \geq 1$ such that

$$
\begin{aligned}
Q_{\gamma}^{\kappa^{+}}\left(\gamma^{+}\right) & =Q_{\gamma}^{\kappa^{-}}\left(\gamma^{-}\right), \\
\left(Q_{\gamma}^{\kappa^{+}}\right)^{\prime}\left(\gamma^{+}\right) & =\left(Q_{\gamma}^{\kappa^{-}}\right)^{\prime}\left(\gamma^{-}\right)
\end{aligned}
$$

The number $\Delta=\kappa^{+}-\kappa^{-}$is the matching index.

The family Q_{γ}

Facts about matching for Q_{γ} (proved in paper, not in this talk):

- Matching holds for an open dense set of full Lebesgue measure.

The family Q_{γ}

Facts about matching for Q_{γ} (proved in paper, not in this talk):

- Matching holds for an open dense set of full Lebesgue measure.
- Matching occurs for every s-adic rational: $\gamma=p s^{-q}$ for $p, q \in \mathbb{N}$.
(In this case $Q_{\gamma}^{n}\left(\gamma^{+}\right)=Q_{\gamma}^{n}\left(\gamma^{-}\right)=1$ is fixed for all n large enough.)

The family Q_{γ}

Facts about matching for Q_{γ} (proved in paper, not in this talk):

- Matching holds for an open dense set of full Lebesgue measure.
- Matching occurs for every s-adic rational: $\gamma=p s^{-q}$ for $p, q \in \mathbb{N}$.
(In this case $Q_{\gamma}^{n}\left(\gamma^{+}\right)=Q_{\gamma}^{n}\left(\gamma^{-}\right)=1$ is fixed for all n large enough.)
- The non-matching set \mathcal{E} has Hausdorff dimension

$$
\operatorname{dim}_{H}(\mathcal{E})=1
$$

but $\operatorname{dim}_{H}(\mathcal{E} \backslash[0, \delta))<1$ for every $\delta>0$.

The family Q_{γ}

Metric and topological entropy for $s=2$

Figure: Topological \& metric entropies of \mathcal{Q}_{γ} for $s=2$ as functions of γ.

The family Q_{γ}

Theorem: Topological and metric entropy

$$
h_{\mu}\left(Q_{\gamma}\right) \text { and } h_{\text {top }}\left(Q_{\gamma}\right) \text { are }\left\{\begin{aligned}
\text { decreasing } & \text { if } \Delta<0 \\
\text { constant } & \text { if } \Delta=0 \\
\text { increasing } & \text { if } \Delta>0
\end{aligned}\right.
$$

as function of γ within matching intervals. (Recall $\Delta=\kappa^{+}-\kappa^{-}$.)

Plan of this talk

Aim of this talk:

- Explain why matching happens;

Plan of this talk

Aim of this talk:

- Explain why matching happens;
- Describe the matching intervals (components of $[0,1] \backslash \mathcal{E}$) precisely
- pseudo-centers
- period doubling cascades
- computing the matching index

Plan of this talk

Aim of this talk:

- Explain why matching happens;
- Describe the matching intervals (components of $[0,1] \backslash \mathcal{E}$) precisely
- pseudo-centers
- period doubling cascades
- computing the matching index
- Tuning windows and explanation of the self-similarity of the entropy graphs.

Why there is matching?

Let $g(x):=s(1-x) \bmod 1$ and $R:(0,1) \rightarrow(0,1)$ be the first return of Q_{γ} to $[0,1)$.

Lemma:

$$
R(x)= \begin{cases}g(x) & \text { if } x \in(0, \gamma) \\ g^{2}(x) & \text { if } x \in(\gamma, 1)\end{cases}
$$

Why there is matching?

Lemma: For fixed $\gamma \in[0,1]$, the following conditions are equivalent:
(i) $g^{k}(\gamma)<\gamma$ for some $k \in \mathbb{N}$;
(ii) matching holds for γ.

In other words, the bifurcation set is

$$
\mathcal{E}=\left\{\gamma \in[0,1]: g^{k}(\gamma) \geq \gamma \forall k \in \mathbb{N}\right\} .
$$

Pseudo-centers

Motivation: Find exact formulas for matching intervals J and their matching indices Δ for slope $s=2$ (also works for integers $s \geq 2$).

Pseudo-centers

Motivation: Find exact formulas for matching intervals J and their matching indices Δ for slope $s=2$ (also works for integers $s \geq 2$).

Let $\mathbb{Q}_{\text {dyd }}$ be the set of dyadic rationals in $(0,1]$.
Definition The pseudo-center of an interval $J \subset(0,1)$ is the (unique) dyadic rational $\xi \in \mathbb{Q}_{\text {dyd }}$ with minimal denominator.

Pseudo-centers

Motivation: Find exact formulas for matching intervals J and their matching indices Δ for slope $s=2$ (also works for integers $s \geq 2$).

Let $\mathbb{Q}_{\text {dyd }}$ be the set of dyadic rationals in $(0,1]$.
Definition The pseudo-center of an interval $J \subset(0,1)$ is the (unique) dyadic rational $\xi \in \mathbb{Q}_{\text {dyd }}$ with minimal denominator.

Theorem For $\xi \in \mathbb{Q}_{\text {dyd }} \backslash\{1\}$, let w be the shortest even binary expansion of ξ and v be the shortest odd binary expansion of $1-\xi$.

The matching interval containing ξ is

$$
I_{\xi}:=\left(\xi_{L}, \xi_{R}\right)
$$

where $\xi_{L}:=. \bar{v} v, \quad \xi_{R}:=. \bar{w}$ (where $\overline{\bar{v}}$ is bitwise negation of v).

Pseudo-centers

In short: $I_{\xi}:=\left(\xi_{L}, \xi_{R}\right)$ with $\xi_{L}:=. \bar{v} v, \quad \xi_{R}:=. \bar{w}$.

Pseudo-centers

In short: $I_{\xi}:=\left(\xi_{L}, \xi_{R}\right)$ with $\xi_{L}:=\bar{v} v, \quad \xi_{R}:=. \bar{w}$.
If $\xi=1 / 2$ then $w=10, v=1$ and $\xi_{L}=. \overline{01}, \xi_{R}=. \overline{10}$.
(01) $w=u 01 \Rightarrow \xi_{L}=. \overline{u 001 u ̌ 110}$;
(11) $w=u 11 \Rightarrow \xi_{L}=. \overline{u 101 u ̌ 010 ;}$
(010) $w=u 010 \Rightarrow \xi_{L}=. \overline{u 00 u ̌ 11 ; ~}$
(110) $w=u 110 \Rightarrow \xi_{L}=. \overline{u 10 u ̌ 01}$.

Pseudo-centers

In short: $I_{\xi}:=\left(\xi_{L}, \xi_{R}\right)$ with $\xi_{L}:=\bar{v} v, \quad \xi_{R}:=. \bar{w}$.
If $\xi=1 / 2$ then $w=10, v=1$ and $\xi_{L}=. \overline{01}, \xi_{R}=. \overline{10}$.
(01) $w=u 01 \Rightarrow \xi_{L}=. \overline{u 001 u ̌ 110 ;}$;
(11) $w=u 11 \Rightarrow \xi_{L}=. \overline{u 101 u ̌ 010 ;}$
(010) $w=u 010 \Rightarrow \xi_{L}=. \overline{u 00 u ̌ 11 ;} ;$
(110) $w=u 110 \Rightarrow \xi_{L}=. \overline{u 10 u ̌ 01}$.

| ξ | ξ_{R} | ξ_{L} |
| :---: | ---: | ---: | :--- |
| $\frac{1}{2}=.10$ | $\frac{2}{3}=\overline{. \overline{10}}$ | $\frac{1}{3}=\overline{.01}$ |
| $\frac{1}{4}=.01$ | $\frac{1}{3}=\overline{01}$ | $\frac{2}{9}=. \overline{001110}$ |
| $\frac{7}{32}=.001110$ | $\frac{2}{9}=\overline{001110}$ | $\frac{7}{33}=. \overline{0011011001}$ |
| $\frac{3}{16}=.0011$ | $\frac{1}{5}=\overline{0011}$ | $\frac{2}{11}=. \overline{0010111010}$ |
| $\frac{9}{64}=.001001$ | $\frac{1}{7}=\overline{001}$ | $\frac{4334}{16383}=. \overline{00100011101110}$ |
| $\frac{1}{8}=.0010$ | $\frac{2}{15}=. \overline{0010}$ | $\frac{1}{9}=. \overline{000111}$ |

Pseudo-centers (matching index)

Theorem: The matching index is

$$
\Delta(\xi)=\frac{3}{2}\left(|w|_{0}-|w|_{1}\right),
$$

where $|w|_{a}$ is the number of symbols a in w.

Pseudo-centers (matching index)

Theorem: The matching index is

$$
\Delta(\xi)=\frac{3}{2}\left(|w|_{0}-|w|_{1}\right)
$$

where $|w|_{a}$ is the number of symbols a in w.
Proposition: If $\gamma \geq \frac{1}{6}$, then $\left|w_{0}\right|=|w|_{1}$. In particular, all matching intervals in $\left(\frac{1}{6}, \frac{2}{3}\right)$ have matching index $\Delta=0$.

Pseudo-centers (period doubling)

Pseudo-center $\xi=. w$ (even exp.) and $1-\xi=. v$ (odd exp.). The matching interval is $I_{\xi}=\left[\xi_{L}, \xi_{R}\right]$ for $\xi_{L}=. \bar{v} v$ and $\xi_{R}=. \bar{w}$.

Pseudo-centers (period doubling)

Pseudo-center $\xi=. w$ (even exp.) and $1-\xi=. v$ (odd exp.). The matching interval is $I_{\xi}=\left[\xi_{L}, \xi_{R}\right]$ for $\xi_{L}=. \bar{v} v$ and $\xi_{R}=. \bar{w}$. But ξ_{L} is also the right end-point of $I_{\xi_{1}}$ for $\xi_{1}=. \check{v} v$. We call this "period doubling". It repeats countably often, converging to ξ_{∞}.

$$
\underbrace{\xi_{\infty} \quad\left(\xi_{2}\right)_{L}=\left(\xi_{3}\right)_{R} \quad\left(\xi_{1}\right)_{L}=\left(\xi_{2}\right)_{R} \quad \xi_{L}=\left(\xi_{1}\right)_{R}}_{\xi_{\xi_{2}}} \quad \underset{\xi_{1}}{\xi} \quad I_{\xi}
$$

Pseudo-centers (period doubling)

Pseudo-center $\xi=. w$ (even exp.) and $1-\xi=. v$ (odd exp.).
The matching interval is $I_{\xi}=\left[\xi_{L}, \xi_{R}\right]$ for $\xi_{L}=. \bar{v} v$ and $\xi_{R}=. \bar{w}$. But ξ_{L} is also the right end-point of $I_{\xi_{1}}$ for $\xi_{1}=. \check{v} v$. We call this "period doubling". It repeats countably often, converging to ξ_{∞}.

$$
\underbrace{\xi_{\infty} \quad\left(\xi_{2}\right)_{L}=\left(\xi_{3}\right)_{R} \quad\left(\xi_{1}\right)_{L}=\left(\xi_{2}\right)_{R} \quad \xi_{L}=\left(\xi_{1}\right)_{R}}_{\xi_{\xi_{2}}} \quad \underset{\xi_{1}}{\xi} \quad \boldsymbol{I}_{\xi}
$$

Lemma: The pseudo-center of the next period doubling can be obtained from the previous using the substitution:

$$
\chi: \begin{array}{ll}
w \mapsto \check{v} v & \check{w} \mapsto v \check{v} \\
v \mapsto v w & \check{v} \mapsto \check{v} \check{w} .
\end{array}
$$

Thus the limit ξ_{∞} has s-adic expansion

$$
\xi_{\infty}=. \check{v} \check{W} v \check{v} v w \check{v} \check{w} v w \check{v} v \check{v} \check{w} \ldots
$$

Pseudo-centers (tuning windows)

Pseudo-center $\xi=. w$ (even expansion) and $1-\xi=. v$ (odd exp). The matching interval is $I_{\xi}=\left[\xi_{L}, \xi_{R}\right]=[. \bar{v} v, . \bar{w}]$. The tuning interval is $T_{\xi}=\left[\xi_{T}, \xi_{R}\right]$ for $\xi_{T}=. \check{V} \overline{\mathscr{W}}$.

ξ_{T}

Pseudo-centers (tuning windows)

Pseudo-center $\xi=. w$ (even expansion) and $1-\xi=. v$ (odd exp).
The matching interval is $I_{\xi}=\left[\xi_{L}, \xi_{R}\right]=\left[\overline{V_{V}}, . \bar{W}\right]$.
The tuning interval is $T_{\xi}=\left[\xi_{T}, \xi_{R}\right]$ for $\xi_{T}=. \check{v} \check{\bar{W}}$.

Theorem: Let $K\left(\xi_{T}\right)=\left\{x: g^{k}(x) \geq \xi_{T} \forall k\right\}$. Then $x \in K\left(\xi_{T}\right) \cap T_{\xi}$ if and only if

$$
x=. \sigma_{1} \sigma_{2} \sigma_{3} \sigma_{4} \cdots
$$

for $\sigma_{1} \in\{w, \check{v}\}, \sigma_{j} \in\{w, v, \check{w}, \check{v}\}$ describing a path in the diagram.

Pseudo-centers (tuning windows)

Pseudo-center $\xi=. w$ (even expansion) and $1-\xi=. v$ (odd exp).
The matching interval is $I_{\xi}=\left[\xi_{L}, \xi_{R}\right]=\left[\overline{V_{V}}, . \bar{W}\right]$.
The tuning interval is $T_{\xi}=\left[\xi_{T}, \xi_{R}\right]$ for $\xi_{T}=. \check{V} \overline{\mathscr{W}}$.

Theorem: Let $K\left(\xi_{T}\right)=\left\{x: g^{k}(x) \geq \xi_{T} \forall k\right\}$. Then $x \in K\left(\xi_{T}\right) \cap T_{\xi}$ if and only if

$$
x=. \sigma_{1} \sigma_{2} \sigma_{3} \sigma_{4} \cdots
$$

for $\sigma_{1} \in\{w, \check{v}\}, \sigma_{j} \in\{w, v, \check{w}, \check{v}\}$ describing a path in the diagram.
If $\Delta(\xi)=0$, then all matching in T_{ξ} is neutral.

Pseudo-centers (tuning window)

Remark: This theorem explains constant entropy on all matching intervals in $M=\left(\frac{1}{6}, \frac{2}{3}\right)$. A no devil's staircase argument gives:

$$
h_{\mu}\left(Q_{\gamma}\right)=\log \left(\frac{1+\sqrt{5}}{2}\right) \quad \text { and } \quad h_{\text {top }}\left(Q_{\gamma}\right)=\frac{2}{3} \log 2
$$

for all $\gamma \in\left[\frac{1}{6}, \frac{2}{3}\right]$.

Shape of the entropy function

Question: Known: $\gamma \mapsto h\left(\mu_{\gamma}\right)$ is Hölder. Is $\gamma \mapsto h_{\text {top }}\left(Q_{\gamma}\right)$ Hölder?

Shape of the entropy function

Question: Known: $\gamma \mapsto h\left(\mu_{\gamma}\right)$ is Hölder. Is $\gamma \mapsto h_{\text {top }}\left(Q_{\gamma}\right)$ Hölder?
Conjecture: The neutral tuning windows are exactly the plateaus of (topological and metric) entropy.

Shape of the entropy function

Question: Known: $\gamma \mapsto h\left(\mu_{\gamma}\right)$ is Hölder. Is $\gamma \mapsto h_{\text {top }}\left(Q_{\gamma}\right)$ Hölder?
Conjecture: The neutral tuning windows are exactly the plateaus of (topological and metric) entropy.

Corollary: The shape of the entire entropy function (i.e., pattern of increase/decrease) is repeated in every tuning window T_{ξ} with $\Delta(\xi)>0$, and reversed in every tuning window T_{ξ} with $\Delta(\xi)<0$.

