Monotonicity of entropy for polynomial families

Henk Bruin

University of Surrey

Joint work with
Sebastian van Strien

For interval maps topological entropy equals

$$
\begin{aligned}
h_{\text {top }}(f) & =\lim _{n \rightarrow \infty} \frac{1}{n} \log \#\left\{\text { laps of } f^{n}\right\} \\
& =\lim _{n \rightarrow \infty} \frac{1}{n} \log \#\left\{\text { fixed points of } f^{n}\right\}
\end{aligned}
$$

For the logistic family $f_{a}(x)=a x(1-x)$,

$$
a \mapsto h_{t o p}\left(f_{a}\right) \text { is monotone }
$$

Proofs by Sullivan \& Thurston (1986), Milnor \& Thurston (1988), Douady (1995), Tsujii (1993-94).

Monotonicity for other families, e.g. (Tsujii '94)

$$
f_{a}(x)=1-a|x|^{2 d}, \quad a \in[0,2], d \in \mathbb{N}
$$

and (Rempe \& van Strien, 2010)

$$
f_{a}(x)=a \sin (\pi x), \quad a \in[0,1] .
$$

All proofs use complex analysis
 No completely real proof known!

Multimodal polynomial families:

$P^{d}=\left\{\begin{array}{l}\operatorname{deg}(f)=d+1, \\ f(-1)=-1, \\ f:[-1,1] \rightarrow[-1,1]: \\ f(1) \in\{-1,1\} \\ d \text { distinct critical } \\ \text { points in }(-1,1)\end{array}\right\}$
has d-dimensional parameter space A^{d},
e.g. P^{d} can be parametrized by its d critical values.

Monotonicity of topological entropy means: Every isentrope

$$
\left\{a \in A^{d}: h_{\text {top }}\left(f_{a}\right)=s\right\}
$$

is connected

Theorem 1 (Milnor \& Tresser, 2000). In the family of bimodal polynomials, topological entropy is monotone.

Theorem 2 (Radulescu, 2008). In the family of trimodal polynomials emerging from the composition of two logistic maps (i.e., $g=f_{a} \circ f_{b}$), topological entropy is monotone.

Theorem 3 (Main Theorem). Topological entropy is monotone on P^{d} for every $d \in \mathbb{N}$.

Conjecture: The isentropes

$$
\left\{f \in P_{\epsilon}^{d} \quad ; \quad h_{t o p}(f)=s\right\}
$$

are contractible.

Question: For $d \geq 3$, are the complements of isentropes are simply connected. (No Alexander horned spheres!?)

Figure 1: The family $f_{b}(x)=2 a x^{2}-3 a x^{3}+b$ with critical values $f(0)=b$ and $f(1)=b-a \equiv-0.515$. The map $b \mapsto h_{t o p}\left(f_{b}\right)$ is not monotone.

Conjecture: If $d \geq 2$ and all but one of the critical points of $f \in \bar{P}_{d}$ are attracted to a periodic attractor, then $v \mapsto h_{t o p}\left(f_{v}\right)$ is non-monotone for each critical value v.

Ingredients of the Monotonicity Proof:

- Multimodal Rigidity Theorem.
- The loci of partial conjugacy in P^{d} of semiconjugacy are topological cells.
(Uses complex dynamics!)
- Parametrize P^{d} by stunted seesaw maps S^{d}.
- Monotonicity of entropy for stunted seesaw maps (the easy bit).
- Investigate the semiconjugacies between maps in P^{d} and stunted seesaw maps, and their behaviour under bifurcation. (messy bit).
- Sets of constant entropy in the set

$$
S_{*}^{d}=\left\{T \in S^{d}: T \text { has no wandering pair. }\right\}
$$

of 'good' seesaw maps are contractible in S_{*}^{d}. (extremely messy bit).

Stunted seesaw maps:

Fix degree $d \in \mathbb{N}$ and $\lambda=d+2$. A map $T \in S^{d}$ if

- $T:[-e, e] \rightarrow[-e, e], e=\frac{d \lambda}{d+1}$, is continuous;
- $T(-e)=-e, T(e)=(-1)^{d+1} e$;
- It has plateaus $Z_{i}, i=1, \ldots, d$ around equally spaced critical points c_{i};
- It has slope $\pm \lambda$ in between the plateaus.

The map $T\left(Z_{i}\right) \mapsto h_{t o p}(T)$ is clearly monotone for each i. It follows that entropy is monotone on S^{d}.

Fact 1: Every multimodal map is entropy-preservingly semiconjugate to some stunted seesaw map.

Proof: Define the kneading invariants of $f \in$ P^{d} as

$$
\nu_{i}=\lim _{x \downarrow c_{i}} \mathrm{i}_{f}(x)
$$

where $\underline{\mathrm{i}}_{f}(x)$ is the symbolic itinerary with respect to the components $[-1,1] \backslash$ Crit.

The unstunted map exhibits all itineraries, so for each ν_{i} there is a unique point y_{i} such that

$$
\lim _{x \downarrow y_{i}} \mathrm{I}_{S}(x)=\nu_{i} .
$$

Let

$$
T=\Psi(f)
$$

be that stunted seesaw map such that y_{i} is the right boundary point of Z_{i}.

Then f and T have the same kneading invariant, and hence the same entropy.

Fact 2: Isentropes in the family of stunted seesaw maps are connected and even contractible.

Proof: Parametrize stunted seesaw maps by $\zeta=$ $\left(\zeta_{1}, \ldots, \zeta_{d}\right)$ where

$$
\zeta_{i}= \begin{cases}T\left(Z_{i, T}\right) & \text { if } S\left(c_{i}\right) \text { assumes a maximum; } \\ -T\left(Z_{i, T}\right) & \text { if } S\left(c_{i}\right) \text { assumes a minimum. }\end{cases}
$$

Then

$$
\zeta \mapsto h_{\text {top }}\left(T_{\zeta}\right)
$$

is increasing in each ζ_{i} separately.
Fact 2 follows directly.

The map

$$
\Psi: P^{d} \rightarrow S^{d}
$$

is neither continuous, nor injective, nor surjective.
Example: Consider the logistic map

$$
f_{\lambda}: x \mapsto \lambda x(1-x) .
$$

Then

- At $\lambda=\lambda_{1}=2, c$ is fixed for f_{λ}.

For $0 \leq \lambda \leq 2, \nu=1 \overline{0}$, and $\Psi\left(f_{\lambda}\right)=T_{0}$.

- At $\lambda=\lambda_{2}, c$ has period 2 for f_{λ}.

For $\lambda_{1}<\lambda \leq \lambda_{2}, \nu=11 \overline{01}$, and $\Psi\left(f_{\lambda}\right)=T_{p_{1}}$.

- At $\lambda=\lambda_{2}, c$ has period 4 for f_{λ}.

For $\lambda_{2}<\lambda \leq \lambda_{4}, \nu=1101 \overline{0101}$, and $\Psi\left(f_{\lambda}\right)=T_{p_{4}}$.

\longleftarrow Plateau of $\Psi\left(f_{\lambda}\right), \lambda \in\left(\lambda_{2}, \lambda_{4}\right]$
\longleftarrow Plateau of $\Psi\left(f_{\lambda}\right), \lambda \in\left(2, \lambda_{2}\right]$
\longleftarrow Plateau of $\Psi\left(f_{\lambda}\right), \lambda \in(0,2]$

Figure 2: Unimodal sawtooth and stunted sawtooth maps

To solve monotonicity we need to understand the map

$$
\Psi: P^{d} \rightarrow S^{d} \quad f \mapsto \Psi(f)
$$

The crux is that Ψ is not easy to define on cells of partial conjugacy; at these, we take a set valued approach: $f \mapsto[\Psi(f)]$.

Proposition 1. The map $\Psi: P^{d} \rightarrow S^{d}$ is

- almost surjective: $f \in P^{d}$ has no wandering intervals, so Ψ needs to map into

$$
S_{*}^{d}=\left\{T \in S^{d}: T \text { has no wandering pair. }\right\}
$$

- almost continuous: yet another issue with $S \backslash$ S_{*}^{d};
- almost injective: f_{1}, f_{2} not "partially conjugate", then $\left[\Psi\left(f_{1}\right)\right] \cap\left[\Psi\left(f_{2}\right)\right]=\emptyset$.

Wandering pairs:

- Two plateaus $\left(Z_{i}, Z_{j}\right)$ are a wandering pair if there exists $n \geq 0$ such that $T^{n}(\mathcal{J})$ is a point (for $\mathcal{J}:=\left[Z_{i}, Z_{j}\right]$ the convex hull of Z_{i} and Z_{j}.)
- If this point is not eventually periodic, then

$$
T \neq \Psi(f)
$$

for every polynomial (or in fact C^{2} map).
The reason is that C^{2} multimodal maps have no wandering intervals.

- Let \mathcal{S}_{*}^{d} denote the set $T \in \mathcal{S}^{d}$ for which every wandering pair $\left(Z_{i}, Z_{j}\right)$, the convex hull \mathcal{J} is eventually mapped into a periodic plateau.

Theorem 4. The isentropes

$$
\left\{T \in \mathcal{S}_{*}^{d}: h_{t o p}(T)=s\right\}
$$

are connected and contractible.

Under Ψ^{-1}, we can pull-back the connectedness of isentropes, and this gives the main theorem. It is not clear if contractibility is preserved under Ψ^{-1}, see our Conjecture.

To give an idea of the messiness of Theorem 4, here is the retract:

$$
R_{t}= \begin{cases}\beta_{6 t} & \text { for } t \in\left[0, \frac{1}{6}\right], \\ \Gamma_{6 t-1} \circ \beta_{1} & \text { for } t \in\left[\frac{1}{6}, \frac{2}{6},\right. \\ \Gamma_{1} \circ \hat{\gamma}_{6 t-2} \circ \beta_{1} & \text { for } t \in\left[\frac{2}{6}, \frac{3}{6}\right], \\ \Gamma_{1} \circ \hat{\gamma}_{1} \circ \beta_{1} \circ \delta_{6 t-3} & \text { for } t \in\left[\frac{3}{6}, \frac{4}{6}\right], \\ \Gamma_{1} \circ \hat{\gamma}_{1} \circ \beta_{1} \circ \Delta_{6 t-4} \circ \delta_{1} & \text { for } t \in\left[\frac{4}{6}, \frac{5}{6}\right], \\ \Gamma_{1} \circ \hat{\gamma}_{1} \circ \beta_{1} \circ r_{6 t-5} \circ \Delta_{1} \circ \delta_{1} & \text { for } t \in\left[\frac{5}{6}, 1\right] .\end{cases}
$$

