Monotonicity of entropy for polynomial families

Henk Bruin

University of Surrey

Joint work with Sebastian van Strien For interval maps **topological entropy** equals

$$h_{top}(f) = \lim_{n \to \infty} \frac{1}{n} \log \# \{ \text{ laps of } f^n \} \\ = \lim_{n \to \infty} \frac{1}{n} \log \# \{ \text{ fixed points of } f^n \}.$$

For the logistic family $f_a(x) = ax(1-x)$, $a \mapsto h_{top}(f_a)$ is monotone

Proofs by Sullivan & Thurston (1986), Milnor & Thurston (1988), Douady (1995), Tsujii (1993-94).

Monotonicity for other families, e.g. (Tsujii '94)

$$f_a(x) = 1 - a|x|^{2d}, \quad a \in [0, 2], \ d \in \mathbb{N},$$

and (Rempe & van Strien, 2010)

$$f_a(x) = a\sin(\pi x), \quad a \in [0, 1].$$

All proofs use complex analysis No completely real proof known!

Multimodal polynomial families:

$$P^{d} = \left\{ \begin{array}{c} \deg(f) = d + 1, \\ f(-1) = -1, \\ f : [-1, 1] \to [-1, 1] : f(1) \in \{-1, 1\} \\ d \text{ distinct critical} \\ points in (-1, 1) \end{array} \right\}$$

has d-dimensional parameter space A^d , e.g. P^d can be parametrized by its d critical values.

Monotonicity of topological entropy means: Every **isentrope**

$$\{a \in A^d : h_{top}(f_a) = s\}$$

is $\mathbf{connected}$

Theorem 1 (Milnor & Tresser, 2000). In the family of bimodal polynomials, topological entropy is monotone.

Theorem 2 (Radulescu, 2008). In the family of trimodal polynomials emerging from the composition of two logistic maps (i.e., $g = f_a \circ f_b$), topological entropy is monotone.

Theorem 3 (Main Theorem). Topological entropy is monotone on P^d for every $d \in \mathbb{N}$.

Conjecture: The isentropes

$$\{f \in P^d_\epsilon \ ; \ h_{top}(f) = s\}$$

are contractible.

Question: For $d \ge 3$, are the complements of isentropes are simply connected. (No Alexander horned spheres!?)

Figure 1: The family $f_b(x) = 2ax^2 - 3ax^3 + b$ with critical values f(0) = b and $f(1) = b - a \equiv -0.515$. The map $b \mapsto h_{top}(f_b)$ is **not** monotone.

Conjecture: If $d \ge 2$ and all but one of the critical points of $f \in P_d$ are attracted to a periodic attractor, then $v \mapsto h_{top}(f_v)$ is non-monotone for each critical value v.

Ingredients of the Monotonicity Proof:

- Multimodal Rigidity Theorem.
- The loci of *partial conjugacy* in P^d of semiconjugacy are topological cells. (Uses complex dynamics!)
- Parametrize P^d by stunted seesaw maps S^d .
- Monotonicity of entropy for stunted seesaw maps (the easy bit).
- Investigate the semiconjugacies between maps in P^d and stunted seesaw maps, and their behaviour under bifurcation. (messy bit).
- Sets of constant entropy in the set

 $S^d_* = \{T \in S^d : T \text{ has no wandering pair.}\}$

of 'good' seesaw maps are contractible in S^d_* . (extremely messy bit).

Stunted seesaw maps:

Fix degree $d \in \mathbb{N}$ and $\lambda = d + 2$. A map $T \in S^d$ if

- $T: [-e, e] \rightarrow [-e, e], e = \frac{d\lambda}{d+1}$, is continuous;
- $T(-e) = -e, T(e) = (-1)^{d+1}e;$
- It has plateaus Z_i , i = 1, ..., d around equally spaced critical points c_i ;
- It has slope $\pm \lambda$ in between the plateaus.

The map $T(Z_i) \mapsto h_{top}(T)$ is clearly monotone for each *i*. It follows that entropy is monotone on S^d . **Fact 1**: Every multimodal map is entropy-preservingly semiconjugate to some stunted seesaw map.

Proof: Define the **kneading invariants** of $f \in P^d$ as

$$\nu_i = \lim_{x \downarrow c_i} \underline{i}_f(x)$$

where $\underline{i}_f(x)$ is the symbolic itinerary with respect to the components $[-1, 1] \setminus \text{Crit.}$

The unstanted map exhibits **all** itineraries, so for each ν_i there is a unique point y_i such that

$$\lim_{x \downarrow y_i} \underline{\mathbf{i}}_S(x) = \nu_i.$$

Let

$$T = \Psi(f)$$

be that stunted seesaw map such that y_i is the right boundary point of Z_i .

Then f and T have the same kneading invariant, and hence the same entropy. **Fact 2**: Isentropes in the family of stunted seesaw maps are connected and even contractible.

Proof: Parametrize stunted seesaw maps by $\zeta = (\zeta_1, \ldots, \zeta_d)$ where

 $\zeta_i = \begin{cases} T(Z_{i,T}) & \text{if } S(c_i) \text{ assumes a maximum;} \\ -T(Z_{i,T}) & \text{if } S(c_i) \text{ assumes a minimum.} \end{cases}$

Then

$$\zeta \mapsto h_{top}(T_{\zeta})$$

is increasing in each ζ_i separately.

Fact 2 follows directly.

The map

$$\Psi: P^d \to S^d$$

is neither continuous, nor injective, nor surjective.

Example: Consider the logistic map

$$f_{\lambda}: x \mapsto \lambda x(1-x).$$

Then

- At $\lambda = \lambda_1 = 2$, c is fixed for f_{λ} . For $0 \le \lambda \le 2$, $\nu = 1\overline{0}$, and $\Psi(f_{\lambda}) = T_0$.
- At $\lambda = \lambda_2$, c has period 2 for f_{λ} . For $\lambda_1 < \lambda \leq \lambda_2$, $\nu = 11\overline{01}$, and $\Psi(f_{\lambda}) = T_{p_1}$.
- At $\lambda = \lambda_2$, c has period 4 for f_{λ} . For $\lambda_2 < \lambda \leq \lambda_4$, $\nu = 1101\overline{0101}$, and $\Psi(f_{\lambda}) = T_{p_4}$.

Figure 2: Unimodal sawtooth and stunted sawtooth maps

To solve monotonicity we need to understand the map

$$\Psi: P^d \to S^d \qquad f \mapsto \Psi(f).$$

The crux is that Ψ is not easy to define on cells of *partial conjugacy*; at these, we take a set valued approach: $f \mapsto [\Psi(f)]$.

Proposition 1. The map $\Psi: P^d \to S^d$ is

• <u>almost surjective</u>: $f \in P^d$ has no wandering intervals, so Ψ needs to map into

 $S^d_* = \{T \in S^d : T \text{ has no wandering pair.}\}$

- <u>almost continuous</u>: yet another issue with $S \setminus S^d_*$;
- <u>almost injective</u>: f_1, f_2 not "partially conju-<u>gate</u>", then $[\Psi(f_1)] \cap [\Psi(f_2)] = \emptyset$.

Wandering pairs:

- Two plateaus (Z_i, Z_j) are a wandering pair if there exists $n \ge 0$ such that $T^n(\mathcal{J})$ is a point (for $\mathcal{J} := [Z_i, Z_j]$ the convex hull of Z_i and Z_j .)
- If this point is not eventually periodic, then

$$T\neq \Psi(f)$$

for every polynomial (or in fact C^2 map). The reason is that C^2 multimodal maps have no wandering intervals.

• Let \mathcal{S}^d_* denote the set $T \in \mathcal{S}^d$ for which every wandering pair (Z_i, Z_j) , the convex hull \mathcal{J} is eventually mapped into a periodic plateau. **Theorem 4.** The isentropes

 $\{T \in \mathcal{S}^d_* : h_{top}(T) = s\}$

are connected and contractible.

Under Ψ^{-1} , we can pull-back the connectedness of isentropes, and this gives the main theorem. It is not clear if contractibility is preserved under Ψ^{-1} , see our Conjecture.

To give an idea of the messiness of Theorem 4, here is the retract:

$$R_{t} = \begin{cases} \beta_{6t} & \text{for } t \in [0, \frac{1}{6}], \\ \Gamma_{6t-1} \circ \beta_{1} & \text{for } t \in [\frac{1}{6}, \frac{2}{6}], \\ \Gamma_{1} \circ \hat{\gamma}_{6t-2} \circ \beta_{1} & \text{for } t \in [\frac{2}{6}, \frac{3}{6}], \\ \Gamma_{1} \circ \hat{\gamma}_{1} \circ \beta_{1} \circ \delta_{6t-3} & \text{for } t \in [\frac{3}{6}, \frac{4}{6}], \\ \Gamma_{1} \circ \hat{\gamma}_{1} \circ \beta_{1} \circ \Delta_{6t-4} \circ \delta_{1} & \text{for } t \in [\frac{4}{6}, \frac{5}{6}], \\ \Gamma_{1} \circ \hat{\gamma}_{1} \circ \beta_{1} \circ r_{6t-5} \circ \Delta_{1} \circ \delta_{1} & \text{for } t \in [\frac{5}{6}, 1]. \end{cases}$$