Multiple equilibrium states for interval maps

Henk Bruin University of Surrey

Setting:

Let \mathcal{M} be the set of invariant measures of a (smooth) unimodal map $f: I \to I$. Let c be the critical point and assume $D^{\ell-1}f(c) \neq 0$ for some $\ell > 1$.

Definition: Given a potential function

$$\varphi: X \to \mathbf{R}$$

an **equilibrium state** is a measure $\mu_{\varphi} \in \mathcal{M}$ that achieves the **pressure**:

$$P(\varphi) := \sup_{\mu \in \mathcal{M}} h_{\mu} + \int_{X} \varphi d\mu = h_{\mu\varphi} + \int_{X} \varphi d\mu_{\varphi}.$$

We are interested in $\varphi := \varphi_t = -t \log |Df|$.

Ledrappier's result:

It is known that for t = 1, i.e., $\varphi = -\log |Df|$, the pressure $P(\varphi) = 0$.

Ledrappier (1981) proved:

If the Lyapunov exponent

$$\lambda(\mu) := \int |Df| d\mu > 0,$$

then

 μ is equilibrium state iff $\mu \ll {\rm Leb.}$

Furthermore, there is only one such measure.

Current work with Mike Todd for $t \approx 1$: If we restrict to

$$\mathcal{M}_{+} = \{ \mu \in \mathcal{M} : \lambda(\mu) > 0 \}$$

and $Df(c_1)$ increases at least polynomially:

$$|Df^n(c_1)| \ge Cn^{\alpha}$$

for $c_1 = f(c)$ and $\alpha > \ell(1 + \frac{1}{t_0}) - 1$ for some $t_0 \in (0, 1)$, then

- there exists exactly one equilibrium measure for φ_t and $t \in (t_0, 1]$ sufficiently close to 1
- If t < 1, then this measure has exponential decay of correlations and satisfies CLT.

Equilibrium states with $\lambda(\mu) = 0$?

Because $h_{\mu} \leq \lambda(\mu)$ we have

- For t = 1, any measure with $\lambda(\mu) = 0$ is equilibrium state.
- If there is an $\mathcal{M}_+ \ni \mu \ll \text{Leb}$, then

 $P(\varphi_t) \ge (1-t)\lambda(\mu) > 0$ for $t \in (0, 1)$,

and no measure with $\lambda(\mu) = 0$ is equilibrium state.

Remark: If f satisfies the Collet-Eckmann condition:

 $|Df^n(c_1)| \ge Ce^{\alpha n}$ for some $C, \alpha > 0$, then $\mathcal{M} = \mathcal{M}_+$.

Cutting times and Kneading map

The n-th iterate of f has **central branch**

 $f^n: J \to f^n(J),$

where J is a maximal interval adjacent to c on which f^n is monotone.

The number n is a **cutting time** if $c \in f^n(J)$.

Cutting times are denoted as

$$1 = S_0 < S_1 < S_2 < \dots$$

There is a map (called **kneading map**)

$$Q:\mathbf{N}\to\mathbf{N}\cup\{\mathbf{0}\}$$

such that

$$S_k - S_{k-1} = S_{Q(k)}.$$

Not every map Q serves as kneading map, but if Q is non-decreasing, then Q is kneading map of some unimodal map.

Examples:

The Feigenbaum-Coullet-Tresser map:

$$Q(k) = k - 1, S_k = 2^k.$$

The Fibonacci map:

$$Q(k) = \max\{0, k-2\}.$$

The S_k are the Fibonacci numbers.

Basic asumption: $Q(k) \rightarrow \infty$

Under this assumption, we have the properties:

- $\omega(c)$ is a minimal Cantor set.
- f is not Collet-Eckmann.
- $\lambda(\mu) = 0$ iff supp $(\mu) = \omega(c)$.
- $h_{top}(f|\omega(c)) = 0.$

Main Theorem (Bruin J. Difference Eq. Appl. 9 (2003) 305–318.

Let Q is be non-decreasing and $Q(k) \to \infty$.

- (a) If $k Q(k) \leq C \cdot \sqrt{k}$, then $(\omega(c), f)$ is uniquely ergodic.
- (b) For any $\gamma > 2$, there is a kneading map Q with

$$k - Q(k) \asymp k^{\frac{\gamma}{\gamma+1}}$$

such that $(\omega(c), f)$ has two ergodic invariant measures.

Remarks:

 Part (a) compares to a result of Barat, Downarowicz and Liardet (2002) which claims unique ergodicity if

$$\sup_k S_k \sum_{m \ge k} \frac{1}{S_m} < \infty.$$

For non-decreasing kneading maps, our result is stronger, but BDL applies to more general Cantor systems.

• The example of (b) can be extended to any number of invariant measures.