The one-sided Bernoulli property for one-dimensional dynamical systems

Henk Bruin

University of Surrey

joint work with

Jane Hawkins University of North Carolina at Chapel Hill

Bernoulli Shifts.

 $\mathbf{2}$

For alphabet $\mathcal{A} = \{1, \ldots, n\}, n \geq 2$, let $(\Omega, \mathcal{D}, \rho; \sigma)$ is the two-sided (respectively one-sided) Bernoulli shift. Here

- $\Omega = \mathcal{A}^{\mathbb{Z}}$ or $\mathcal{A}^{\mathbb{N}}$ is the two-sided and one-sided sequence space, with left-shift σ ;
- $p = \{p_1, \ldots, p_n\}, p_k > 0$ is a probability vector;
- \mathcal{D} is the σ -algebra generated by cylinder sets;
- ρ is the product measure determined by p.

Measure-Theoretic Isomorphism.

An *isomorphism* ψ between $(X_1, \mathcal{B}_1, \mu_1; T_1)$ and $(X_2, \mathcal{B}_2, \mu_2; T_2)$ is a measurable a.e.-bijection such that

$$\begin{array}{cccc} (X_1, \mathcal{B}_1, \mu_1) & \xrightarrow{T_1} & (X_1, \mathcal{B}_1, \mu_2) \\ \downarrow \psi & & \downarrow \psi \\ (X_2, \mathcal{B}_2, \nu) & \xrightarrow{T_2} & (X_2, \mathcal{B}_2, \mu_2) \end{array}$$

commutes.

More precisely

- There are $Y_1 \subset X_1, Y_2 \subset X_2$ of full measure such that $\psi: Y_1 \to Y_2$ is a bijection.
- $T_2 \circ \psi = \psi \circ T_1$ for all $x \in Y_1$.
- $\psi^{-1}B \in \mathcal{B}_1$ and $\mu_1(\psi^{-1}B) = \mu_2(B)$ for all $B \in \mathcal{B}_2$.

The Two-sided Bernoulli Property.

4

Definition 1. An invertible measure preserving transformation $(X, \mathcal{B}, \mu; T)$ is (two-sided) Bernoulli if it is isomorphic to a two-sided Bernoulli shift.

For two-sided Bernoulli shifts, and hence, invertible measure preserving transformations, entropy is a complete invariant. Proofs by Ornstein (1973) and later simplified by Keane & Smorodinsky.

Definition 2. An (non-invertible) measure preserving transformation $(X, \mathcal{B}, \mu; T)$ is **one-sided** Bernoulli if it is isomorphic to a one-sided Bernoulli shift.

For one-sided Bernoulli shifts, entropy is an invariant, but not a complete invariant.

Noninvertible Bernoulli Properties.

Let $(X, \mathcal{B}, \mu; T)$ be a non-invertible measure preserving transformation. There are several ways of relating it to Bernoulli shifts.

(a) The natural extension is Bernoulli.

(b) $(X, \mathcal{B}, \mu; T)$ is weakly Bernoulli (def. later).

(c) $(X, \mathcal{B}, \mu; T)$ is one-sided Bernoulli.

The implications are as follows:

$$(c) \Rightarrow (b) \Rightarrow (a)$$

but the reverse implications are both false.

Weakly Bernoulli.

Definition 3. Let $(X, \mathcal{B}, \mu; T)$ be a measure preserving endomorphism. Let $\zeta = \{P_1, P_2, \cdots\}$ and $\eta = \{Q_1, Q_2, \cdots\}$ be partitions. The partition ζ is independent of η if

$$\sum_{i,j} |\mu(P_i \cap Q_j) - \mu(P_i)\mu(Q_j)| = 0$$

and ε -independent of ζ if

$$\sum_{i,j} |\mu(P_i \cap Q_j) - \mu(P_i)\mu(Q_j)| \le \varepsilon.$$

A partition ζ is weak Bernoulli if given $\varepsilon > 0$, there exists $N \in \mathbb{N}$ such that for all $m \ge 1$,

$$\bigvee_{0}^{m} T^{-i}\zeta \quad \text{is} \quad \varepsilon - \text{independent of} \bigvee_{N}^{N+m} T^{-i}\zeta.$$

The system $(X, \mathcal{B}, \mu; T)$ is *weakly Bernoulli* if it has a **generating** weak Bernoulli partition.

Theorem 4 (Friedman & Ornstein). If $(X, \mathcal{B}, \mu; T)$ be an invertible measure preserving system, and η is a weak-Bernoulli partition such that

$$\zeta_{-\infty}^{\infty} \equiv \bigvee_{i=-\infty}^{\infty} T^{-i}(\zeta)$$

generates \mathcal{B} , then T is isomorphic to a two-sided Bernoulli shift.

Therefore, if a measure preserving endomorphism is weakly Bernoulli, its natural extension is two-sided Bernoulli $(b \Rightarrow a)$.

Among endomorphisms shown to be weakly Bernoulli are:

- β -transformations (Parry, 70s)
- Toral endomorphisms (Adler & Smorodinsky, '72)
- Various interval maps with acips (Ledrappier, '81)
- Equilibrium states for rational maps of $\overline{\mathbb{C}}$ with supremum gap (Haydn, '00)

Decomposing n-to-one Endomorphisms.

Due to Rohlin (1952) proved that a *n***-to-one** (for $n = 2, 3, ..., \aleph_0$) measure preserving endomorphism $(X, \mathcal{B}, \mu; T)$ has a proper factor $(Y, T^{-1}\mathcal{B}, \nu; T)$ with factor map φ such that

$$\begin{array}{cccc} (X, \mathcal{B}, \mu) & \stackrel{T}{\longrightarrow} & (X, \mathcal{B}, \mu) \\ \downarrow \varphi & \qquad \downarrow \varphi \\ (Y, T^{-1} \mathcal{B}, \nu) & \stackrel{T}{\longrightarrow} & (Y, T^{-1} \mathcal{B}, \nu) \end{array}$$

commutes, where $\nu = \mu|_{T^{-1}\mathcal{B}}$.

Thus we can decompose

(0.1)
$$\mu(B) = \int_{Y} \mu_y(B) d\nu(y)$$

where for ν -a.e. $y \in Y$, $\mu_y = \mu_{[T^{-1}x]}$ is a measure that is nonsingular for T, purely atomic (since T is at most countable-to-one), and its support is contained in the set of points $\{T^{-1}x\}$ such that $[y] = [T^{-1}x]$.

The Index of a Point.

Definition 5. For a nonsingular endomorphism T, the *index function* (or index) $ind_T(x)$ is defined to be, ($\mu \mod d$) 0), the cardinality of the support of $\mu_{[T^{-1}x]} = \mu_{[\varphi(x)]}$ for $x \in X$.

If $(X, \mathcal{B}, \mu; T)$ is one-sided Bernoulli, then the index is constant n.

Moreover the Jacobians

$$J(x)=\frac{d\mu\circ T}{d\mu}(x)\in$$

satisfy

$${J_{\mu T}(y)}_{y \in supp(\mu_{[T^{-1}x]})} = {1/p_1, 1/p_2, \dots, 1/p_n}.$$

for μ -a.e. x.

FIGURE 1. The map $T(x) = |\min\{3x - 1, 2 - 3x\}|$ preserves an acip μ with $\frac{d\mu}{dm} = \frac{4}{3}$ on $[0, \frac{1}{2})$ and $\frac{d\mu}{dm} = \frac{2}{3}$ on $(\frac{1}{2}, 1]$. T is bounded-to-one w.r.t. Lebesgue, but 2-to-1 w.r.t. Hausdorff measure sup-

ported on the middle thirds Cantor set.

Rohlin Partitions

An bounded-to-one measure preserving endomorphisms $(X, \mathcal{B}, \mu; T)$ has an ordered partition $\zeta = \{A_1, A_2, A_3, \dots\}$ satisfying:

- (1) $\mu(A_i) > 0$ for each i;
- (2) the restriction of T to each A_i , which we will write as T_i , is one-to-one ($\mu \mod 0$);
- (3) each A_i is of maximal measure in $X \setminus \bigcup_{j < i} A_j$ with respect to property 2;
- (4) T_1 is one-to-one and onto X ($\mu \mod 0$) by numbering the atoms so that

$$\mu(TA_i) \ge \mu(TA_{i+1})$$

for $i \in \mathbb{N}$.

Non-uniqueness of Rohlin Partitions.

• For the angle doubling map (preserving Lebesgue measure), any partition

 $\zeta_t = \{A_0 = [0, t] \cup (t + \frac{1}{2}, 1], A_1 = [t, t + \frac{1}{2})\}$ is a Rohlin partition.

- ζ_t generates \mathcal{B} for all $t \in (0, \frac{1}{2})$ except $t = \frac{1}{4}$.
- The coding map π_t is surjective but not injective for all $t \in (0, \frac{1}{2})$.

For $t = 0, \pi_t$ is injective, but no point has code $111 \dots$;

For the map $T_{p,t}$ below, Lebesgue measure is one-sided $\{p, 1-p\}$ -Bernoulli, except for $t = \frac{1}{4}$.

FIGURE 2. The map $T_{p,t}$ is not one-sided Bernoulli for $t = \frac{1}{4}$ (left) but it is for e.g. $t = \frac{3}{20}$ (right).

Commuting Automorphisms

Theorem 6. Suppose $p \neq \frac{1}{2}$:

- (1) Let σ on (Ω, ρ) be the one-sided $\{p, 1 p\}$ Bernoulli shift. Then there exists no nontrivial nonsingular automorphism $\varphi : (\Omega, \rho) \to (\Omega, \rho)$ with $\varphi \circ \sigma = \sigma \circ \varphi$ $\varphi \ (\mu \mod 0).$
- (2) If T on (X, \mathcal{B}, μ) is a one-sided $\{p, 1-p\}$ Bernoulli endomorphism, then there is no nontrivial nonsingular T-commuting automorphism $\varphi : (X, \mu) \to (X, \mu)$.

Corollary 7 (Parry). Suppose $(X, \mathcal{B}, \mu; T)$ is a measure preserving 2-to-one endomorphism. If there exists a non-trivial nonsingular automorphism φ commuting with T, then T is not isomorphic to a one-sided $\{p, 1-p\}$ Bernoulli shift.

FIGURE 3. $T(x) = 2x + \varepsilon \sin 4\pi x$ preserves an acip μ but is not one-sided Bernoulli, because of it symmetry $x \mapsto 1 - x$.

A Rigidity Result

Theorem 8. Let $T : I = [0, 1] \rightarrow I$ be a piecewise C^2 *n*-to-1 map and assume *T* preserves a probability measure $\mu \sim m$.

Assume that the Radon-Nikodym derivative

$$g(x) = \frac{d\mu}{dm}$$

is continuous and bounded away from 0.

Then T is one-sided Bernoulli on (I, \mathcal{B}, m) if and only if T is C^1 -conjugate to a map $S : I \to I$ whose graph consists of n linear pieces, with slopes $\pm \frac{1}{p_i}$ such that $h_{\mu}(T) = -\sum_{i=1}^{n} p_i \log p_i$.

FIGURE 4. Commutative diagram to construct $\Psi = \psi \circ \pi^{-1}$.

Rational Maps on the Riemann Sphere. Let $R : \hat{\mathbb{C}} \to \hat{\mathbb{C}}$

$$R(z) = \frac{p(z)}{q(z)}$$

be a rational map of degree $d = \max\{\deg(p), \deg(q)\}$. The Julia set $\mathcal{J} = \mathcal{J}(R)$ supports

- a measure of maximal entropy μ_{\max}
 - Lyubich ('83) and Mañé (85) proved that $(\mathcal{J}, \mu_{\max}, R^k)$ is one-sided Bernoulli for some $k \geq 1$.
 - Heicklen & Hoffman ('02) proved that $(\mathcal{J}, \mu_{\max}, R)$ itself is one-sided Bernoulli.
- an invariant measure $\mu_{\alpha} \ll m_{\alpha}$, the α -conformal measure (where ideally $\alpha = \dim_H(\mathcal{J})$). Weak-Bernoulli results exist in some cases for $(\mathcal{J}, \mu_{\max}, R)$

Hyperbolic Rational Maps.

For hyperbolic rational maps, $\alpha = \dim_H(\mathcal{J}(R))$ is the correct conformal exponent to work with: the invariant measure μ_{α} is equivalent to α -dimensional Hausdorff measure.

Theorem 9. If R is a hyperbolic rational map of degree $d \geq 2$ with connected Julia set $\mathcal{J}(R)$, then $(\mathcal{J}, \mu_{\alpha}, R)$ is not one-sided Bernoulli, unless R is conformally equivalent to $z \mapsto z^{\pm d}$.

For $f_c : z \mapsto z^2 + c, c \in \mathbb{C} \setminus \mathcal{M}$, the Julia set \mathcal{J} is a hyperbolic Cantor set (so not connected). Write μ_c for the invariant measure equivalent to α -conformal measure (= α -dimensional Hausdorff measure).

Theorem 10. If $c \in \mathbb{C} \setminus \mathcal{M}$ satisfies

(i) $c \notin (\frac{1}{4}, \infty)$, (ii) $Re(c) \neq \frac{1}{2}$, (iii) $2|1+c| \neq 1 + 2c \pm \sqrt{1-4c}$, then $(\mathcal{J}, \mu_{\alpha}, R)$ is not one-sided Bernoulli.

16

Applications to Postcritically Finite Maps:

Any degree n Chebyshev system is one-sided Bernoulli.

FIGURE 5. The Julia set separating basins of super-attracting fixed points for the rational function of Newton's root-finding algorithm for $z^3 - 1$.

Let $T : \mathbb{C} \to \mathbb{C}$ be the rational map associated the Newton algorithm for finding the roots of the equation $z^d - 1 = 0$:

$$T(z) = z - \frac{z^d - 1}{dz^{d-1}} = \frac{(d-1)z^d + 1}{dz^{d-1}}.$$

Then T preserves a measure $\mu \ll m_t$, where $t = \dim_H(\mathcal{J})$ and m_t is t-conformal measure.

The dihedral group \mathcal{G} generated by $z \mapsto e^{2\pi i/d} z$ and $z \mapsto \overline{z}$ is the group of symmetries of \mathcal{J} , which also transitively permutes the atoms of the Rohlin partition $\{A_1, \ldots, A_d\}$. The system $(\mathcal{J}, \mathcal{B}, \mu; T)$ is not one-sided Bernoulli.

Selected references.

REFERENCES

- R. Adler, F-expansions revisited. Recent advances in topological dynamics (Proc. Conf., Yale Univ., New Haven, Conn., 1972; in honor of Gustav Arnold Hedlund), pp. 1–5. Lecture Notes in Math., Vol. 318, Springer, Berlin, 1973.
- [2] K. Dajani and J. Hawkins, Rohlin factors, product factors, and joinings for n-to-one maps, Indiana Univ. Math. J. 42 (1993), no. 1, 237–258.
- [3] N. Friedman and D. Ornstein, On isomorphism of weak Bernoulli transformations, Adv. in Math 5 (1970), 365–394.
- [4] H. Furstenberg, Disjointness in ergodic theory, Math. Sys. Theory 1 (1967), 1-50.
- [5] N. Haydn, Statistical properties of equilibrium states for rational maps, Ergodic Theory Dynam. Systems 20 (2000), no. 5, 1371–1390.
- [6] D. Heicklen and C. Hoffman, Rational maps are one-sided Bernoulli, Ann. of Math. 156, 1, (2002), 103-114.
- [7] C. Hoffman and D. Rudolph, Uniform endomorphisms which are isomorphic to a Bernoulli shift, Ann. of Math. 156, 1, (2002), 79-101.
- [8] P. Jong, On the Isomorhism Problem of p-endomorphisms, Ph.D. thesis, Univ. of Toronto, (2003), (arkiv:Math.DS/0304054v1/4Apr2003).
- [9] M. Keane, M. Smorodinsky, The finitary isomorphism theorem for Markov shifts. Bull. Amer. Math. Soc. (N.S.) 1 (1979), 436–438.
- [10] F. Ledrappier, Some properties of absolutely continuous invariant measures on an interval, Erg. Th. and Dyn. Sys. 1 (1981), 77–94.
- [11] D. Ornstein, Ergodic Theory, Randomness and Dynamical Systems, New Haven: Yale Univ. Press, (1973).
- [12] W. Parry and P. Walters, Endomorphisms of a Lebesgue Space, Bull. AMS 78, No. 2, (1972), 272-276.
- [13] W. Parry, Automorphisms of the Bernoulli endomorphism and a class of skew-products, Erg. Th. and Dyn. Sys 16, No. 3, (1996), 519-529.
- [14] V. A. Rohlin, On the fundamental ideas of measure theory, Transl. AMS 71, (1952), 1–54.
- [15] V. A. Rohlin, Exact Endomorphisms of a Lebesgue space, Amer. Math. Soc. Transl. Ser. 2 39 (1963), 1–36.
- [16] M. Smorodinsky, β-automorphisms are Bernoulli shifts. Acta Math. Acad. Sci. Hungar. 24 (1973), 273–278.
- [17] P. Walters, Roots of n:1 measure-preserving transformations, J. London Math. Soc. 44 (1969), 7–14.
- [18] P. Walters, Some results on the classificiation of non-invertible measure-preserving transformations, Recent Advances in Topological Dynamics, Springer Lecture Notes in Math. #318, (1972).