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Bernoulli Shifts.

For alphabet A = {1, . . . , n}, n ≥ 2, let (Ω,D, ρ;σ) is the
two-sided (respectively one-sided) Bernoulli shift. Here

• Ω = AZ orAN is the two-sided and one-sided sequence
space, with left-shift σ;

• p = {p1, . . . , pn}, pk > 0 is a probability vector;

• D is the σ-algebra generated by cylinder sets;

• ρ is the product measure determined by p.



3

Measure-Theoretic Isomorphism.

An isomorphism ψ between (X1,B1, µ1;T1) and

(X2,B2, µ2;T2) is a measurable a.e.-bijection such that

(X1,B1, µ1)
T1−→ (X1,B1, µ2)

↓ ψ ↓ ψ
(X2,B2, ν)

T2−→ (X2,B2, µ2)
commutes.

More precisely

• There are Y1 ⊂ X1, Y2 ⊂ X2 of full measure such that
ψ : Y1 → Y2 is a bijection.

• T2 ◦ ψ = ψ ◦ T1 for all x ∈ Y1.

• ψ−1B ∈ B1 and µ1(ψ
−1B) = µ2(B) for all B ∈ B2.
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The Two-sided Bernoulli Property.

Definition 1. An invertible measure preserving transfor-
mation (X,B, µ;T ) is (two-sided) Bernoulli if it is isomor-
phic to a two-sided Bernoulli shift.

For two-sided Bernoulli shifts, and hence, invertible mea-
sure preserving transformations, entropy is a complete in-
variant. Proofs by Ornstein (1973) and later simplified by
Keane & Smorodinsky.

Definition 2. An (non-invertible) measure preserving trans-
formation (X,B, µ;T ) is one-sided Bernoulli if it is iso-
morphic to a one-sided Bernoulli shift.

For one-sided Bernoulli shifts, entropy is an invariant, but
not a complete invariant.
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Noninvertible Bernoulli Properties.

Let (X,B, µ;T ) be a non-invertible measure preserving
transformation. There are several ways of relating it to
Bernoulli shifts.

(a) The natural extension is Bernoulli.

(b) (X,B, µ;T ) is weakly Bernoulli (def. later).

(c) (X,B, µ;T ) is one-sided Bernoulli.

The implications are as follows:

(c) ⇒ (b) ⇒ (a)

but the reverse implications are both false.
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Weakly Bernoulli.

Definition 3. Let (X,B, µ;T ) be a measure preserving
endomorphism. Let ζ = {P1, P2, · · · } and η = {Q1, Q2, · · · }
be partitions. The partition ζ is independent of η if

∑
i,j

|µ(Pi ∩Qj)− µ(Pi)µ(Qj)| = 0

and ε−independent of ζ if

∑
i,j

|µ(Pi ∩Qj)− µ(Pi)µ(Qj)| ≤ ε.

A partition ζ is weak Bernoulli if given ε > 0, there exists
N ∈ N such that for all m ≥ 1,

m∨
0

T−iζ is ε− independent of

N+m∨

N

T−iζ.

The system (X,B, µ;T ) is weakly Bernoulli if it has a
generating weak Bernoulli partition.
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Theorem 4 (Friedman & Ornstein). If (X,B, µ;T ) be
an invertible measure preserving system, and η is a weak-
Bernoulli partition such that

ζ∞−∞ ≡
∞∨

i=−∞
T−i(ζ)

generates B, then T is isomorphic to a two-sided Bernoulli
shift.

Therefore, if a measure preserving endomorphism is weakly
Bernoulli, its natural extension is two-sided Bernoulli (b⇒
a).

Among endomorphisms shown to be weakly Bernoulli are:

• β-transformations (Parry, 70s)

• Toral endomorphisms (Adler & Smorodinsky, ’72)

• Various interval maps with acips (Ledrappier, ’81)

• Equilibrium states for rational maps of C̄ with supre-
mum gap (Haydn, ’00)
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Decomposing n-to-one Endomorphisms.

Due to Rohlin (1952) proved that a n-to-one (for n =
2, 3, . . . ,ℵ0) measure preserving endomorphism (X,B, µ;T )
has a proper factor (Y, T−1B, ν;T ) with factor map ϕ such
that

(X,B, µ)
T−→ (X,B, µ)

↓ ϕ ↓ ϕ
(Y, T−1B, ν)

T−→ (Y, T−1B, ν)

commutes, where ν = µ|T−1B.

Thus we can decompose

(0.1) µ(B) =

∫

Y

µy(B)dν(y)

where for ν-a.e. y ∈ Y , µy = µ[T−1x] is a measure that
is nonsingular for T , purely atomic (since T is at most
countable-to-one), and its support is contained in the set
of points {T−1x} such that [y] = [T−1x].
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The Index of a Point.

Definition 5. For a nonsingular endomorphism T , the
index function (or index) indT (x) is defined to be, (µ mod
0), the cardinality of the support of µ[T−1x] = µ[ϕ(x)] for
x ∈ X .

If (X,B, µ;T ) is one-sided Bernoulli, then the index is
constant n.

Moreover the Jacobians

J(x) =
dµ ◦ T
dµ

(x) ∈
satisfy

{JµT (y)}y∈supp(µ
[T−1x]

) = {1/p1, 1/p2, . . . , 1/pn}.
for µ-a.e. x.
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xFigure 1. The map T (x) = |min{3x − 1, 2 − 3x}| preserves an acip µ with
dµ
dm

= 4
3

on [0, 1
2
) and dµ

dm
= 2

3
on (1

2
, 1].

T is bounded-to-one w.r.t. Lebesgue, but 2-to-1 w.r.t. Hausdorff measure sup-
ported on the middle thirds Cantor set.
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Rohlin Partitions

An bounded-to-one measure preserving endomorphisms
(X,B, µ;T ) has an ordered partition ζ = {A1, A2, A3, . . . }
satisfying:

(1) µ(Ai) > 0 for each i;

(2) the restriction of T to each Ai, which we will write as
Ti, is one-to-one (µ mod 0);

(3) each Ai is of maximal measure in X \ ∪j<iAj with
respect to property 2;

(4) T1 is one-to-one and onto X (µ mod 0) by numbering
the atoms so that

µ(TAi) ≥ µ(TAi+1)

for i ∈ N.
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Non-uniqueness of Rohlin Partitions.

• For the angle doubling map (preserving Lebesgue mea-
sure), any partition

ζt = {A0 = [0, t) ∪ (t +
1

2
, 1], A1 = [t, t +

1

2
)}

is a Rohlin partition.

• ζt generates B for all t ∈ (0, 1
2) except t = 1

4.

• The coding map πt is surjective but not injective for
all t ∈ (0, 1

2).

For t = 0, πt is injective, but no point has code 111 . . . ;

For the map Tp,t below, Lebesgue measure is one-sided
{p, 1− p}-Bernoulli, except for t = 1

4.
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Figure 2. The map Tp,t is not one-sided Bernoulli for t = 1
4

(left) but it is for

e.g. t = 3
20

(right).
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Commuting Automorphisms

Theorem 6. Suppose p 6= 1
2:

(1) Let σ on (Ω, ρ) be the one-sided {p, 1 − p} Bernoulli
shift. Then there exists no nontrivial nonsingular au-
tomorphism ϕ : (Ω, ρ) → (Ω, ρ) with ϕ ◦ σ = σ ◦
ϕ (µ mod 0).

(2) If T on (X,B, µ) is a one-sided {p, 1 − p} Bernoulli
endomorphism, then there is no nontrivial nonsingular
T -commuting automorphism ϕ : (X,µ) → (X,µ).
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Corollary 7 (Parry). Suppose (X,B, µ;T ) is a measure
preserving 2-to-one endomorphism. If there exists a non-
trivial nonsingular automorphism ϕ commuting with T ,
then T is not isomorphic to a one-sided {p, 1−p} Bernoulli
shift.
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Figure 3. T (x) = 2x + ε sin 4πx preserves an acip µ but is not one-sided
Bernoulli, because of it symmetry x 7→ 1− x.
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A Rigidity Result

Theorem 8. Let T : I = [0, 1] → I be a piecewise C2

n-to-1 map and assume T preserves a probability measure
µ ∼ m.

Assume that the Radon-Nikodym derivative

g(x) =
dµ

dm
is continuous and bounded away from 0.

Then T is one-sided Bernoulli on (I,B,m) if and only if T
is C1-conjugate to a map S : I → I whose graph consists
of n linear pieces, with slopes ± 1

pi
such that hµ(T ) = −∑n

i=1 pi log pi.

-(AN, ρ) (AN, ρ)σ

? ?

Ψ Ψ = ψ ◦ π−1-(I, µ) (I, µ)
T

A
A

AAK

¢
¢
¢¢̧

π π

¢
¢

¢¢®

A
A
AAU

ψ ψ

-(I,m) (I,m)
S

Figure 4. Commutative diagram to construct Ψ = ψ ◦ π−1.
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Rational Maps on the Riemann Sphere.

Let R : Ĉ→ Ĉ
R(z) =

p(z)

q(z)
be a rational map of degree d = max{deg(p), deg(q)}. The
Julia set J = J (R) supports

• a measure of maximal entropy µmax

– Lyubich (’83) and Mañé (85) proved that (J , µmax, R
k)

is one-sided Bernoulli for some k ≥ 1.

– Heicklen & Hoffman (’02) proved that
(J , µmax, R) itself is one-sided Bernoulli.

• an invariant measure µα ¿ mα, the α-conformal mea-
sure (where ideally α = dimH(J )).
Weak-Bernoulli results exist in some cases for (J , µmax, R)
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Hyperbolic Rational Maps.

For hyperbolic rational maps, α = dimH(J (R)) is the cor-
rect conformal exponent to work with: the invariant mea-
sure µα is equivalent to α-dimensional Hausdorff measure.

Theorem 9. If R is a hyperbolic rational map of degree
d ≥ 2 with connected Julia set J (R), then (J , µα, R) is
not one-sided Bernoulli, unless R is conformally equivalent
to z 7→ z±d.

For fc : z 7→ z2 + c, c ∈ C \ M, the Julia set J is a
hyperbolic Cantor set (so not connected). Write µc for the
invariant measure equivalent to α-conformal measure (=
α-dimensional Hausdorff measure).

Theorem 10. If c ∈ C \M satisfies

(i) c /∈ (1
4,∞),

(ii) Re(c) 6= 1
2,

(iii) 2|1 + c| 6= 1 + 2c±√1− 4c,

then (J , µα, R) is not one-sided Bernoulli.
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Applications to Postcritically Finite Maps:

Any degree n Chebyshev system is one-sided Bernoulli.

-3 -2 -1 0 1 2 3
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Figure 5. The Julia set separating basins of super-attracting fixed points for
the rational function of Newton’s root-finding algorithm for z3 − 1.

Let T : C → C be the rational map associated the
Newton algorithm for finding the roots of the equation
zd − 1 = 0:

T (z) = z − zd − 1

dzd−1
=

(d− 1)zd + 1

dzd−1
.

Then T preserves a measure µ¿ mt, where t = dimH(J )
and mt is t-conformal measure.

The dihedral group G generated by z 7→ e2πi/dz and z 7→ z
is the group of symmetries of J , which also transitively
permutes the atoms of the Rohlin partition {A1, . . . , Ad}.
The system (J ,B, µ;T ) is not one-sided Bernoulli.
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