The one-sided Bernoulli property for one-dimensional dynamical systems

Henk Bruin
University of Surrey
joint work with
\section*{Jane Hawkins}
University of North Carolina at Chapel Hill

Bernoulli Shifts.

For alphabet $\mathcal{A}=\{1, \ldots, n\}, n \geq 2$, let $(\Omega, \mathcal{D}, \rho ; \sigma)$ is the two-sided (respectively one-sided) Bernoulli shift. Here

- $\Omega=\mathcal{A}^{\mathbb{Z}}$ or $\mathcal{A}^{\mathbb{N}}$ is the two-sided and one-sided sequence space, with left-shift σ;
- $p=\left\{p_{1}, \ldots, p_{n}\right\}, p_{k}>0$ is a probability vector;
- \mathcal{D} is the σ-algebra generated by cylinder sets;
- ρ is the product measure determined by p.

Measure-Theoretic Isomorphism.

An isomorphism ψ between ($X_{1}, \mathcal{B}_{1}, \mu_{1} ; T_{1}$) and $\left(X_{2}, \mathcal{B}_{2}, \mu_{2} ; T_{2}\right)$ is a measurable a.e.-bijection such that

$$
\begin{array}{ccc}
\left(X_{1}, \mathcal{B}_{1}, \mu_{1}\right) & \xrightarrow{T_{1}}\left(X_{1}, \mathcal{B}_{1}, \mu_{2}\right) \\
\downarrow \psi & \downarrow \psi \\
\left(X_{2}, \mathcal{B}_{2}, \nu\right) & \xrightarrow{T_{2}}\left(X_{2}, \mathcal{B}_{2}, \mu_{2}\right)
\end{array}
$$

commutes.
More precisely

- There are $Y_{1} \subset X_{1}, Y_{2} \subset X_{2}$ of full measure such that $\psi: Y_{1} \rightarrow Y_{2}$ is a bijection.
- $T_{2} \circ \psi=\psi \circ T_{1}$ for all $x \in Y_{1}$.
- $\psi^{-1} B \in \mathcal{B}_{1}$ and $\mu_{1}\left(\psi^{-1} B\right)=\mu_{2}(B)$ for all $B \in \mathcal{B}_{2}$.

The Two-sided Bernoulli Property.

Definition 1. An invertible measure preserving transformation ($X, \mathcal{B}, \mu ; T$) is (two-sided) Bernoulli if it is isomorphic to a two-sided Bernoulli shift.

For two-sided Bernoulli shifts, and hence, invertible measure preserving transformations, entropy is a complete invariant. Proofs by Ornstein (1973) and later simplified by Keane \& Smorodinsky.

Definition 2. An (non-invertible) measure preserving transformation $(X, \mathcal{B}, \mu ; T)$ is one-sided Bernoulli if it is isomorphic to a one-sided Bernoulli shift.

For one-sided Bernoulli shifts, entropy is an invariant, but not a complete invariant.

Noninvertible Bernoulli Properties.

Let $(X, \mathcal{B}, \mu ; T)$ be a non-invertible measure preserving transformation. There are several ways of relating it to Bernoulli shifts.
(a) The natural extension is Bernoulli.
(b) $(X, \mathcal{B}, \mu ; T)$ is weakly Bernoulli (def. later).
(c) $(X, \mathcal{B}, \mu ; T)$ is one-sided Bernoulli.

The implications are as follows:

$$
(c) \Rightarrow(b) \Rightarrow(a)
$$

but the reverse implications are both false.

Weakly Bernoulli.

Definition 3. Let $(X, \mathcal{B}, \mu ; T)$ be a measure preserving endomorphism. Let $\zeta=\left\{P_{1}, P_{2}, \cdots\right\}$ and $\eta=\left\{Q_{1}, Q_{2}, \cdots\right\}$ be partitions. The partition ζ is independent of η if

$$
\sum_{i, j}\left|\mu\left(P_{i} \cap Q_{j}\right)-\mu\left(P_{i}\right) \mu\left(Q_{j}\right)\right|=0
$$

and ε-independent of ζ if

$$
\sum_{i, j}\left|\mu\left(P_{i} \cap Q_{j}\right)-\mu\left(P_{i}\right) \mu\left(Q_{j}\right)\right| \leq \varepsilon
$$

A partition ζ is weak Bernoulli if given $\varepsilon>0$, there exists $N \in \mathbb{N}$ such that for all $m \geq 1$,

$$
\bigvee_{0}^{m} T^{-i} \zeta \quad \text { is } \quad \varepsilon-\text { independent of } \bigvee_{N}^{N+m} T^{-i} \zeta
$$

The system $(X, \mathcal{B}, \mu ; T)$ is weakly Bernoulli if it has a generating weak Bernoulli partition.

Theorem 4 (Friedman \& Ornstein). If $(X, \mathcal{B}, \mu ; T)$ be an invertible measure preserving system, and η is a weakBernoulli partition such that

$$
\zeta_{-\infty}^{\infty} \equiv \bigvee_{i=-\infty}^{\infty} T^{-i}(\zeta)
$$

generates \mathcal{B}, then T is isomorphic to a two-sided Bernoulli shift.

Therefore, if a measure preserving endomorphism is weakly Bernoulli, its natural extension is two-sided Bernoulli ($b \Rightarrow$ a).

Among endomorphisms shown to be weakly Bernoulli are:

- β-transformations (Parry, 70s)
- Toral endomorphisms (Adler \& Smorodinsky, '72)
- Various interval maps with acips (Ledrappier, '81)
- Equilibrium states for rational maps of $\overline{\mathbb{C}}$ with supremum gap (Haydn, '00)

Decomposing \boldsymbol{n}-to-one Endomorphisms.

Due to Rohlin (1952) proved that a \boldsymbol{n}-to-one (for $n=$ $\left.2,3, \ldots, \aleph_{0}\right)$ measure preserving endomorphism $(X, \mathcal{B}, \mu ; T)$ has a proper factor $\left(Y, T^{-1} \mathcal{B}, \nu ; T\right)$ with factor map φ such that

$$
\begin{array}{ccc}
(X, \mathcal{B}, \mu) & \xrightarrow{T} & (X, \mathcal{B}, \mu) \\
\downarrow \varphi & & \downarrow \varphi \\
\left(Y, T^{-1} \mathcal{B}, \nu\right) & \xrightarrow{T} & \left(Y, T^{-1} \mathcal{B}, \nu\right)
\end{array}
$$

commutes, where $\nu=\left.\mu\right|_{T^{-1} \mathcal{B}}$.
Thus we can decompose

$$
\begin{equation*}
\mu(B)=\int_{Y} \mu_{y}(B) d \nu(y) \tag{0.1}
\end{equation*}
$$

where for ν-a.e. $y \in Y, \mu_{y}=\mu_{\left[T^{-1} x\right]}$ is a measure that is nonsingular for T, purely atomic (since T is at most countable-to-one), and its support is contained in the set of points $\left\{T^{-1} x\right\}$ such that $[y]=\left[T^{-1} x\right]$.

The Index of a Point.

Definition 5. For a nonsingular endomorphism T, the index function (or index) $i n d_{T}(x)$ is defined to be, $(\mu \bmod$ $0)$, the cardinality of the support of $\mu_{\left[T^{-1} x\right]}=\mu_{[\varphi(x)]}$ for $x \in X$.

If $(X, \mathcal{B}, \mu ; T)$ is one-sided Bernoulli, then the index is constant n.

Moreover the Jacobians

$$
J(x)=\frac{d \mu \circ T}{d \mu}(x) \in
$$

satisfy

$$
\left\{J_{\mu T}(y)\right\}_{y \in \operatorname{supp}\left(\mu_{\left[T^{-1} x\right]}\right)}=\left\{1 / p_{1}, 1 / p_{2}, \ldots, 1 / p_{n}\right\}
$$

for μ-a.e. x.

Figure 1. The map $T\left(x^{\alpha^{2}}\right)=|\min \{3 x-1,2-3 x\}|$ preserves an acip μ with $\frac{d \mu}{d m}=\frac{4}{3}$ on $\left[0, \frac{1}{2}\right)$ and $\frac{d \mu}{d m}=\frac{2}{3}$ on ($\left.\frac{1}{2}, 1\right]$.
T is bounded-to-one w.r.t. Lebesgue, but 2-to-1 w.r.t. Hausdorff measure supported on the middle thirds Cantor set.

Rohlin Partitions

An bounded-to-one measure preserving endomorphisms $(X, \mathcal{B}, \mu ; T)$ has an ordered partition $\zeta=\left\{A_{1}, A_{2}, A_{3}, \ldots\right\}$ satisfying:
(1) $\mu\left(A_{i}\right)>0$ for each i;
(2) the restriction of T to each A_{i}, which we will write as T_{i}, is one-to-one $(\mu \bmod 0)$;
(3) each A_{i} is of maximal measure in $X \backslash \cup_{j<i} A_{j}$ with respect to property 2 ;
(4) T_{1} is one-to-one and onto $\mathrm{X}(\mu \bmod 0)$ by numbering the atoms so that

$$
\mu\left(T A_{i}\right) \geq \mu\left(T A_{i+1}\right)
$$

for $i \in \mathbb{N}$.

Non-uniqueness of Rohlin Partitions.

- For the angle doubling map (preserving Lebesgue measure), any partition

$$
\zeta_{t}=\left\{A_{0}=[0, t) \cup\left(t+\frac{1}{2}, 1\right], \quad A_{1}=\left[t, t+\frac{1}{2}\right)\right\}
$$

is a Rohlin partition.

- ζ_{t} generates \mathcal{B} for all $t \in\left(0, \frac{1}{2}\right)$ except $t=\frac{1}{4}$.
- The coding map π_{t} is surjective but not injective for all $t \in\left(0, \frac{1}{2}\right)$.
For $t=0, \pi_{t}$ is injective, but no point has code $111 \ldots$;

For the map $T_{p, t}$ below, Lebesgue measure is one-sided $\{p, 1-p\}$-Bernoulli, except for $t=\frac{1}{4}$.

Figure 2. The map $T_{p, t}$ is not one-sided Bernoulli for $t=\frac{1}{4}$ (left) but it is for e.g. $t=\frac{3}{20}$ (right).

Commuting Automorphisms

Theorem 6. Suppose $p \neq \frac{1}{2}$:

(1) Let σ on (Ω, ρ) be the one-sided $\{p, 1-p\}$ Bernoulli shift. Then there exists no nontrivial nonsingular automorphism $\varphi:(\Omega, \rho) \rightarrow(\Omega, \rho)$ with $\varphi \circ \sigma=\sigma \circ$ $\varphi(\mu \bmod 0)$.
(2) If T on (X, \mathcal{B}, μ) is a one-sided $\{p, 1-p\}$ Bernoulli endomorphism, then there is no nontrivial nonsingular T-commuting automorphism $\varphi:(X, \mu) \rightarrow(X, \mu)$.

Corollary 7 (Parry). Suppose ($X, \mathcal{B}, \mu ; T$) is a measure preserving 2 -to-one endomorphism. If there exists a nontrivial nonsingular automorphism φ commuting with T, then T is not isomorphic to a one-sided $\{p, 1-p\}$ Bernoulli shift.

Figure 3. $T(x)=2 x+\varepsilon \sin 4 \pi x$ preserves an acip μ but is not one-sided Bernoulli, because of it symmetry $x \mapsto 1-x$.

A Rigidity Result

Theorem 8. Let $T: I=[0,1] \rightarrow I$ be a piecewise C^{2} n-to-1 map and assume T preserves a probability measure $\mu \sim m$.
Assume that the Radon-Nikodym derivative

$$
g(x)=\frac{d \mu}{d m}
$$

is continuous and bounded away from 0 .
Then T is one-sided Bernoulli on (I, \mathcal{B}, m) if and only if T is C^{1}-conjugate to a map $S: I \rightarrow I$ whose graph consists of n linear pieces, with slopes $\pm \frac{1}{p_{i}}$ such that $h_{\mu}(T)=-\sum_{i=1}^{n} p_{i} \log p_{i}$.

Figure 4. Commutative diagram to construct $\Psi=\psi \circ \pi^{-1}$.

Rational Maps on the Riemann Sphere.

Let $R: \hat{\mathbb{C}} \rightarrow \hat{\mathbb{C}}$

$$
R(z)=\frac{p(z)}{q(z)}
$$

be a rational map of degree $d=\max \{\operatorname{deg}(p), \operatorname{deg}(q)\}$. The Julia set $\mathcal{J}=\mathcal{J}(R)$ supports

- a measure of maximal entropy $\mu_{\text {max }}$
- Lyubich ('83) and Mañé (85) proved that ($\left.\mathcal{J}, \mu_{\max }, R^{k}\right)$ is one-sided Bernoulli for some $k \geq 1$.
- Heicklen \& Hoffman ('02) proved that $\left(\mathcal{J}, \mu_{\max }, R\right)$ itself is one-sided Bernoulli.
- an invariant measure $\mu_{\alpha} \ll m_{\alpha}$, the α-conformal measure (where ideally $\alpha=\operatorname{dim}_{H}(\mathcal{J})$).
Weak-Bernoulli results exist in some cases for $\left(\mathcal{J}, \mu_{\max }, R\right)$

Hyperbolic Rational Maps.

For hyperbolic rational maps, $\alpha=\operatorname{dim}_{H}(\mathcal{J}(R))$ is the correct conformal exponent to work with: the invariant measure μ_{α} is equivalent to α-dimensional Hausdorff measure.

Theorem 9. If R is a hyperbolic rational map of degree $d \geq 2$ with connected Julia set $\mathcal{J}(R)$, then $\left(\mathcal{J}, \mu_{\alpha}, R\right)$ is not one-sided Bernoulli, unless R is conformally equivalent to $z \mapsto z^{ \pm d}$.

For $f_{c}: z \mapsto z^{2}+c, c \in \mathbb{C} \backslash \mathcal{M}$, the Julia set \mathcal{J} is a hyperbolic Cantor set (so not connected). Write μ_{c} for the invariant measure equivalent to α-conformal measure ($=$ α-dimensional Hausdorff measure).

Theorem 10. If $c \in \mathbb{C} \backslash \mathcal{M}$ satisfies
(i) $c \notin\left(\frac{1}{4}, \infty\right)$,
(ii) $\operatorname{Re}(c) \neq \frac{1}{2}$,
(iii) $2|1+c| \neq 1+2 c \pm \sqrt{1-4 c}$,
then $\left(\mathcal{J}, \mu_{\alpha}, R\right)$ is not one-sided Bernoulli.

Applications to Postcritically Finite Maps:

Any degree n Chebyshev system is one-sided Bernoulli.

Figure 5. The Julia set separating basins of super-attracting fixed points for the rational function of Newton's root-finding algorithm for $z^{3}-1$.

Let $T: \mathbb{C} \rightarrow \mathbb{C}$ be the rational map associated the Newton algorithm for finding the roots of the equation $z^{d}-1=0$:

$$
T(z)=z-\frac{z^{d}-1}{d z^{d-1}}=\frac{(d-1) z^{d}+1}{d z^{d-1}}
$$

Then T preserves a measure $\mu \ll m_{t}$, where $t=\operatorname{dim}_{H}(\mathcal{J})$ and m_{t} is t-conformal measure.
The dihedral group \mathcal{G} generated by $z \mapsto e^{2 \pi i / d} z$ and $z \mapsto \bar{z}$ is the group of symmetries of \mathcal{J}, which also transitively permutes the atoms of the Rohlin partition $\left\{A_{1}, \ldots, A_{d}\right\}$. The system $(\mathcal{J}, \mathcal{B}, \mu ; T)$ is not one-sided Bernoulli.

Selected references.

References

[1] R. Adler, F-expansions revisited. Recent advances in topological dynamics (Proc. Conf., Yale Univ., New Haven, Conn., 1972; in honor of Gustav Arnold Hedlund), pp. 1-5. Lecture Notes in Math., Vol. 318, Springer, Berlin, 1973.
[2] K. Dajani and J. Hawkins, Rohlin factors, product factors, and joinings for n-to-one maps, Indiana Univ. Math. J. 42 (1993), no. 1, 237-258.
[3] N. Friedman and D. Ornstein, On isomorphism of weak Bernoulli transformations, Adv. in Math 5 (1970), 365-394.
[4] H. Furstenberg, Disjointness in ergodic theory, Math. Sys. Theory 1 (1967), 1-50.
[5] N. Haydn, Statistical properties of equilibrium states for rational maps, Ergodic Theory Dynam. Systems 20 (2000), no. 5, 1371-1390.
[6] D. Heicklen and C. Hoffman, Rational maps are one-sided Bernoulli, Ann. of Math. 156, 1, (2002), 103-114.
[7] C. Hoffman and D. Rudolph, Uniform endomorphisms which are isomorphic to a Bernoulli shift, Ann. of Math. 156, 1, (2002), 79-101.
[8] P. Jong, On the Isomorhism Problem of p-endomorphisms, Ph.D. thesis, Univ. of Toronto, (2003), (arkiv:Math.DS/0304054v1/4Apr2003).
[9] M. Keane, M. Smorodinsky, The finitary isomorphism theorem for Markov shifts. Bull. Amer. Math. Soc. (N.S.) 1 (1979), 436-438.
[10] F. Ledrappier, Some properties of absolutely continuous invariant measures on an interval, Erg. Th. and Dyn. Sys. 1 (1981), 77-94.
[11] D. Ornstein, Ergodic Theory, Randomness and Dynamical Systems, New Haven: Yale Univ. Press, (1973).
[12] W. Parry and P. Walters, Endomorphisms of a Lebesgue Space, Bull. AMS 78, No. 2, (1972), 272-276.
[13] W. Parry, Automorphisms of the Bernoulli endomorphism and a class of skew-products, Erg. Th. and Dyn. Sys 16, No. 3, (1996), 519-529.
[14] V. A. Rohlin, On the fundamental ideas of measure theory, Transl. AMS 71, (1952), 1-54.
[15] V. A. Rohlin, Exact Endomorphisms of a Lebesgue space, Amer. Math. Soc. Transl. Ser. 239 (1963), 1-36.
[16] M. Smorodinsky, β-automorphisms are Bernoulli shifts. Acta Math. Acad. Sci. Hungar. 24 (1973), 273-278.
[17] P. Walters, Roots of n:1 measure-preserving transformations, J. London Math. Soc. 44 (1969), 7-14.
[18] P. Walters, Some results on the classificiation of non-invertible measure-preserving transformations, Recent Advances in Topological Dynamics, Springer Lecture Notes in Math. \#318, (1972).

