Dynamic and ergodic properties of rotated odometers.

Henk Bruin (University of Vienna)

joint with
Olga Lukina (University of Leiden)
10th Visegrad Conference, Łódź, June 2023

The staircase model

Figure: Five steps of the staircase with identifications.

The staircase flow has Poincaré map $\hat{f}: I \times \mathbb{Z} \rightarrow I \times \mathbb{Z}$ with cocycle:

$$
\phi: I \rightarrow \mathbb{Z}, \quad x \mapsto \begin{cases}+1 & x<\frac{1}{2} \\ -1 & x>\frac{1}{2}\end{cases}
$$

Let $\xi: I \times \mathbb{Z} \rightarrow \mathbb{Z}$ be the canonical projection.

Weights

The letters in the substitution words get weights ± 1 according to whether they correspond to the flow going up or down a square. The middle symbol is split in two: a^{+}for the part $<\frac{1}{2}$ and a^{-}for the part $>\frac{1}{2}$.
Extend weights to words by summing the weights of their letters.
Proposition If the weights

$$
w(\chi(a))=0 \quad \text { for all } a,
$$

then the cocycle ϕ is cohomologous to 0 , and all flow-lines in the \mathbb{Z}-extension are bounded.

Diffusion coefficient

The diffusion coefficient is typical value of

$$
\sup _{n} \frac{\log \left|\xi \circ \hat{f}^{n}(z)-\xi(z)\right|}{\log n}
$$

for the projection $\xi: I \times \mathbb{Z} \rightarrow \mathbb{Z}$.
The normal diffusion coefficient (of e.g. standard symmetric random walks Brownian motion) is $\frac{1}{2}$.

Proposition The diffusion coefficient of the \mathbb{Z}-extension of $\left(I, R_{\pi}\right)$ with a stationary covering permutation π. Then the diffusion coefficient

$$
\gamma \leq \max \left\{\frac{\log \left|\lambda_{2}\right|}{\log \lambda_{1}}, 0\right\}
$$

where λ_{i} are the eigenvalues of the associate matrix of the substitution χ.

Essential values

To decide on recurrence and ergodicity of \mathbb{Z}-extension $\left(I \times \mathbb{Z}, R_{\pi}, \phi\right)$, one can study the essential values.

Definition: We say that $e \in \mathbb{Z}$ is an essential value of the cocycle ϕ if for every positive measure $A \in \mathcal{B}$ there exists an $n \in \mathbb{N}$ such that

$$
\mu\left(A \cap R_{\pi}^{-n}(A) \cap\left\{x \in[0,1): \sum_{j=0}^{n-1} \phi \circ R_{\pi}^{j}(x)=e\right\}\right)>0
$$

Additionally, ∞ is an essential value if for every $N \in \mathbb{N}$, and every positive measure $A \in \mathcal{B}$ there exists an $n \in \mathbb{N}$ such that

$$
\mu\left(A \cap R_{\pi}^{-n}(A) \cap\left\{x \in[0,1):\left|\sum_{j=0}^{n-1} \phi \circ R_{\pi}^{j}(x)\right| \geq N\right\}\right)>0
$$

The set E_{ϕ} of all essential values forms a subgroup of $\mathbb{Z} \cup\{\infty\}$.

Recurrence/Ergodicity

Known Facts:
The flow is recurrent if and only if $0 \in E_{\phi}$.
NB: Lebesgue \times counting measure is infinite, so recurrence does not immediately follow from the invariance of μ.

The flow is ergodic if and only if $\mathbb{Z} \subset E_{\phi}$, see [3].
If $E_{\phi}=\{0, \infty\}$, then the flow has uncountably many ergodic components.

Example (012):

$\pi=(012)$	$\pi^{\prime}=(012)$	covering
Substitution weight	Associated Matrix	char. polynomial
$\begin{cases}0 \rightarrow 0221^{-} & -2 \\ 1^{+} \rightarrow 0221^{-} & -2 \\ 1^{-} \rightarrow 0221^{-} & -2 \\ 2 \rightarrow 001+1^{+} & +4\end{cases}$	$\left(\begin{array}{llll}1 & 0 & 1 & 2 \\ 1 & 0 & 1 & 2 \\ 1 & 0 & 1 & 2 \\ 2 & 2 & 0 & 0\end{array}\right)$	$x^{4}-2 x^{3}-8 x^{2}$ with eigenvalues $4,-2,0,0$

R_{π} is uniquely ergodic.
The extension is recurrent, non-ergodic, $E_{\phi}=\{0, \infty\}$, diffusion coefficient $\gamma=\frac{1}{2}$.

Example (021):

$\pi=(021)$		$\pi^{\prime}=(021)$	covering
Substitution	weight	Associated Matrix	char. polynomial
$\left(\begin{array}{ll}0 \rightarrow 01^{+} 1^{-} 221^{+} 1^{-} 220 & -2 \\ 1^{+} \rightarrow 0 & +1 \\ 1^{-} \rightarrow 0 & +1\end{array}\right.$	$\left(\begin{array}{llll}2 & 2 & 2 & 4 \\ 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0\end{array}\right)$	$x^{4}-2 x^{3}-8 x^{2}$	
$2 \rightarrow 0$	+1		with eigenvalues
$4,-2,0,0$			

R_{π} is uniquely ergodic.
The extension is recurrent, ergodic?, $E_{\phi} \supset\{0, \infty\}$, diffusion coefficient $\gamma=\frac{1}{2}$.

Example (01234):

$\pi=(01234)$	$\pi^{\prime}=(01234)$	covering
Substitution weight	Associated Matrix	char. polynomial
$(0 \rightarrow 030$		
$1 \rightarrow 03$ 0		
$2^{+} \rightarrow 030$	$\left(\begin{array}{llllll}1 & 0 & 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 & 1 & 0\end{array}\right)$	
$2^{-} \rightarrow 030$	$\left(\begin{array}{llllll}1 & 0 & 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 & 1 & 0\end{array}\right)$	$x^{6}-10 x^{5}+16 x^{4}$
$\{3 \rightarrow 030$	$\left(\begin{array}{llllll}1 & 0 & 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 & 1 & 0\end{array}\right.$	with eigenvalues
$4 \rightarrow 042^{-} 2^{+} 2^{+} 11$	$\left(\begin{array}{llllll}1 & 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 & 1 & 0\end{array}\right.$	$8,2,0,0,0,0$
1431431430-	$\left(\begin{array}{llllll}1 & 8 & 4 & 4 & 4 & 8\end{array}\right)$	
42-042-042 ${ }^{-}$		
$2^{+} 2^{+} 111430$		

R_{π} is not uniquely ergodic. ($I_{\text {min }}, R_{\pi}$) is dyadic odometer.
The extension is recurrent, non-ergodic, $E_{\phi}=\{0\}$, diffusion coefficient $\gamma=0$: Cocycle ϕ is cohomologous to 0 .

Example (0516234):

$\pi=(0516234)$	$\pi^{\prime}=(0516234)$	not covering
Substitution weight	Associated Matrix	char. polynomial
$0 \rightarrow 03^{+} 21+4$		
$1 \rightarrow 03^{+} 21+4$	$\left(\begin{array}{lllllll}1 & 1 & 1 & 1 & 0 & 0 & 0\end{array}\right)$	
$2 \rightarrow 001+3$	$\left(\begin{array}{lllllll}1 & 1 & 1 & 1 & 0 & 0 & 0 \\ 2 & 1 & 0 & 0 & 0 & 0 & 0\end{array}\right)$	$x^{7}-2 x^{6}-6 x^{5}$
$\left\{3^{+} \rightarrow 011+3\right.$	$\left(\begin{array}{lllllll}2 & 1 & 0 & 0 & 0 & 0 & 0 \\ 1 & 2 & 0 & 0 & 0 & 0 & 0\end{array}\right.$	with eigenvalues
$3^{-} \rightarrow 011+3$	$\left(\begin{array}{lllllll}1 & 2 & 0 & 0 & 0 & 0 & 0\end{array}\right.$	$1 \pm \sqrt{7}$ and
$4 \rightarrow 01 \quad+2$	$\left(\begin{array}{lllllll}1 & 1 & 0 & 0 & 0 & 0 & 0\end{array}\right)$	0 (multiplicity 5)
$5 \rightarrow 01 \quad+2$	$\left(\begin{array}{lllllll}1 & 1 & 0 & 0 & 0 & 0 & 0\end{array}\right)$	
$6 \rightarrow 01+2$		

Lebesgue is not ergodic. $0 \in \overline{I_{\text {per }}},\left(I_{\text {min }}, R_{\pi}\right)$ is substitution shift with dyadic odometer as maximal equicontinuous factor.
Lifted measure on $I_{n p}$ is transient to $+\infty$. Periodic orbits lift to?

Example (02431):

$\pi=(02431)$	$\pi^{\prime}=(02431)$	covering
Substitution weight	Associated Matrix	char. polynomial
$\left(0 \rightarrow 042^{+} 12^{-}+1\right.$		
$1 \rightarrow 042^{+}+1$	1	
$2^{+} \rightarrow 04012^{-}+1$	$\left(\begin{array}{llllll}1 & 1 & 1 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 & 0 & 1 \\ 2 & 1 & 0 & 1 & 0 & 1\end{array}\right)$	$x^{6}-10 x^{5}+8 x^{4}$
$2^{-} \rightarrow 0402^{-}+1$	$\left(\begin{array}{llllll}2 & 1 & 0 & 1 & 0 & 1 \\ 2 & 1 & 0 & 1 & 0 & 1\end{array}\right.$	with eigenvalues
$3 \rightarrow 04013341$	$\left(\begin{array}{llllll}2 & 1 & 0 & 1 & 0 & 1 \\ 3 & 5 & 2 & 1 & 8 & 5\end{array}\right.$	cith $8,2 \pm \sqrt{5}$,
$3342+0133$	$\left(\begin{array}{llllll}3 & 5 & 2 & 1 & 8 & 5 \\ 1 & 1 & 0 & 1 & 0 & 0\end{array}\right)$	-1, -1,0
$413342^{+} 12^{-} \quad-4$		
$4 \rightarrow 012^{-}+1$		

R_{π} is not uniquely ergodic. ($I_{\text {min }}, R_{\pi}$) is a substitution shift. Lifted Lebesgue transient to $-\infty$ with diffusion coefficient
$\gamma=\frac{\log 2+\sqrt{5}}{\log 8}$; lifted minimal system has $\gamma \approx 1 / 4$.

References

R H. Bruin, O. Lukina, Rotated odometers and actions on rooted trees, Fund. Math. 260 (2023) 233-249.
囯 H. Bruin, O. Lukina, Rotated odometers, Journ. London. Math. Soc. published online in March 2023, DOI:10.1112/jlms. 12731

R K. Schmidt, Cocycles on ergodic transformation groups. Macmillan Lectures in Mathematics, Vol. 1. Macmillan Co. of India, Ltd., Delhi, 1977.

