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The staircase model

Figure: Five steps of the staircase with identifications.

The staircase flow has Poincaré map f̂ : I × Z→ I × Z with
cocycle:

φ : I → Z, x 7→

{
+1 x < 1

2 ;

−1 x > 1
2 .

Let ξ : I × Z→ Z be the canonical projection.



Weights

The letters in the substitution words get weights ±1 according to
whether they correspond to the flow going up or down a square.

The middle symbol is split in two: a+ for the part < 1
2 and a− for

the part > 1
2 .

Extend weights to words by summing the weights of their letters.

Proposition If the weights

w(χ(a)) = 0 for all a,

then the cocycle φ is cohomologous to 0, and all flow-lines in the
Z-extension are bounded.



Diffusion coefficient

The diffusion coefficient is typical value of

sup
n

log |ξ ◦ f̂ n(z)− ξ(z)|
log n

for the projection ξ : I × Z→ Z.

The normal diffusion coefficient (of e.g. standard symmetric
random walks Brownian motion) is 1

2 .

Proposition The diffusion coefficient of the Z-extension of (I ,Rπ)
with a stationary covering permutation π. Then the diffusion
coefficient

γ ≤ max

{
log |λ2|
log λ1

, 0
}
,

where λi are the eigenvalues of the associate matrix of the
substitution χ.



Essential values

To decide on recurrence and ergodicity of Z-extension
(I × Z,Rπ, φ), one can study the essential values.

Definition: We say that e ∈ Z is an essential value of the cocycle φ
if for every positive measure A ∈ B there exists an n ∈ N such that

µ

A ∩ R−nπ (A) ∩ {x ∈ [0, 1) :
n−1∑
j=0

φ ◦ R j
π(x) = e}

 > 0.

Additionally, ∞ is an essential value if for every N ∈ N, and every
positive measure A ∈ B there exists an n ∈ N such that

µ

A ∩ R−nπ (A) ∩ {x ∈ [0, 1) : |
n−1∑
j=0

φ ◦ R j
π(x)| ≥ N}

 > 0.

The set Eφ of all essential values forms a subgroup of Z ∪ {∞}.



Recurrence/Ergodicity

Known Facts:

The flow is recurrent if and only if 0 ∈ Eφ.
NB: Lebesgue × counting measure is infinite, so recurrence does not
immediately follow from the invariance of µ.

The flow is ergodic if and only if Z ⊂ Eφ, see [3].

If Eφ = {0,∞}, then the flow has uncountably many ergodic
components.



Example (012):

π = (012) π′ = (012) covering
Substitution weight Associated Matrix char. polynomial

0→ 0221− −2
1+ → 0221− −2
1− → 0221− −2
2→ 001+1+ +4


1 0 1 2
1 0 1 2
1 0 1 2
2 2 0 0

 x4 − 2x3 − 8x2

with eigenvalues
4,−2, 0, 0

Rπ is uniquely ergodic.

The extension is recurrent, non-ergodic, Eφ = {0,∞}, diffusion
coefficient γ = 1

2 .



Example (021):

π = (021) π′ = (021) covering
Substitution weight Associated Matrix char. polynomial
0→ 01+1−221+1−220 −2
1+ → 0 +1
1− → 0 +1
2→ 0 +1


2 2 2 4
1 0 0 0
1 0 0 0
1 0 0 0

 x4 − 2x3 − 8x2

with eigenvalues
4,−2, 0, 0

Rπ is uniquely ergodic.

The extension is recurrent, ergodic?, Eφ ⊃ {0,∞}, diffusion
coefficient γ = 1

2 .



Example (01234):

π = (01234) π′ = (01234) covering
Substitution weight Associated Matrix char. polynomial

0→ 03 0
1→ 03 0
2+ → 03 0
2− → 03 0
3→ 03 0
4→ 042−2+2+11

1431431430−
42−042−042−

2+2+11143 0



1 0 0 0 1 0
1 0 0 0 1 0
1 0 0 0 1 0
1 0 0 0 1 0
1 0 0 0 1 0
4 8 4 4 4 8


x6 − 10x5 + 16x4

with eigenvalues
8, 2, 0, 0, 0, 0

Rπ is not uniquely ergodic. (Imin,Rπ) is dyadic odometer.
The extension is recurrent, non-ergodic, Eφ = {0}, diffusion
coefficient γ = 0: Cocycle φ is cohomologous to 0.



Example (0516234):

π = (0516234) π′ = (0516234) not covering
Substitution weight Associated Matrix char. polynomial

0→ 03+21 +4
1→ 03+21 +4
2→ 001 +3
3+ → 011 +3
3− → 011 +3
4→ 01 +2
5→ 01 +2
6→ 01 +2



1 1 1 1 0 0 0
1 1 1 1 0 0 0
2 1 0 0 0 0 0
1 2 0 0 0 0 0
1 1 0 0 0 0 0
1 1 0 0 0 0 0
1 1 0 0 0 0 0


x7 − 2x6 − 6x5

with eigenvalues
1±
√
7 and

0 (multiplicity 5)

Lebesgue is not ergodic. 0 ∈ Iper , (Imin,Rπ) is substitution shift
with dyadic odometer as maximal equicontinuous factor.
Lifted measure on Inp is transient to +∞. Periodic orbits lift to?



Example (02431):

π = (02431) π′ = (02431) covering
Substitution weight Associated Matrix char. polynomial

0→ 042+12− +1
1→ 042+ +1
2+ → 04012− +1
2− → 0402− +1
3→ 04013341

3342+0133
413342+12− −4

4→ 012− +1



1 1 1 1 0 1
1 0 1 0 0 1
2 1 0 1 0 1
2 1 0 1 0 1
3 5 2 1 8 5
1 1 0 1 0 0


x6 − 10x5 + 8x4

+58x3 + 47x2 + 8x
with eigenvalues

8, 2±
√
5,

−1,−1, 0

Rπ is not uniquely ergodic. (Imin,Rπ) is a substitution shift.
Lifted Lebesgue transient to −∞ with diffusion coefficient
γ = log 2+

√
5

log 8 ; lifted minimal system has γ ≈ 1/4.
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