Dynamic and ergodic properties of rotated odometers.

Henk Bruin (University of Vienna)

joint with

Olga Lukina (University of Leiden)

10th Visegrad Conference, Łódź, June 2023

The staircase model

Figure: Five steps of the staircase with identifications.

The staircase flow has Poincaré map $\hat{f}: I \times \mathbb{Z} \to I \times \mathbb{Z}$ with cocycle:

$$\phi: I \to \mathbb{Z}, \qquad x \mapsto \begin{cases} +1 & x < \frac{1}{2}; \\ -1 & x > \frac{1}{2}. \end{cases}$$

Let $\xi: I \times \mathbb{Z} \to \mathbb{Z}$ be the canonical projection.

Weights

The letters in the substitution words get weights ± 1 according to whether they correspond to the flow going up or down a square.

The middle symbol is split in two: a^+ for the part $<\frac{1}{2}$ and a^- for the part $>\frac{1}{2}$.

Extend weights to words by summing the weights of their letters.

Proposition If the weights

$$w(\chi(a)) = 0$$
 for all a ,

then the cocycle ϕ is cohomologous to 0, and all flow-lines in the $\mathbb{Z}\text{-extension}$ are bounded.

Diffusion coefficient

The diffusion coefficient is typical value of

$$\sup_{n} \frac{\log |\xi \circ \hat{f}^{n}(z) - \xi(z)|}{\log n}$$

for the projection $\xi: I \times \mathbb{Z} \to \mathbb{Z}$.

The normal diffusion coefficient (of e.g. standard symmetric random walks Brownian motion) is $\frac{1}{2}$.

Proposition The diffusion coefficient of the \mathbb{Z} -extension of (I, R_{π}) with a stationary **covering** permutation π . Then the diffusion coefficient

$$\gamma \leq \max\left\{\frac{\log|\lambda_2|}{\log\lambda_1}, 0\right\},\$$

where λ_i are the eigenvalues of the associate matrix of the substitution χ .

Essential values

To decide on recurrence and ergodicity of \mathbb{Z} -extension $(I \times \mathbb{Z}, R_{\pi}, \phi)$, one can study the essential values.

Definition: We say that $e \in \mathbb{Z}$ is an essential value of the cocycle ϕ if for every positive measure $A \in \mathcal{B}$ there exists an $n \in \mathbb{N}$ such that

$$\mu\left(A \cap R_{\pi}^{-n}(A) \cap \{x \in [0,1) : \sum_{j=0}^{n-1} \phi \circ R_{\pi}^{j}(x) = e\}\right) > 0.$$

Additionally, ∞ is an essential value if for every $N \in \mathbb{N}$, and every positive measure $A \in \mathcal{B}$ there exists an $n \in \mathbb{N}$ such that

$$\mu\left(A\cap R_{\pi}^{-n}(A)\cap \{x\in [0,1): |\sum_{j=0}^{n-1}\phi\circ R_{\pi}^{j}(x)|\geq N\}\right)>0.$$

The set E_{ϕ} of all essential values forms a subgroup of $\mathbb{Z} \cup \{\infty\}$.

Recurrence/Ergodicity

Known Facts:

The flow is recurrent if and only if $0 \in E_{\phi}$.

NB: Lebesgue \times counting measure is infinite, so recurrence does not immediately follow from the invariance of $\mu.$

The flow is ergodic if and only if $\mathbb{Z} \subset E_{\phi}$, see [3].

If $E_{\phi} = \{0, \infty\}$, then the flow has uncountably many ergodic components.

Example (012):

$\pi=$ (012)		$\pi'=(012)$	covering
Substitution weigh	t	Associated Matrix	char. polynomial
$\begin{tabular}{ c c c c c } \hline & & & \\ \hline \hline & & \\ \hline \hline & & \\ \hline \hline \\ \hline & & \\ \hline \hline \\ \hline \\$		$\begin{pmatrix} 1 & 0 & 1 & 2 \\ 1 & 0 & 1 & 2 \\ 1 & 0 & 1 & 2 \\ 2 & 2 & 0 & 0 \end{pmatrix}$	$x^4 - 2x^3 - 8x^2$ with eigenvalues 4, -2, 0, 0

 R_{π} is uniquely ergodic.

The extension is recurrent, non-ergodic, $E_{\phi} = \{0, \infty\}$, diffusion coefficient $\gamma = \frac{1}{2}$.

Example (021):

$\pi = (021)$		$\pi'=$ (021)	covering
Substitution	weight	Associated Matrix	char. polynomial
$ \begin{array}{c} 0 \to 01^{+}1^{-}221^{+}1^{-2}\\ 1^{+} \to 0\\ 1^{-} \to 0\\ 2 \to 0 \end{array} $	220 -2 +1 +1 +1 +1	$\begin{pmatrix} 2 & 2 & 2 & 4 \\ 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix}$	$x^4 - 2x^3 - 8x^2$ with eigenvalues 4, -2, 0, 0

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

 R_{π} is uniquely ergodic.

The extension is recurrent, ergodic?, $E_{\phi} \supset \{0,\infty\}$, diffusion coefficient $\gamma = \frac{1}{2}$.

Example (01234):

$\pi =$ (0123	4)		π'	= (012	34)		covering
Substitution	weight	A	ssoc	ciate	ed N	Лat	rix	char. polynomial
$\int 0 \rightarrow 03$	0							
1 ightarrow 03	0							
$2^+ ightarrow 03$	0	/1	0	0	0	1	0	
$2^- ightarrow 03$	0		0				0	$x^{6} - 10x^{5} + 16x^{4}$
$3 \rightarrow 03$	0		0	0	0 0	1 1	0	with eigenvalues
$4 \to 042^{-}2^{+}2^{-}$	+11		0	0	•	1	0	8, 2, 0, 0, 0, 0
14314314	30—	4	8	4	4	4	8/	
42-042-0)42-							
2+2+1114	13 0							

 R_{π} is not uniquely ergodic. (I_{\min}, R_{π}) is dyadic odometer. The extension is recurrent, non-ergodic, $E_{\phi} = \{0\}$, diffusion coefficient $\gamma = 0$: Cocycle ϕ is cohomologous to $0, \sigma$, where $\phi \in \mathbb{R}$ and $\phi \in \mathbb{R}$ Example (0516234):

$\pi=$ (0516234)	$\pi^\prime=$ (0516234)	not covering
Substitution weight	Associated Matrix	char. polynomial
$0 \rightarrow 03^+21 +4$		
$1 ightarrow 03^+21 +4$		
$egin{array}{ccc} 2 ightarrow 001 & +3 \ 3^+ ightarrow 011 & +3 \end{array}$	1 1 1 1 0 0 0	$x^7 - 2x^6 - 6x^5$
$3^+ ightarrow 011 + 3$	2 1 0 0 0 0 0	with eigenvalues
$3^- ightarrow 011 +3$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$1\pm\sqrt{7}$ and
4 ightarrow 01 +2	1 1 0 0 0 0 0	0 (multiplicity 5)
5 ightarrow 01 +2	1 1 0 0 0 0 0/	
$\left(6 ightarrow 01 +2 ight)$		

Lebesgue is not ergodic. $0 \in \overline{I_{per}}$, (I_{min}, R_{π}) is substitution shift with dyadic odometer as maximal equicontinuous factor. Lifted measure on I_{np} is transient to $+\infty$. Periodic orbits lift to? Example (02431):

$\pi =$ (02431)	$\pi'=(02431)$	covering
Substitution weight	Associated Matrix	char. polynomial
$0 \rightarrow 042^{+}12^{-}$ +1		
$1 \rightarrow 042^+$ +1		
$2^+ ightarrow 04012^- ightarrow +1$	$\begin{pmatrix} 1 & 1 & 1 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 & 0 & 1 \end{pmatrix}$	$x^{6} - 10x^{5} + 8x^{4}$
$\int 2^- \rightarrow 0402^- \qquad +1$	2 1 0 1 0 1	$+58x^3 + 47x^2 + 8x$ with eigenvalues
$3 \rightarrow 04013341$	2 1 0 1 0 1	$8,2\pm\sqrt{5},$
3342+0133	3 5 2 1 8 5	$0,2 \pm \sqrt{3}, -1, -1, 0$
413342+124		, ,
$4 \rightarrow 012^{-}$ +1		

 R_{π} is not uniquely ergodic. (I_{\min}, R_{π}) is a substitution shift. Lifted Lebesgue transient to $-\infty$ with diffusion coefficient $\gamma = \frac{\log 2 + \sqrt{5}}{\log 8}$; lifted minimal system has $\gamma \approx 1/4$.

References

- H. Bruin, O. Lukina, *Rotated odometers and actions on rooted trees*, Fund. Math. **260** (2023) 233–249.
- H. Bruin, O. Lukina, *Rotated odometers,* Journ. London. Math. Soc. published online in March 2023, DOI:10.1112/jlms.12731
- K. Schmidt, Cocycles on ergodic transformation groups. Macmillan Lectures in Mathematics, Vol. 1. Macmillan Co. of India, Ltd., Delhi, 1977.