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The Euclidean Algorithm

An example from very old Greeks:
Let x < y be positive real numbers.

The Euclidean algorithm to approximate § by rationals goes by
iterating:

(x,y — x) if x <y—x,
(X7Y)_>{(y—x7x) if x>y —x.

If we scale the largest coordinate to 1, we get the Farey map:

if x <

—
|

x

N[

if x >

x
N[



The Gaull map

To speed up this algorithm, define

7(x) =1+ min{n>0:f"(x) € (%, 1]}.

The induced map G = f7 is the GauR map

with invariant measure dv = loz3 Tix dx.



The Gaull map

The measure dv = @ IJ%X dx does not pull back to an

f-invariant probability measure.
Instead, the Farey map preserves the infinite density

d,uzldx
X

The Lebesgue statistical properties of the Farey map are
nevertheless very well understood, e.g. Thaler.



The Gaull map

The measure dv = @ IJ%X dx does not pull back to an

f-invariant probability measure.
Instead, the Farey map preserves the infinite density

d,uzldx
X

The Lebesgue statistical properties of the Farey map are
nevertheless very well understood, e.g. Thaler.

Basic problem: Do such continued fraction algorithms have
invariant measures, and what are their properties?



Algorithms in higher dimension.

Let X = (x1,...,xq) be a d-tuple of positive reals. and 7 a
permutation on {1,...,d}.
Any subtractive algorithm can be composed of basic maps

To(X) =mo (X1, ., Xg_1,Xqd — X1)
and then iterated
T"(X)=Tr,0Tr, 0 -0 Tr,

where the permutations may depend on the argument X, (for
example, to sort in increasing order).



Algorithms in higher dimension.

T(X)=Tr,0 Ty, 00 Try,
You can scale to unit size (say max x; = 1) at any moment:

1

max X;

F1(%) = % forx = T"(X).

Thus f acts on

Ad:{)?:(xl,...,xd,l):0§x,-§1}.
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Ag={X=(x1,-..,x4-1) : 0 < x; < 1}.

Due to the scaling, f should in principle be expanding, but



Algorithms in higher dimension.

Thus f(X) = 1+ %, & = T(X) acts on
Ag={X=(x1,-..,x4-1) : 0 < x; < 1}.

Due to the scaling, f should in principle be expanding, but

» The boundary x; = 0 of Ay consists of neutral fixed points.



Algorithms in higher dimension.

Thus f(X) = 1+ %, & = T(X) acts on
Ag={X=(x1,-..,x4-1) : 0 < x; < 1}.

Due to the scaling, f should in principle be expanding, but
» The boundary x; = 0 of Ay consists of neutral fixed points.

» The shear of f can be much worse than the expansion.



Algorithms in higher dimension.

Thus f(X) = 1+ %, & = T(X) acts on
Ag={X=(x1,-..,x4-1) : 0 < x; < 1}.

Due to the scaling, f should in principle be expanding, but
» The boundary x; = 0 of Ay consists of neutral fixed points.
» The shear of f can be much worse than the expansion.

» Further complications can arise from the lack of Markov
partition.
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Selmer’s Algorithm

Let a € N and define:

T(X) = sort(xy,. .., Xa Xatr1 — X1)

Here sort means: rearrange in increasing order.
Question: Is lim,_,» T"(X) = 0?
That means: typically. If there are rational relations between the

coordinates, e.g. x,+1 = x1, then x; can become zero in finitely
many steps.
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with probability strictly ifa+1<r
between 0 and 1 < min{a + b, 2a}.



Selmer’s Generalised Algorithm

Let a,be N, d =a+b.

T(X) = sort(X1, ..., Xa, Xagl — X1y .-, X4 — X1).
Question 1: Is lim,_o T"(X) = 0?

Trapping Theorem The r-th coordinate of X*° := lim,_o, T"(X) is
zero

almost surely ifr<a+1,

with probability strictly ifa+1<r
between 0 and 1 < min{a + b, 2a}.

For r > 2a there is no Markov partition. Numerical experiments
suggest that the r-th coordinate is positive for Lebesgue-a.e. X.



Selmer’s Generalised Algorithm

Selmer's algorithm finds applications in percolation problems.

Disconnected dots Connected dots
( N J
[ ] [ 2N J
[ ] [ 2K 2K )
( [ AN 2K J
[ [ N J
[ ] [

The minimal width between red lines so that the pattern of dots is
connected depends on the answer to Question 1.
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Recall the Question: Is X := lim,_ T"(X) = 0?
For thecase a=1,b=2, i.e,
T(Xl, c X3) = SOI’t(Xl,Xz — X1,X3 — Xl),

the quantity 17 := x3 — xo — x7 is preserved, as soon as it is positive.



Trapping regions

—

Recall the Question: Is X := lim,_ T"(X) = 0?
For thecase a=1,b=2, i.e,
T(Xl, c X3) = SOI’t(Xl,Xz — X1,X3 — Xl),

the quantity 17 := x3 — xo — x7 is preserved, as soon as it is positive.

Therefore, if at some iterate 7 > 0, then x3° =7 > 0.

In particular, Lebesgue measure is not ergodic.

We call {x € Ri : X1 + x2 < x3} the trapping region.



Trapping regions

Scaling x3 = 1, this map reducesto f : Az .= A — A

(55 55) if (xy) eAr,
f(X,y): (%’ﬁ) if(X7y)€AR7
(% 1) if(y) ey,
Bo AgAs Az A
BBs AT
§ Ao = (0,0)
By =(0,1)
Ag /B A= (E1)
R Bk (%71 11)}fork21

0

X

Dynamics of f:
f(AL) = f(AR) = f(AT)=A
- = A3 = Az = A1 — Ag O
-+ —> B3z — B - By = By O

Figure: The Markov partition for f : A — A



Trapping regions

Bo AgAs A A1
B
B3 AT
B2
NAr /B
T 1o )
(575, 55%)  if(xy)enr,
y fony) =4 (=% %) f(xy) € AR,
(%% =) if(xy) €ny,

o X

Theorem (Nogueira '95, Bruin '13): Lebesgue-a.e. f-orbit
converges to (0,0). This convergence is chaotic:
Lebesgue measure is totally dissipative, ergodic and exact.



Trapping regions

Recall Selmer’s generalised algorithm

T(X) = sort(X1,...,Xay Xat1 — X1y -« Xd — X1),
f(X) = % X %= T(X).

fora,beN,d=a+b.

The r-th Trapping Region is
. 1
ﬂ:{XeAdr_a;Xj<Xr}
JSr

If X € T,, then x1,...,x,_1 combined are too small to pull x, to
zero.



Trapping regions

Recall that T, = {¥ € Ay : -1 > j<rXj < Xr} is the r-th
Trapping Region.

If r < 2a then
Ve =T\ T, is T,-invariant,
Ven{x =1} is fy-invariant.

Let ¢ be the last coordinate such that

x> = (lim T"(X)).=0.

n—o0

Thus (from now on) we can restrict to

f:V. =V



Markov Partitions

The map T (and hence f) has discontinuous derivatives at
the folding planes {x; = xj11}, due to the permutations 7.

Preimages of folding planes provide a Markov partition.



Markov Partitions

The map T (and hence f) has discontinuous derivatives at
the folding planes {x; = xj11}, due to the permutations 7.

Preimages of folding planes provide a Markov partition.

Definition: P = {P;}i>o of A is a Markov partition if
» UP; = A (mod 0);
» f|P; is injective;

» and P is preserved under f:

f(P,-)ﬁPJ- 75@:> f(P,) D) PJ'



Markov Partitions

Most folding planes map to OA, but not {x, = xa41}.

Lemma: For a > b, {xa = xa11} has a finite (set-valued) orbit.

Thus the complemetary domains of
OA U {x; = xj41} UOrb({xs = xa41})

form a Markov partition.



Markov Partitions

Most folding planes map to OA, but not {x, = xa41}.

Lemma: For a > b, {xa = xa11} has a finite (set-valued) orbit.

Thus the complemetary domains of
OA U {x; = xj41} UOrb({xs = xa41})

form a Markov partition.

Challenge: What to do if A Markov partition?



Invariant Measures

For d = 2a, decompose
A= Ug:a-i-QVc
where for X € V,, ¢ is the last coordinate such that

x° = (lim T"(X)).=0.

¢ n—o0



Invariant Measures

For d = 2a, decompose
A= Ug:a-i-QVc
where for X € V,, ¢ is the last coordinate such that
oo L H neg —
x> = (nhj;o T"(X)). = 0.
Measure Theorem: If a > max{b, 2}, then the restriction
fo: Ve =V,

preserves a probability measure i, which is equivalent to Leb|y,
with density bounded away from 0.



Remarks on the Proof: Inducing

For generalised Selmer, we select the set Y C A, bounded away
from {x; = 0} (i.e., away from neutral fixed points), at which some
coordinate x; overtakes x;.

7(x) =1+ min{n>0:f(x) € Y}
Induce:
G = f is "first passage through Y map:

Necessary for G : f(Y) — f(Y) to preserve a good measure v:
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Remarks on the Proof: Inducing

For generalised Selmer, we select the set Y C A, bounded away
from {x; = 0} (i.e., away from neutral fixed points), at which some
coordinate x; overtakes x;.

duce. {T(X):l—I—min{nZOch(X)GY}.

G = f is "first passage through Y map:

Necessary for G : f(Y) — f(Y) to preserve a good measure v:
» Good distortion properties of Jacobian Jg.

» Problems with shears: DG is uniformly expanding for ¢ < 6;
G? is probably uniformly expanding for ¢ < 20.

» Challenge : Expansion of DGV for general ¢?
» Distor. Jg + (Markov 6r uniform expansion) = Distor. Jgn.



Remarks on the Proof: G expanding?

. . . R 1
Shears can keep G from being expanding: DG(X) = ———
Xj-l‘ﬂjX]_
G o ... ... o - 0

% g%

mjx2 —m2xj 1 max3 —xp

Xj—mjxy xj —mjxy
. 1 0 .
mixgamax o 1| miiamxa .

Xj—mjxy xj—mjxy
MjXjit1—Mj+1%j . .o | MiraTXia 1 ..o

Xj—mjxy Xj—mjxy

0

mixe_1-mg._1% Dl ome—1xa—xcq 0 1

Xj—mjxy . Xj—mjxy
mjmmex 0o ... 0 mexg—1 0

% = X —mpxy




Remarks on the Proof: G expanding?

. . . R 1
Shears can keep G from being expanding: DG(X) = ———
Xj-l‘ﬂjX]_
G o ... ... o - 0

5= =

mjx2 —m2xj 1 maxy —x3

Xj—mjxy xj —mjxy
. 1 0 .
mpg_a iy o 1| miimoxa .

Xj—mjxy xj—mjxy
G g o | mamNa

Xj—mjxy Xj—mjxy

0

mixe_1-mg._1% Dl ome—1xa—xcq 0 1

Xj—mjxy . Xj—mjxy
mjmmex 0o ... 0 mexg—1 0

X X

» DG is uniformly expanding for ¢ < 6;
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. . R 1
Shears can keep G from being expanding: DG(X) = ———
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X —x1 o
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Remarks on the Proof: G expanding?

. . . R 1
Shears can keep G from being expanding: DG(X) = ———
Xj-l‘ﬂle
X —x1
5= =
mjx2—m2%; max3 —x3
Xj—mjxy xj —mjxy
gy oy %=Xy
Xj—mjxy xj—mjxy
miXj+1—Mj1%j mjp1X1 X1 1
Xj—mjxy Xj—mjxy
0
mjXe_—1—Mc¢_1%j me_—1X1—Xc—1 0

Xj—mjxy
mj—mcx;
Xj—mjxy

xj—mjxy
mexqg—1
xj—mjxy

» DG is uniformly expanding for ¢ < 6;

» DG? is probably uniformly expanding for ¢ < 20;

» Challenge: Spectral properties of transfer operator L7
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Remarks on the Proof: Pulling back v

For

to be finite, we need

A=Y nv{r(x)=n})=> v({r(x) > n}) < .

Neutral fixed points sometimes prohibit this. For this reason e.g.
e the Farey map
e Rauzy induction
e Jacobi-Perron
F(V: have o-finite
measures
A
{x1 =0}
However, generalised Selmer has a finite measure p for a > 2.

Tangency of lower dimension!




Rational Approximations

The map T is piecewise linear; each iterate T is given by an
integer matrix Ay that depends on X. Its inverse

P1 K P1k—1 - .. P1,k—d+1
-1 _
Ak =
Pd—1,k Pd-1k-1 ~--- -+ Pd—1k—d+1
qk k-1 cee e Gk—d+1

is also integer and has non-negative entries.

In projective space, the columns of A;l approximate X, provided
TK(X) — 0.



Rational Approximations
Hence,

(pl’kj, A pdl’kj) for each 0 < j < d,
qk—j qk—j

are rational approximations of

X1 Xd—1
' xg
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To see this: Each column of A;l is orthogonal to all rows of Ay,
except one. Each column therefore spans the orthogonal
complement of d — 1 rows. If limg_,o AcX = 0, then X is nearly
orthogonal to all rows of Ay.



Rational Approximations
Hence,

(pl’kj, A pdl’kj) for each 0 < j < d,
qk—j qk—j

are rational approximations of

X1 Xd—1
' xg

To see this: Each column of A;l is orthogonal to all rows of Ay,
except one. Each column therefore spans the orthogonal
complement of d — 1 rows. If limy_,o AcX = 0, then X is nearly
orthogonal to all rows of Ay.

Therefore, in projective space, X is close to the column vectors of
A*1 The quality of the approximation depends on the rate of
convergence of TK(X) — 0; if lim, TX(X) # 0, then T gives no
approximations at all.



Qualifty of Approximations

Dirichlet's Theorem states that every vector X has infinitely many
rational approximations w of denominator g = q(w) such that

i — 7| < 01/,

(NB: The norm is taken after dividing by the largest coordinate!)
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Qualifty of Approximations

Dirichlet's Theorem states that every vector X has infinitely many
rational approximations w of denominator g = q(w) such that
|~ 5 < g~ (/D)

The standard continued fraction algorithm in dimension 1 achieves

this: It finds the best approximants, with |w — x| < g~2.

In higher dimension, there is no algorithm known that finds all best

approximants, or even achieves infinitely many approximants with
|~ 5] < g+ 1)
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Qualifty of Approximations

Following Lagarias '93, let

— log [|w — X]|

n(w,x) = log g

The best approximation exponent is

n(X) = limsup sup n(w i, X)
k—oo 0<i<d

The uniform approximation exponent is

() = inf Mino<j<q — log [|Wy,; — X||

k mMaXo<i<d l0g qi—i



Qualifty of Approximations

These are chosen such that we can conclude

q;fg)?) infinitely often
IWi,i = X|| <

q;j;(z) for all k,i.



Qualifty of Approximations

These are chosen such that we can conclude

g% infinitely often

s — %] < )
q;ji(x) for all k,i.

Thus Dirichlet’'s Theorem states that
n(x)>1+1/(d-1)

for every X, provided the algorithm finds infinitely many of the best
approximations.



Qualifty of Approximations

Main Theorem: For Selmer’'s Generalised Algorithm with
a > max{2, b}, Lebesgue-a.e. vector X € V, satisfies

where A1 > 0 > ), are the largest two typical Lyapunov exponents
of the cocycle A;l.



Qualifty of Approximations

Main Theorem: For Selmer’'s Generalised Algorithm with
a > max{2, b}, Lebesgue-a.e. vector X € V, satisfies

where A1 > 0 > ), are the largest two typical Lyapunov exponents
of the cocycle A;l.

Remark: If all negative Lyapunov exponents are equal, then

Finding an algorithm with this equality of Lyapunov exponents is
extremely unlikely.
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The Main Theorem follows from the work of Lagarias '93, based on
Oseledec’ Theorem on Lyapunov exponents of matrix-valued
cocycles (here A, ).
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Qualifty of Approximations

Remarks on the Proof:

The Main Theorem follows from the work of Lagarias '93, based on
Oseledec’ Theorem on Lyapunov exponents of matrix-valued
cocycles (here A, ).

We need:
> an invariant measure y;

» postive acceleration: reinduce G = f7 to fR so that AEl is
strictly positive (can be done p-a.e.);

> tail estimates on R;

» Challenge: Estimate A1 and Ay;
» Challenge: What about non-typical X7



Enough Remarks

Thank you for your attention!
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Enough Remarks
Thank you for your attention!
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