Ergodic considerations on Selmer's continued fraction algorithm in higher dimensions

Henk Bruin

University of Vienna

Joint with

Robbert Fokkink \& Cor Kraaikamp
TU Delft
April 2013

The Euclidean Algorithm

An example from very old Greeks:
Let $x<y$ be positive real numbers.
The Euclidean algorithm to approximate $\frac{x}{y}$ by rationals goes by iterating:

$$
(x, y) \rightarrow \begin{cases}(x, y-x) & \text { if } x<y-x \\ (y-x, x) & \text { if } x>y-x\end{cases}
$$

If we scale the largest coordinate to 1 , we get the Farey map:

$$
f(x)= \begin{cases}\frac{x}{1-x} & \text { if } x<\frac{1}{2} \\ \frac{1-x}{x} & \text { if } x>\frac{1}{2}\end{cases}
$$

The Gauß map

To speed up this algorithm, define

$$
\tau(x)=1+\min \left\{n \geq 0: f^{n}(x) \in\left(\frac{1}{2}, 1\right]\right\}
$$

The induced map $G=f^{\tau}$ is the Gauß map

$$
G(x)=\frac{1}{x}-\left\lfloor\frac{1}{x}\right\rfloor
$$

with invariant measure $d \nu=\frac{1}{\log 2} \frac{1}{1+x} d x$.

The Gauß map

The measure $d \nu=\frac{1}{\log 2} \frac{1}{1+x} d x$ does not pull back to an f-invariant probability measure.
Instead, the Farey map preserves the infinite density

$$
d \mu=\frac{1}{x} d x
$$

The Lebesgue statistical properties of the Farey map are nevertheless very well understood, e.g. Thaler.

The Gauß map

The measure $d \nu=\frac{1}{\log 2} \frac{1}{1+x} d x$ does not pull back to an f-invariant probability measure.
Instead, the Farey map preserves the infinite density

$$
d \mu=\frac{1}{x} d x
$$

The Lebesgue statistical properties of the Farey map are nevertheless very well understood, e.g. Thaler.

Basic problem: Do such continued fraction algorithms have invariant measures, and what are their properties?

Algorithms in higher dimension.

Let $\vec{x}=\left(x_{1}, \ldots, x_{d}\right)$ be a d-tuple of positive reals. and π a permutation on $\{1, \ldots, d\}$.
Any subtractive algorithm can be composed of basic maps

$$
T_{\pi}(\vec{x})=\pi \circ\left(x_{1}, \ldots, x_{d-1}, x_{d}-x_{1}\right)
$$

and then iterated

$$
T^{n}(\vec{x})=T_{\pi_{n}} \circ T_{\pi_{n-1}} \circ \cdots \circ T_{\pi_{1}},
$$

where the permutations may depend on the argument \vec{x}, (for example, to sort in increasing order).

Algorithms in higher dimension.

$$
T^{n}(\vec{x})=T_{\pi_{n}} \circ T_{\pi_{n-1}} \circ \cdots \circ T_{\pi_{1}},
$$

You can scale to unit size (say $\max x_{j}=1$) at any moment:

$$
f^{n}(\vec{x})=\frac{1}{\max \hat{x}_{j}} \hat{x} \quad \text { for } \hat{x}=T^{n}(\vec{x}) .
$$

Thus f acts on

$$
\Delta_{d}=\left\{\vec{x}=\left(x_{1}, \ldots, x_{d-1}\right): 0 \leq x_{i} \leq 1\right\} .
$$

Algorithms in higher dimension.

Thus $f(\vec{x})=\frac{1}{\max \hat{x}_{j}} \hat{x}, \hat{x}=T(\vec{x})$ acts on

$$
\Delta_{d}=\left\{\vec{x}=\left(x_{1}, \ldots, x_{d-1}\right): 0 \leq x_{i} \leq 1\right\} .
$$

Due to the scaling, f should in principle be expanding, but

Algorithms in higher dimension.

Thus $f(\vec{x})=\frac{1}{\max \bar{x}_{j}} \hat{x}, \hat{x}=T(\vec{x})$ acts on

$$
\Delta_{d}=\left\{\vec{x}=\left(x_{1}, \ldots, x_{d-1}\right): 0 \leq x_{i} \leq 1\right\} .
$$

Due to the scaling, f should in principle be expanding, but

- The boundary $x_{1} \equiv 0$ of Δ_{d} consists of neutral fixed points.

Algorithms in higher dimension.

Thus $f(\vec{x})=\frac{1}{\max \hat{x}_{j}} \hat{x}, \hat{x}=T(\vec{x})$ acts on

$$
\Delta_{d}=\left\{\vec{x}=\left(x_{1}, \ldots, x_{d-1}\right): 0 \leq x_{i} \leq 1\right\} .
$$

Due to the scaling, f should in principle be expanding, but

- The boundary $x_{1} \equiv 0$ of Δ_{d} consists of neutral fixed points.
- The shear of f can be much worse than the expansion.

Algorithms in higher dimension.

Thus $f(\vec{x})=\frac{1}{\max \bar{x}_{j}} \hat{x}, \hat{x}=T(\vec{x})$ acts on

$$
\Delta_{d}=\left\{\vec{x}=\left(x_{1}, \ldots, x_{d-1}\right): 0 \leq x_{i} \leq 1\right\} .
$$

Due to the scaling, f should in principle be expanding, but

- The boundary $x_{1} \equiv 0$ of Δ_{d} consists of neutral fixed points.
- The shear of f can be much worse than the expansion.
- Further complications can arise from the lack of Markov partition.

Selmer's Algorithm

Let $a \in \mathbb{N}$ and define:

$$
T(\vec{x})=\operatorname{sort}\left(x_{1}, \ldots, x_{a}, x_{a+1}-x_{1}\right)
$$

Here sort means: rearrange in increasing order.

Selmer's Algorithm

Let $a \in \mathbb{N}$ and define:

$$
T(\vec{x})=\operatorname{sort}\left(x_{1}, \ldots, x_{a}, x_{a+1}-x_{1}\right)
$$

Here sort means: rearrange in increasing order.
Question: Is $\lim _{n \rightarrow \infty} T^{n}(\vec{x})=\overrightarrow{0}$?

Selmer's Algorithm

Let $a \in \mathbb{N}$ and define:

$$
T(\vec{x})=\operatorname{sort}\left(x_{1}, \ldots, x_{a}, x_{a+1}-x_{1}\right)
$$

Here sort means: rearrange in increasing order.
Question: Is $\lim _{n \rightarrow \infty} T^{n}(\vec{x})=\overrightarrow{0}$?
That means: typically. If there are rational relations between the coordinates, e.g. $x_{a+1}=x_{1}$, then x_{1} can become zero in finitely many steps.

Selmer's Generalised Algorithm

Let $a, b \in \mathbb{N}, d=a+b$.

$$
T(\vec{x})=\operatorname{sort}\left(x_{1}, \ldots, x_{a}, x_{a+1}-x_{1}, \ldots, x_{d}-x_{1}\right) .
$$

Question 1: Is $\lim _{n \rightarrow \infty} T^{n}(\vec{x})=\overrightarrow{0}$?

Selmer's Generalised Algorithm

Let $a, b \in \mathbb{N}, d=a+b$.

$$
T(\vec{x})=\operatorname{sort}\left(x_{1}, \ldots, x_{a}, x_{a+1}-x_{1}, \ldots, x_{d}-x_{1}\right) .
$$

Question 1: Is $\lim _{n \rightarrow \infty} T^{n}(\vec{x})=\overrightarrow{0}$?
Trapping Theorem The r-th coordinate of $\vec{x}^{\infty}:=\lim _{n \rightarrow \infty} T^{n}(\vec{x})$ is zero

$$
\left\{\begin{array}{l}
\text { almost surely } \\
\text { with probability strictly } \\
\text { between } 0 \text { and } 1
\end{array}\right.
$$

$$
\begin{aligned}
& \text { if } r \leq a+1 \\
& \text { if } a+1<r \\
& \quad \leq \min \{a+b, 2 a\} .
\end{aligned}
$$

Selmer's Generalised Algorithm

Let $a, b \in \mathbb{N}, d=a+b$.

$$
T(\vec{x})=\operatorname{sort}\left(x_{1}, \ldots, x_{a}, x_{a+1}-x_{1}, \ldots, x_{d}-x_{1}\right) .
$$

Question 1: Is $\lim _{n \rightarrow \infty} T^{n}(\vec{x})=\overrightarrow{0}$?
Trapping Theorem The r-th coordinate of $\vec{x}^{\infty}:=\lim _{n \rightarrow \infty} T^{n}(\vec{x})$ is zero

$$
\begin{cases}\text { almost surely } & \text { if } r \leq a+1, \\ \text { with probability strictly } & \text { if } a+1<r \\ \text { between } 0 \text { and } 1 & \leq \min \{a+b, 2 a\}\end{cases}
$$

For $r>2 a$ there is no Markov partition. Numerical experiments suggest that the r-th coordinate is positive for Lebesgue-a.e. \vec{x}.

Selmer's Generalised Algorithm

Selmer's algorithm finds applications in percolation problems.

Disconnected dots

Connected dots

The minimal width between red lines so that the pattern of dots is connected depends on the answer to Question 1.

Trapping regions

Recall the Question: Is $\vec{x}^{\infty}:=\lim _{n \rightarrow \infty} T^{n}(\vec{x})=\overrightarrow{0}$?

Trapping regions

Recall the Question: Is $\vec{x}^{\infty}:=\lim _{n \rightarrow \infty} T^{n}(\vec{x})=\overrightarrow{0}$?
For the case $a=1, b=2$, i.e.,

$$
T\left(x_{1}, \ldots x_{3}\right)=\operatorname{sort}\left(x_{1}, x_{2}-x_{1}, x_{3}-x_{1}\right),
$$

the quantity $\eta:=x_{3}-x_{2}-x_{1}$ is preserved, as soon as it is positive.

Trapping regions

Recall the Question: Is $\vec{x}^{\infty}:=\lim _{n \rightarrow \infty} T^{n}(\vec{x})=\overrightarrow{0}$?
For the case $a=1, b=2$, i.e.,

$$
T\left(x_{1}, \ldots x_{3}\right)=\operatorname{sort}\left(x_{1}, x_{2}-x_{1}, x_{3}-x_{1}\right),
$$

the quantity $\eta:=x_{3}-x_{2}-x_{1}$ is preserved, as soon as it is positive.
Therefore, if at some iterate $\eta>0$, then $x_{3}^{\infty}=\eta>0$.
In particular, Lebesgue measure is not ergodic.
We call $\left\{\vec{x} \in \mathbb{R}_{+}^{3}: x_{1}+x_{2}<x_{3}\right\}$ the trapping region.

Trapping regions

Scaling $x_{3}=1$, this map reduces to $f: \Delta_{3}:=\Delta \rightarrow \Delta$

$$
f(x, y)= \begin{cases}\left(\frac{y-x}{x}, \frac{1-x}{x}\right) & \text { if }(x, y) \in \Delta_{T} \\ \left(\frac{y-x}{1-x}, \frac{x}{1-x}\right) & \text { if }(x, y) \in \Delta_{R} \\ \left(\frac{x}{1-x}, \frac{y-x}{1-x}\right) & \text { if }(x, y) \in \Delta_{L}\end{cases}
$$

Figure: The Markov partition for $f: \Delta \rightarrow \Delta$

Trapping regions

Theorem (Nogueira '95, Bruin '13): Lebesgue-a.e. f-orbit converges to $(0,0)$. This convergence is chaotic:
Lebesgue measure is totally dissipative, ergodic and exact.

Trapping regions

Recall Selmer's generalised algorithm

$$
\left\{\begin{array}{l}
T(\vec{x})=\operatorname{sort}\left(x_{1}, \ldots, x_{a}, x_{a+1}-x_{1}, \ldots, x_{d}-x_{1}\right), \\
f(\vec{x})=\frac{1}{\hat{x}_{d}} \vec{x} \quad \hat{x}=T(\vec{x}) .
\end{array}\right.
$$

for $a, b \in \mathbb{N}, d=a+b$.

The r-th Trapping Region is

$$
\mathcal{T}_{r}=\left\{\vec{x} \in \Delta_{d}: \frac{1}{r-a} \sum_{j \leq r} x_{j}<x_{r}\right\} .
$$

If $\vec{x} \in \mathcal{T}_{r}$, then x_{1}, \ldots, x_{r-1} combined are too small to pull x_{r} to zero.

Trapping regions

Recall that $\mathcal{T}_{r}=\left\{\vec{x} \in \Delta_{d}: \frac{1}{r-a} \sum_{j \leq r} x_{j}<x_{r}\right\}$ is the r-th Trapping Region.

If $r \leq 2 a$ then

$$
\begin{cases}\mathcal{V}_{r}:=\mathcal{T}_{r+1} \backslash \mathcal{T}_{r} & \text { is } T_{r} \text {-invariant } \\ \mathcal{V}_{r} \cap\left\{x_{r}=1\right\} & \text { is } f_{r} \text {-invariant }\end{cases}
$$

Let \mathfrak{c} be the last coordinate such that

$$
x_{\mathfrak{c}}^{\infty}:=\left(\lim _{n \rightarrow \infty} T^{n}(\vec{x})\right)_{\mathfrak{c}}=0
$$

Thus (from now on) we can restrict to

$$
f: \mathcal{V}_{\mathfrak{c}} \rightarrow \mathcal{V}_{\mathfrak{c}}
$$

Markov Partitions

The map T (and hence f) has discontinuous derivatives at the folding planes $\left\{x_{i}=x_{i+1}\right\}$, due to the permutations π.

Preimages of folding planes provide a Markov partition.

Markov Partitions

The map T (and hence f) has discontinuous derivatives at the folding planes $\left\{x_{i}=x_{i+1}\right\}$, due to the permutations π.

Preimages of folding planes provide a Markov partition.
Definition: $\mathcal{P}=\left\{P_{i}\right\}_{i \geq 0}$ of Δ is a Markov partition if

- $\cup P_{i}=\Delta(\bmod 0)$;
- $f \mid P_{i}$ is injective;
- and \mathcal{P} is preserved under f :

$$
f\left(P_{i}\right) \cap P_{j} \neq \emptyset \Rightarrow f\left(P_{i}\right) \supset P_{j}
$$

Markov Partitions

Most folding planes map to $\partial \Delta$, but not $\left\{x_{a}=x_{a+1}\right\}$.
Lemma: For $a \geq b,\left\{x_{a}=x_{a+1}\right\}$ has a finite (set-valued) orbit.
Thus the complemetary domains of

$$
\partial \Delta \cup\left\{x_{i}=x_{i+1}\right\} \cup \operatorname{Orb}\left(\left\{x_{a}=x_{a+1}\right\}\right)
$$

form a Markov partition.

Markov Partitions

Most folding planes map to $\partial \Delta$, but not $\left\{x_{a}=x_{a+1}\right\}$.
Lemma: For $a \geq b,\left\{x_{a}=x_{a+1}\right\}$ has a finite (set-valued) orbit.
Thus the complemetary domains of

$$
\partial \Delta \cup\left\{x_{i}=x_{i+1}\right\} \cup \operatorname{Orb}\left(\left\{x_{a}=x_{a+1}\right\}\right)
$$

form a Markov partition.

Challenge: What to do if \nexists Markov partition?

Invariant Measures

For $d=2 a$, decompose

$$
\Delta=\cup_{\mathfrak{c}=a+2}^{d} \mathcal{V}_{\mathfrak{c}}
$$

where for $\vec{x} \in \mathcal{V}_{\mathfrak{c}}, \mathfrak{c}$ is the last coordinate such that

$$
x_{\mathfrak{c}}^{\infty}:=\left(\lim _{n \rightarrow \infty} T^{n}(\vec{x})\right)_{\mathfrak{c}}=0
$$

Invariant Measures

For $d=2 a$, decompose

$$
\Delta=\cup_{\mathfrak{c}=a+2}^{d} \mathcal{V}_{\mathfrak{c}}
$$

where for $\vec{x} \in \mathcal{V}_{\mathfrak{c}}, \mathfrak{c}$ is the last coordinate such that

$$
x_{\mathfrak{c}}^{\infty}:=\left(\lim _{n \rightarrow \infty} T^{n}(\vec{x})\right)_{\mathfrak{c}}=0
$$

Measure Theorem: If $a \geq \max \{b, 2\}$, then the restriction

$$
f_{c}: \mathcal{V}_{c} \rightarrow \mathcal{V}_{\mathfrak{c}}
$$

preserves a probability measure μ_{c}, which is equivalent to $\left.L e b\right|_{\nu_{c}}$ with density bounded away from 0 .

Remarks on the Proof: Inducing

For generalised Selmer, we select the set $Y \subset \Delta$, bounded away from $\left\{x_{1}=0\right\}$ (i.e., away from neutral fixed points), at which some coordinate x_{j} overtakes x_{1}.

$$
\text { Induce: }\left\{\begin{array}{l}
\tau(x)=1+\min \left\{n \geq 0: f_{\mathrm{c}}(x) \in Y\right\} \\
G=f_{\mathrm{c}}^{\tau} \text { is "first passage through } Y^{\prime \prime} \text { map: }
\end{array}\right.
$$

Necessary for $G: f(Y) \rightarrow f(Y)$ to preserve a good measure ν :

Remarks on the Proof: Inducing

For generalised Selmer, we select the set $Y \subset \Delta$, bounded away from $\left\{x_{1}=0\right\}$ (i.e., away from neutral fixed points), at which some coordinate x_{j} overtakes x_{1}.

$$
\text { Induce: }\left\{\begin{array}{l}
\tau(x)=1+\min \left\{n \geq 0: f_{\mathrm{c}}(x) \in Y\right\} \\
G=f_{\mathrm{c}}^{\tau} \text { is "first passage through } Y^{\prime \prime} \text { map: }
\end{array}\right.
$$

Necessary for $G: f(Y) \rightarrow f(Y)$ to preserve a good measure ν :

- Good distortion properties of Jacobian J_{G}.

Remarks on the Proof: Inducing

For generalised Selmer, we select the set $Y \subset \Delta$, bounded away from $\left\{x_{1}=0\right\}$ (i.e., away from neutral fixed points), at which some coordinate x_{j} overtakes x_{1}.

$$
\text { Induce: }\left\{\begin{array}{l}
\tau(x)=1+\min \left\{n \geq 0: f_{\mathrm{c}}(x) \in Y\right\} \\
G=f_{\mathrm{c}}^{\tau} \text { is "first passage through } Y^{\prime \prime} \text { map: }
\end{array}\right.
$$

Necessary for $G: f(Y) \rightarrow f(Y)$ to preserve a good measure ν :

- Good distortion properties of Jacobian J_{G}.
- Problems with shears: $D G$ is uniformly expanding for $\mathfrak{c} \leq 6$; G^{2} is probably uniformly expanding for $\mathfrak{c} \leq 20$.

Remarks on the Proof: Inducing

For generalised Selmer, we select the set $Y \subset \Delta$, bounded away from $\left\{x_{1}=0\right\}$ (i.e., away from neutral fixed points), at which some coordinate x_{j} overtakes x_{1}.

$$
\text { Induce: }\left\{\begin{array}{l}
\tau(x)=1+\min \left\{n \geq 0: f_{\mathrm{c}}(x) \in Y\right\} \\
G=f_{\mathrm{c}}^{\tau} \text { is "first passage through } Y^{\prime \prime} \text { map: }
\end{array}\right.
$$

Necessary for $G: f(Y) \rightarrow f(Y)$ to preserve a good measure ν :

- Good distortion properties of Jacobian J_{G}.
- Problems with shears: $D G$ is uniformly expanding for $\mathfrak{c} \leq 6$; G^{2} is probably uniformly expanding for $\mathfrak{c} \leq 20$.
- Challenge : Expansion of $D G^{N}$ for general \mathfrak{c} ?

Remarks on the Proof: Inducing

For generalised Selmer, we select the set $Y \subset \Delta$, bounded away from $\left\{x_{1}=0\right\}$ (i.e., away from neutral fixed points), at which some coordinate x_{j} overtakes x_{1}.

$$
\text { Induce: }\left\{\begin{array}{l}
\tau(x)=1+\min \left\{n \geq 0: f_{\mathrm{c}}(x) \in Y\right\} \\
G=f_{\mathrm{c}}^{\tau} \text { is "first passage through } Y^{\prime \prime} \text { map: }
\end{array}\right.
$$

Necessary for $G: f(Y) \rightarrow f(Y)$ to preserve a good measure ν :

- Good distortion properties of Jacobian J_{G}.
- Problems with shears: $D G$ is uniformly expanding for $\mathfrak{c} \leq 6$; G^{2} is probably uniformly expanding for $\mathfrak{c} \leq 20$.
- Challenge : Expansion of $D G^{N}$ for general \mathfrak{c} ?
- Distor. $J_{G}+($ Markov ór uniform expansion $) \Rightarrow$ Distor. $J_{G^{n}}$.

Remarks on the Proof: G expanding?

Shears can keep G from being expanding: $D G(\vec{x})=\frac{1}{x_{j}-m_{j} x_{1}}$.

Remarks on the Proof: G expanding?

Shears can keep G from being expanding: $D G(\vec{x})=\frac{1}{x_{j}-m_{j} x_{1}}$.

- $D G$ is uniformly expanding for $\mathfrak{c} \leq 6$;

Remarks on the Proof: G expanding?

Shears can keep G from being expanding: $D G(\vec{x})=\frac{1}{x_{j}-m_{j} x_{1}}$.

- $D G$ is uniformly expanding for $\mathfrak{c} \leq 6$;
- $D G^{2}$ is probably uniformly expanding for $\mathfrak{c} \leq 20$;

Remarks on the Proof: G expanding?

Shears can keep G from being expanding: $D G(\vec{x})=\frac{1}{x_{j}-m_{j} x_{1}}$.

- $D G$ is uniformly expanding for $\mathfrak{c} \leq 6$;
- $D G^{2}$ is probably uniformly expanding for $\mathfrak{c} \leq 20$;
- Challenge: Spectral properties of transfer operator \mathcal{L}_{G} ?

Remarks on the Proof: Pulling back ν
For

$$
\left.\mu(A)=\sum_{n \geq 1} \sum_{k=0}^{n-1} \nu(\{\tau(x)=n\}) \cap f^{-k}(A)\right)
$$

to be finite, we need

$$
\Lambda=\sum_{n \geq 1} n \nu(\{\tau(x)=n\})=\sum_{n \geq 1} \nu(\underbrace{\{\tau(x) \geq n\}}_{\text {tail }})<\infty .
$$

Remarks on the Proof: Pulling back ν

For

$$
\left.\mu(A)=\sum_{n \geq 1} \sum_{k=0}^{n-1} \nu(\{\tau(x)=n\}) \cap f^{-k}(A)\right)
$$

to be finite, we need

$$
\Lambda=\sum_{n \geq 1} n \nu(\{\tau(x)=n\})=\sum_{n \geq 1} \nu(\underbrace{\{\tau(x) \geq n\}}_{\text {tail }})<\infty .
$$

Neutral fixed points sometimes prohibit this. For this reason e.g.

- the Farey map
- Rauzy induction
- Jacobi-Perron
have σ-finite measures

Remarks on the Proof: Pulling back ν

For

$$
\left.\mu(A)=\sum_{n \geq 1} \sum_{k=0}^{n-1} \nu(\{\tau(x)=n\}) \cap f^{-k}(A)\right)
$$

to be finite, we need

$$
\Lambda=\sum_{n \geq 1} n \nu(\{\tau(x)=n\})=\sum_{n \geq 1} \nu(\underbrace{\{\tau(x) \geq n\}}_{\text {tail }})<\infty .
$$

Neutral fixed points sometimes prohibit this. For this reason e.g.

- the Farey map
- Rauzy induction
- Jacobi-Perron
have σ-finite measures
\longleftarrow Tangency of lower dimension!

Remarks on the Proof: Pulling back ν

For

$$
\left.\mu(A)=\sum_{n \geq 1} \sum_{k=0}^{n-1} \nu(\{\tau(x)=n\}) \cap f^{-k}(A)\right)
$$

to be finite, we need

$$
\Lambda=\sum_{n \geq 1} n \nu(\{\tau(x)=n\})=\sum_{n \geq 1} \nu(\underbrace{\{\tau(x) \geq n\}}_{\text {tail }})<\infty .
$$

Neutral fixed points sometimes prohibit this. For this reason e.g.

- the Farey map
- Rauzy induction
- Jacobi-Perron
have σ-finite measures
\longleftarrow Tangency of lower dimension!
However, generalised Selmer has a finite measure μ for $a \geq 2$.

Rational Approximations

The map T is piecewise linear; each iterate T^{k} is given by an integer matrix A_{k} that depends on \vec{x}. Its inverse

$$
A_{k}^{-1}=\left(\begin{array}{ccccc}
p_{1, k} & p_{1, k-1} & \cdots & \cdots & p_{1, k-d+1} \\
\vdots & \vdots & & & \vdots \\
\vdots & \vdots & & & \vdots \\
p_{d-1, k} & p_{d-1, k-1} & \cdots & \cdots & p_{d-1, k-d+1} \\
q_{k} & q_{k-1} & \cdots & \cdots & q_{k-d+1}
\end{array}\right)
$$

is also integer and has non-negative entries.
In projective space, the columns of A_{k}^{-1} approximate \vec{x}, provided $T^{k}(\vec{x}) \rightarrow \overrightarrow{0}$.

Rational Approximations

Hence,

$$
\left(\frac{p_{1, k-j}}{q_{k-j}}, \ldots, \frac{p_{d-1, k-j}}{q_{k-j}}\right) \quad \text { for each } 0 \leq j<d
$$

are rational approximations of

$$
\left(\frac{x_{1}}{x_{d}}, \ldots, \frac{x_{d-1}}{x_{d}}\right)
$$

Rational Approximations

Hence,

$$
\left(\frac{p_{1, k-j}}{q_{k-j}}, \ldots, \frac{p_{d-1, k-j}}{q_{k-j}}\right) \quad \text { for each } 0 \leq j<d
$$

are rational approximations of

$$
\left(\frac{x_{1}}{x_{d}}, \ldots, \frac{x_{d-1}}{x_{d}}\right)
$$

To see this: Each column of A_{k}^{-1} is orthogonal to all rows of A_{k}, except one. Each column therefore spans the orthogonal complement of $d-1$ rows. If $\lim _{k \rightarrow \infty} A_{k} \vec{x}=\overrightarrow{0}$, then \vec{x} is nearly orthogonal to all rows of A_{k}.

Rational Approximations

Hence,

$$
\left(\frac{p_{1, k-j}}{q_{k-j}}, \ldots, \frac{p_{d-1, k-j}}{q_{k-j}}\right) \quad \text { for each } 0 \leq j<d
$$

are rational approximations of

$$
\left(\frac{x_{1}}{x_{d}}, \ldots, \frac{x_{d-1}}{x_{d}}\right)
$$

To see this: Each column of A_{k}^{-1} is orthogonal to all rows of A_{k}, except one. Each column therefore spans the orthogonal complement of $d-1$ rows. If $\lim _{k \rightarrow \infty} A_{k} \vec{x}=\overrightarrow{0}$, then \vec{x} is nearly orthogonal to all rows of A_{k}.

Therefore, in projective space, \vec{x} is close to the column vectors of A_{k}^{-1}. The quality of the approximation depends on the rate of convergence of $T^{k}(\vec{x}) \rightarrow \overrightarrow{0}$; if $\lim _{k} T^{k}(\vec{x}) \neq \overrightarrow{0}$, then T gives no approximations at all.

Qualifty of Approximations

Dirichlet's Theorem states that every vector \vec{x} has infinitely many rational approximations \vec{w} of denominator $q=q(\vec{w})$ such that

$$
\|\vec{w}-\vec{x}\| \leq q^{-(1+1 /(d-1))}
$$

(NB: The norm is taken after dividing by the largest coordinate!)

Qualifty of Approximations

Dirichlet's Theorem states that every vector \vec{x} has infinitely many rational approximations \vec{w} of denominator $q=q(\vec{w})$ such that

$$
\|\vec{w}-\vec{x}\| \leq q^{-(1+1 /(d-1))}
$$

(NB: The norm is taken after dividing by the largest coordinate!)

The standard continued fraction algorithm in dimension 1 achieves this: It finds the best approximants, with $|w-x| \leq q^{-2}$.

Qualifty of Approximations

Dirichlet's Theorem states that every vector \vec{x} has infinitely many rational approximations \vec{w} of denominator $q=q(\vec{w})$ such that

$$
\|\vec{w}-\vec{x}\| \leq q^{-(1+1 /(d-1))}
$$

(NB: The norm is taken after dividing by the largest coordinate!)

The standard continued fraction algorithm in dimension 1 achieves this: It finds the best approximants, with $|w-x| \leq q^{-2}$.

In higher dimension, there is no algorithm known that finds all best approximants, or even achieves infinitely many approximants with $\|\vec{w}-\vec{x}\| \leq q^{-(1+1 /(d-1))}$.

Qualifty of Approximations

Following Lagarias '93, let

$$
\eta(\vec{w}, \vec{x})=\frac{-\log \|\vec{w}-\vec{x}\|}{\log q}
$$

Qualifty of Approximations

Following Lagarias '93, let

$$
\eta(\vec{w}, \vec{x})=\frac{-\log \|\vec{w}-\vec{x}\|}{\log q}
$$

The best approximation exponent is

$$
\eta(\vec{x})=\limsup _{k \rightarrow \infty} \sup _{0 \leq i<d} \eta\left(\vec{w}_{k, i}, \vec{x}\right)
$$

The uniform approximation exponent is

$$
\eta^{*}(\vec{x})=\inf _{k} \frac{\min _{0 \leq i<d}-\log \left\|\vec{w}_{k, i}-\vec{x}\right\|}{\max _{0 \leq i<d} \log q_{k-i}} .
$$

Qualifty of Approximations

These are chosen such that we can conclude

$$
\left\|\vec{w}_{k, i}-\vec{x}\right\| \leq \begin{cases}q_{k-i}^{-\eta(\vec{x})} & \text { infinitely often } \\ q_{k-i}^{-\eta^{*}(\vec{x})} & \text { for all } k, i\end{cases}
$$

Qualifty of Approximations

These are chosen such that we can conclude

$$
\left\|\vec{w}_{k, i}-\vec{x}\right\| \leq \begin{cases}q_{k-i}^{-\eta(\vec{x})} & \text { infinitely often } \\ q_{k-i}^{-\eta^{*}(\vec{x})} & \text { for all } k, i\end{cases}
$$

Thus Dirichlet's Theorem states that

$$
\eta(\vec{x}) \geq 1+1 /(d-1)
$$

for every \vec{x}, provided the algorithm finds infinitely many of the best approximations.

Qualifty of Approximations

Main Theorem: For Selmer's Generalised Algorithm with $a \geq \max \{2, b\}$, Lebesgue-a.e. vector $\vec{x} \in \mathcal{V}_{d}$ satisfies

$$
\eta(\vec{x})=\eta^{*}(\vec{x})=1-\frac{\lambda_{2}}{\lambda_{1}}>1,
$$

where $\lambda_{1}>0>\lambda_{2}$ are the largest two typical Lyapunov exponents of the cocycle A_{k}^{-1}.

Qualifty of Approximations

Main Theorem: For Selmer's Generalised Algorithm with $a \geq \max \{2, b\}$, Lebesgue-a.e. vector $\vec{x} \in \mathcal{V}_{d}$ satisfies

$$
\eta(\vec{x})=\eta^{*}(\vec{x})=1-\frac{\lambda_{2}}{\lambda_{1}}>1
$$

where $\lambda_{1}>0>\lambda_{2}$ are the largest two typical Lyapunov exponents of the cocycle A_{k}^{-1}.

Remark: If all negative Lyapunov exponents are equal, then

$$
1-\frac{\lambda_{2}}{\lambda_{1}}=1+1 /(d-1)
$$

Finding an algorithm with this equality of Lyapunov exponents is extremely unlikely.

Qualifty of Approximations

Remarks on the Proof:

The Main Theorem follows from the work of Lagarias '93, based on Oseledec' Theorem on Lyapunov exponents of matrix-valued cocycles (here A_{k}^{-1}).

We need:

Qualifty of Approximations

Remarks on the Proof:

The Main Theorem follows from the work of Lagarias '93, based on Oseledec' Theorem on Lyapunov exponents of matrix-valued cocycles (here A_{k}^{-1}).

We need:

- an invariant measure μ;

Qualifty of Approximations

Remarks on the Proof:

The Main Theorem follows from the work of Lagarias '93, based on Oseledec' Theorem on Lyapunov exponents of matrix-valued cocycles (here A_{k}^{-1}).

We need:

- an invariant measure μ;
- postive acceleration: reinduce $G=f^{\tau}$ to f^{R} so that A_{R}^{-1} is strictly positive (can be done μ-a.e.);

Qualifty of Approximations

Remarks on the Proof:

The Main Theorem follows from the work of Lagarias '93, based on Oseledec' Theorem on Lyapunov exponents of matrix-valued cocycles (here A_{k}^{-1}).

We need:

- an invariant measure μ;
- postive acceleration: reinduce $G=f^{\tau}$ to f^{R} so that A_{R}^{-1} is strictly positive (can be done μ-a.e.);
- tail estimates on R;

Qualifty of Approximations

Remarks on the Proof:

The Main Theorem follows from the work of Lagarias '93, based on Oseledec' Theorem on Lyapunov exponents of matrix-valued cocycles (here A_{k}^{-1}).

We need:

- an invariant measure μ;
- postive acceleration: reinduce $G=f^{\tau}$ to f^{R} so that A_{R}^{-1} is strictly positive (can be done μ-a.e.);
- tail estimates on R;
- Challenge: Estimate λ_{1} and λ_{2};

Qualifty of Approximations

Remarks on the Proof:

The Main Theorem follows from the work of Lagarias '93, based on Oseledec' Theorem on Lyapunov exponents of matrix-valued cocycles (here A_{k}^{-1}).

We need:

- an invariant measure μ;
- postive acceleration: reinduce $G=f^{\tau}$ to f^{R} so that A_{R}^{-1} is strictly positive (can be done μ-a.e.);
- tail estimates on R;
- Challenge: Estimate λ_{1} and λ_{2};
- Challenge: What about non-typical \vec{x} ?

Enough Remarks

Thank you for your attention!

Enough Remarks

Thank you for your attention!

- H. Bruin, Lebesgue ergodicity of a dissipative subtractive algorithm, To appear in Springer Proceedings in Mathematics.
- V. Brun, Musikk og euklidiske algoritmer, Nord. Mat. Tidskr. 9 (1961), 29-36.
- R. Fokkink, C. Kraaikamp, H. Nakada, On Schweiger's conjectures on fully subtractive algorithms, Israel J. Math. 186 (2011), 285-296.
- J. C. Lagarias, The quality of the Diophantine approximations found by the Jacobi-Perron algorithm and related algorithms, Monatsh. Math. 115 (1993), 299-328.
- A. Nogueira, The three-dimensional Poincaré continued fraction algorithm, Israel J. Math. 99 (1995) 373-401.
- E. S. Selmer, Om Flerdimensjonaler Kjedebrøk, Nord. Mat. Tidskr. 9 (1961), 37-43.

