
Ergodic considerations on Selmer’s continued
fraction algorithm in higher dimensions

Henk Bruin

University of Vienna

Joint with

Robbert Fokkink & Cor Kraaikamp

TU Delft

April 2013



The Euclidean Algorithm
An example from very old Greeks:

Let x < y be positive real numbers.

The Euclidean algorithm to approximate x
y by rationals goes by

iterating:

(x , y)→
{

(x , y − x) if x < y − x ,
(y − x , x) if x > y − x .

If we scale the largest coordinate to 1, we get the Farey map:

f (x) =


x

1−x if x < 1
2 ,

1−x
x if x > 1

2 .



The Gauß map

To speed up this algorithm, define

τ(x) = 1 + min{n ≥ 0 : f n(x) ∈ (
1
2
, 1]}.

The induced map G = f τ is the Gauß map

G (x) = 1
x − b

1
x c

with invariant measure dν = 1
log 2

1
1+x dx .



The Gauß map

The measure dν = 1
log 2

1
1+x dx does not pull back to an

f -invariant probability measure.
Instead, the Farey map preserves the infinite density

dµ =
1
x

dx

The Lebesgue statistical properties of the Farey map are
nevertheless very well understood, e.g. Thaler.

Basic problem: Do such continued fraction algorithms have
invariant measures, and what are their properties?
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Algorithms in higher dimension.

Let ~x = (x1, . . . , xd ) be a d -tuple of positive reals. and π a
permutation on {1, . . . , d}.
Any subtractive algorithm can be composed of basic maps

Tπ(~x) = π ◦ (x1, . . . , xd−1, xd − x1)

and then iterated

T n(~x) = Tπn ◦ Tπn−1 ◦ · · · ◦ Tπ1 ,

where the permutations may depend on the argument ~x , (for
example, to sort in increasing order).



Algorithms in higher dimension.

T n(~x) = Tπn ◦ Tπn−1 ◦ · · · ◦ Tπ1 ,

You can scale to unit size (say max xj = 1) at any moment:

f n(~x) =
1

max x̂j
x̂ for x̂ = T n(~x).

Thus f acts on

∆d = {~x = (x1, . . . , xd−1) : 0 ≤ xi ≤ 1}.



Algorithms in higher dimension.

Thus f (~x) = 1
max x̂j

x̂ , x̂ = T (~x) acts on

∆d = {~x = (x1, . . . , xd−1) : 0 ≤ xi ≤ 1}.

Due to the scaling, f should in principle be expanding, but

I The boundary x1 ≡ 0 of ∆d consists of neutral fixed points.
I The shear of f can be much worse than the expansion.
I Further complications can arise from the lack of Markov

partition.
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Selmer’s Algorithm

Let a ∈ N and define:

T (~x) = sort(x1, . . . , xa, xa+1 − x1)

Here sort means: rearrange in increasing order.

Question: Is limn→∞ T n(~x) = ~0?

That means: typically. If there are rational relations between the
coordinates, e.g. xa+1 = x1, then x1 can become zero in finitely
many steps.
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Selmer’s Generalised Algorithm

Let a, b ∈ N, d = a + b.

T (~x) = sort(x1, . . . , xa, xa+1 − x1, . . . , xd − x1).

Question 1: Is limn→∞ T n(~x) = ~0?

Trapping Theorem The r -th coordinate of ~x∞ := limn→∞ T n(~x) is
zero 

almost surely if r ≤ a + 1,

with probability strictly if a + 1 < r
between 0 and 1 ≤ min{a + b, 2a}.

For r > 2a there is no Markov partition. Numerical experiments
suggest that the r -th coordinate is positive for Lebesgue-a.e. ~x .
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Selmer’s Generalised Algorithm

Selmer’s algorithm finds applications in percolation problems.

Disconnected dots
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The minimal width between red lines so that the pattern of dots is
connected depends on the answer to Question 1.



Trapping regions

Recall the Question: Is ~x∞ := limn→∞ T n(~x) = ~0?

For the case a = 1, b = 2, i.e.,

T (x1, . . . x3) = sort(x1, x2 − x1, x3 − x1),

the quantity η := x3 − x2 − x1 is preserved, as soon as it is positive.

Therefore, if at some iterate η > 0, then x∞3 = η > 0.

In particular, Lebesgue measure is not ergodic.

We call {~x ∈ R3
+ : x1 + x2 < x3} the trapping region.
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Trapping regions
Scaling x3 = 1, this map reduces to f : ∆3 := ∆→ ∆

f (x , y) =


( y−x

x , 1−x
x ) if (x , y) ∈ ∆T ,

( y−x
1−x ,

x
1−x ) if (x , y) ∈ ∆R ,

( x
1−x ,

y−x
1−x ) if (x , y) ∈ ∆L,
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qB2

qB3
qB4

A0 = (0, 0)
Bk = (0, 1)

Ak = ( 1
k , 1)

Bk = ( 1
k+1 , 1− 1

k+1 )

}
for k ≥ 1

Dynamics of f :
f (∆L) = f (∆R ) = f (∆T ) = ∆
· · · → A3 → A2 → A1 → A0 	
· · · → B3 → B2 → B1 → B0 	

Figure: The Markov partition for f : ∆→ ∆



Trapping regions
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f (x, y) =



( y−x
x , 1−x

x ) if (x, y) ∈ ∆T ,

( y−x
1−x , x

1−x ) if (x, y) ∈ ∆R ,

( x
1−x , y−x

1−x ) if (x, y) ∈ ∆L,

Theorem (Nogueira ’95, Bruin ’13): Lebesgue-a.e. f -orbit
converges to (0, 0). This convergence is chaotic:
Lebesgue measure is totally dissipative, ergodic and exact.



Trapping regions

Recall Selmer’s generalised algorithm{
T (~x) = sort(x1, . . . , xa, xa+1 − x1, . . . , xd − x1),

f (~x) = 1
x̂d
~x x̂ = T (~x).

for a, b ∈ N, d = a + b.

The r-th Trapping Region is

Tr = {~x ∈ ∆d :
1

r − a

∑
j≤r

xj < xr}.

If ~x ∈ Tr , then x1, . . . , xr−1 combined are too small to pull xr to
zero.



Trapping regions

Recall that Tr = {~x ∈ ∆d : 1
r−a

∑
j≤r xj < xr} is the r-th

Trapping Region.

If r ≤ 2a then{
Vr := Tr+1 \ Tr is Tr -invariant,

Vr ∩ {xr = 1} is fr -invariant.

Let c be the last coordinate such that

x∞c := ( lim
n→∞

T n(~x))c = 0.

Thus (from now on) we can restrict to

f : Vc → Vc



Markov Partitions

The map T (and hence f ) has discontinuous derivatives at
the folding planes {xi = xi+1}, due to the permutations π.

Preimages of folding planes provide a Markov partition.

Definition: P = {Pi}i≥0 of ∆ is a Markov partition if
I ∪Pi = ∆ (mod 0);
I f |Pi is injective;
I and P is preserved under f :

f (Pi ) ∩ Pj 6= ∅ ⇒ f (Pi ) ⊃ Pj
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Markov Partitions

Most folding planes map to ∂∆, but not {xa = xa+1}.

Lemma: For a ≥ b, {xa = xa+1} has a finite (set-valued) orbit.

Thus the complemetary domains of

∂∆ ∪ {xi = xi+1} ∪ Orb({xa = xa+1})

form a Markov partition.

Challenge: What to do if 6 ∃ Markov partition?
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Invariant Measures

For d = 2a, decompose

∆ = ∪d
c=a+2Vc

where for ~x ∈ Vc, c is the last coordinate such that

x∞c := ( lim
n→∞

T n(~x))c = 0.

Measure Theorem: If a ≥ max{b, 2}, then the restriction

fc : Vc → Vc

preserves a probability measure µc, which is equivalent to Leb|Vc
with density bounded away from 0.
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Remarks on the Proof: Inducing

For generalised Selmer, we select the set Y ⊂ ∆, bounded away
from {x1 = 0} (i.e., away from neutral fixed points), at which some
coordinate xj overtakes x1.

Induce:

{
τ(x) = 1 + min{n ≥ 0 : fc(x) ∈ Y }.

G = f τc is “first passage through Y ” map:

Necessary for G : f (Y )→ f (Y ) to preserve a good measure ν:

I Good distortion properties of Jacobian JG .
I Problems with shears: DG is uniformly expanding for c ≤ 6;

G 2 is probably uniformly expanding for c ≤ 20.
I Challenge : Expansion of DGN for general c?
I Distor. JG + (Markov ór uniform expansion) ⇒ Distor. JGn .
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Remarks on the Proof: G expanding?
Shears can keep G from being expanding: DG (~x) = 1

xj−mjx1
·

xj
xj−mj x1

0 . . . . . . 0 −x1
xj−mj x1

. . . . . . 0

mj x2−m2xj
xj−mj x1

1
. . . m2x1−x2

xj−mj x1

.

.

.

.

.

.
. . .

. . .

.

.

. 1 0
.
.
.

mj xj−1−mj−1xj
xj−mj x1

. . . 0 1
mj−1x1−xj−1

xj−mj x1
. . . . . . 0

mj xj+1−mj+1xj
xj−mj x1

. . . . . . 0
mj+1x1−xj+1

xj−mj x1
1 . . . 0

.

.

.
.
.
.

.

.

. 0
. . .

mj xc−1−mc−1xj
xj−mj x1

.

.

.
mc−1x1−xc−1

xj−mj x1
0 1

mj−mcxj
xj−mj x1

0 . . . 0 mcx1−1
xj−mj x1

0



I DG is uniformly expanding for c ≤ 6;
I DG 2 is probably uniformly expanding for c ≤ 20;
I Challenge: Spectral properties of transfer operator LG?
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0


I DG is uniformly expanding for c ≤ 6;
I DG 2 is probably uniformly expanding for c ≤ 20;
I Challenge: Spectral properties of transfer operator LG?



Remarks on the Proof: Pulling back ν

For

µ(A) =
∑
n≥1

n−1∑
k=0

ν({τ(x) = n}) ∩ f −k(A))

to be finite, we need

Λ =
∑
n≥1

nν({τ(x) = n}) =
∑
n≥1

ν({τ(x) ≥ n}︸ ︷︷ ︸
tail

) <∞.

Neutral fixed points sometimes prohibit this. For this reason e.g.
• the Farey map
• Rauzy induction
• Jacobi-Perron
have σ-finite
measures
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However, generalised Selmer has a finite measure µ for a ≥ 2.
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Rational Approximations

The map T is piecewise linear; each iterate T k is given by an
integer matrix Ak that depends on ~x . Its inverse

A−1
k =


p1,k p1,k−1 . . . . . . p1,k−d+1
...

...
...

...
...

...
pd−1,k pd−1,k−1 . . . . . . pd−1,k−d+1

qk qk−1 . . . . . . qk−d+1

 .

is also integer and has non-negative entries.

In projective space, the columns of A−1
k approximate ~x , provided

T k(~x)→ ~0.



Rational Approximations
Hence, (

p1,k−j

qk−j
, . . . ,

pd−1,k−j

qk−j

)
for each 0 ≤ j < d ,

are rational approximations of(
x1

xd
, . . . ,

xd−1

xd

)

To see this: Each column of A−1
k is orthogonal to all rows of Ak ,

except one. Each column therefore spans the orthogonal
complement of d − 1 rows. If limk→∞ Ak~x = ~0, then ~x is nearly
orthogonal to all rows of Ak .

Therefore, in projective space, ~x is close to the column vectors of
A−1

k . The quality of the approximation depends on the rate of
convergence of T k(~x)→ ~0; if limk T k(~x) 6= ~0, then T gives no
approximations at all.
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Qualifty of Approximations

Dirichlet’s Theorem states that every vector ~x has infinitely many
rational approximations ~w of denominator q = q(~w) such that

‖~w − ~x‖ ≤ q−(1+1/(d−1)),

(NB: The norm is taken after dividing by the largest coordinate!)

The standard continued fraction algorithm in dimension 1 achieves
this: It finds the best approximants, with |w − x | ≤ q−2.

In higher dimension, there is no algorithm known that finds all best
approximants, or even achieves infinitely many approximants with
‖~w − ~x‖ ≤ q−(1+1/(d−1)).
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Qualifty of Approximations

Following Lagarias ’93, let

η(~w ,~x) =
− log ‖~w − ~x‖

log q

The best approximation exponent is

η(~x) = lim sup
k→∞

sup
0≤i<d

η(~wk,i ,~x)

The uniform approximation exponent is

η∗(~x) = inf
k

min0≤i<d − log ‖~wk,i − ~x‖
max0≤i<d log qk−i

.
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Qualifty of Approximations

These are chosen such that we can conclude

‖~wk,i − ~x‖ ≤


q−η(~x)
k−i infinitely often

q−η
∗(~x)

k−i for all k , i .

Thus Dirichlet’s Theorem states that

η(~x) ≥ 1 + 1/(d − 1)

for every ~x , provided the algorithm finds infinitely many of the best
approximations.
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Qualifty of Approximations

Main Theorem: For Selmer’s Generalised Algorithm with
a ≥ max{2, b}, Lebesgue-a.e. vector ~x ∈ Vd satisfies

η(~x) = η∗(~x) = 1− λ2

λ1
> 1,

where λ1 > 0 > λ2 are the largest two typical Lyapunov exponents
of the cocycle A−1

k .

Remark: If all negative Lyapunov exponents are equal, then

1− λ2

λ1
= 1 + 1/(d − 1).

Finding an algorithm with this equality of Lyapunov exponents is
extremely unlikely.
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Qualifty of Approximations

Remarks on the Proof:

The Main Theorem follows from the work of Lagarias ’93, based on
Oseledec’ Theorem on Lyapunov exponents of matrix-valued
cocycles (here A−1

k ).

We need:

I an invariant measure µ;
I postive acceleration: reinduce G = f τ to f R so that A−1

R is
strictly positive (can be done µ-a.e.);

I tail estimates on R ;

I Challenge: Estimate λ1 and λ2;
I Challenge: What about non-typical ~x?
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Enough Remarks

Thank you for your attention!
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