Matching for generalized  $\beta$ -transformations

# Henk Bruin (University of Vienna) joint with Carlo Carminati (University of Pisa) and Charlene Kalle (University of Leiden)

Barcelona, September 2016

(ロ) (型) (E) (E) (E) (O)

#### Generalized $\beta$ -transformations

The generalized (= translated)  $\beta$ -transformation is defined as

$$T_{\beta,\alpha}: x \mapsto \beta x + \alpha \pmod{1}$$

For this talk, we will fix  $\beta$  and vary  $\alpha$ . Hence we write  $T_{\alpha}(x)$  (or just T).

ション ふゆ アメリア メリア しょうくの

For  $|\beta| > 1$ , T has an acip  $\mu$ .

#### Matching

Definition: The generalized  $\beta$ -transformation has matching if there is *n* such that  $T^n_{\alpha}(0) = T^n_{\alpha}(1)$ .

The set  $\bigcup_{1 \le j \le n} T^j_{\alpha}(\{0,1\})$  is the prematching set.

Matching occurs "prevalently" for several piecewise linear families, with slopes that are **Pisot numbers**, i.e., positive algebraic numbers whose algebraic conjugates are within the unit disk..

ション ふゆ アメリア メリア しょうくの

#### Matching

Definition: The generalized  $\beta$ -transformation has matching if there is *n* such that  $T^n_{\alpha}(0) = T^n_{\alpha}(1)$ .

The set  $\bigcup_{1 \le j \le n} T^j_{\alpha}(\{0,1\})$  is the prematching set.

Matching occurs "prevalently" for several piecewise linear families, with slopes that are Pisot numbers, i.e., positive algebraic numbers whose algebraic conjugates are within the unit disk..

Definition: We speak of prevalent matching if the set of  $\alpha$  where matching occurs has full Lebesgue measure, and its complement, the non-matching or bifurcation set  $A_{\beta}$ , is nowhere dense.

#### Consequences of matching

Theorem If a generalized β-transformation with |β| > 1 has matching, then it has an invariant density h which is constant on the components of [0, 1]\prematching set.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

#### Consequences of matching

- Theorem If a generalized β-transformation with |β| > 1 has matching, then it has an invariant density h which is constant on the components of [0, 1]\prematching set.
- For T<sub>α</sub>, the entropy is log β, due to constant slope β. For other piecewise linearfamilies, with non-constnt slope, entropy is monotone on matching intervals (and constant if the matching is neutral)

The quadratic Pisot integers are those  $\beta > 1$  satisfying

$$\beta^2 - k\beta \pm d = 0$$
 with  $\begin{cases} k > d+1 & \text{if } +d, \\ k > d-1 & \text{if } -d. \end{cases}$ 

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Theorem 1: For  $\beta$  as above,  $\dim_H(A_\beta) = \frac{\log d}{\log \beta}$ . For all other quadratic numbers, no matching occurs.

The quadratic Pisot integers are those  $\beta > 1$  satisfying

$$eta^2 - keta \pm d = 0$$
 with  $egin{cases} k > d+1 & ext{if } + d, \ k > d-1 & ext{if } - d. \end{cases}$ 

Theorem 1: For  $\beta$  as above,  $\dim_H(A_\beta) = \frac{\log d}{\log \beta}$ . For all other quadratic numbers, no matching occurs.

Note: d = 1 (quadratic Pisot units) gives  $\dim_H(A_\beta) = 0$ . We conjecture that this is the only situation where  $\dim_H(A_\beta) = 0$ .

#### Matching for non-quadratic algebraic integers

The examples we have of prevalent matching all relate to  $\beta$  being Pisot. However, matching can occur at non-Pisot numbers, e.g. the quartic Salem number satisfying

 $\beta^4 - \beta^3 - \beta^2 - \beta + 1 = 0$ 

has matching at some non-trivial intervals.

An algebraic number is Salem if its algebraic conjugates are on the unit disk, with some on the unit circle.

## Matching for non-quadratic algebraic integers

The examples we have of prevalent matching all relate to  $\beta$  being Pisot. However, matching can occur at non-Pisot numbers, e.g. the quartic Salem number satisfying

 $\beta^4 - \beta^3 - \beta^2 - \beta + 1 = 0$ 

has matching at some non-trivial intervals.

An algebraic number is Salem if its algebraic conjugates are on the unit disk, with some on the unit circle.

Numerical simulations give the following table

| $\beta$      | minimal polynomial                            | $\dim_B(A_\beta)$ |
|--------------|-----------------------------------------------|-------------------|
| tribonacci   | $\beta^3 - \beta^2 - \beta - 1 = 0$           | 0.66              |
| tetrabonacci | $\beta^4 - \beta^3 - \beta^2 - \beta - 1 = 0$ | 0.76              |
| plastic      | $\beta^3 - \beta - 1 = 0$                     | 0.93              |

#### Note

$$T_{\alpha}^{n}(0) = (\beta^{n-1} + \dots + 1)\alpha - a_{n-2}\beta^{n-2} - \dots - a_{1}\beta - a_{0},$$
  
$$T_{\alpha}^{n}(1) = (\beta^{n-1} + \dots + 1)\alpha + \beta^{n} - b_{n-1}\beta^{n-1} - \dots - b_{1}\beta - b_{0}.$$

Therefore matching at (minimal) iterate *n* requires

$$0 = T_{\alpha}^{n}(1) - T_{\alpha}^{n}(0) = \beta^{n} + \sum_{j=0}^{n-1} \beta^{j}(b_{j} - a_{j}).$$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Hence  $\beta$  has to be an algebraic integer.

#### Note

$$T_{\alpha}^{n}(0) = (\beta^{n-1} + \dots + 1)\alpha - a_{n-2}\beta^{n-2} - \dots - a_{1}\beta - a_{0},$$
  
$$T_{\alpha}^{n}(1) = (\beta^{n-1} + \dots + 1)\alpha + \beta^{n} - b_{n-1}\beta^{n-1} - \dots - b_{1}\beta - b_{0}.$$

Therefore matching at (minimal) iterate *n* requires

$$0 = T_{\alpha}^{n}(1) - T_{\alpha}^{n}(0) = \beta^{n} + \sum_{j=0}^{n-1} \beta^{j}(b_{j} - a_{j}).$$

Hence  $\beta$  has to be an algebraic integer.

The integers  $b_j$ ,  $a_j$  depend on  $\alpha$ , but change only at a finite set. Hence, if matching occurs, it occurs on an entire parameter interval.

Since  $\beta$  is an algebraic integer of order *n*, we can write

$$T^j_{lpha}(0)-T^j_{lpha}(1)=\sum_{k=1}^n rac{e_k(j)}{eta^k}\qquad e_k(j)\in\mathbb{Z}.$$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

The  $\alpha$ -dependence is only in the integers  $e_k(j) = e_k(j, \alpha)$ 

Since  $\beta$  is an algebraic integer of order *n*, we can write

$$T^j_lpha(0)-T^j_lpha(1)=\sum_{k=1}^nrac{e_k(j)}{eta^k}\qquad e_k(j)\in\mathbb{Z}.$$

The  $\alpha$ -dependence is only in the integers  $e_k(j) = e_k(j, \alpha)$ Lemma (Sample Lemma) If  $|T^j(0) - T^j(1)| = \ell/\beta$ , then there is matching at iterate j + 1.

ション ふゆ アメリア メリア しょうくの

Since  $\beta$  is an algebraic integer of order *n*, we can write

$$T^j_lpha(0)-T^j_lpha(1)=\sum_{k=1}^nrac{e_k(j)}{eta^k}\qquad e_k(j)\in\mathbb{Z}.$$

The  $\alpha$ -dependence is only in the integers  $e_k(j) = e_k(j, \alpha)$ Lemma (Sample Lemma) If  $|T^j(0) - T^j(1)| = \ell/\beta$ , then there is matching at iterate j + 1. Proof. If  $|T^j(0) - T^j(1)| = \ell/\beta$ , then  $T^j(0)$  and  $T^j(1)$  belong to branch-domains of T that are  $|\ell|$  domains apart, and their images

are the same.

Back to Theorem 1. We sketch the proof for  $\beta^2 - k\beta + d = 0$ ,  $k \in \mathbb{N}$ , so  $k - 1 < \beta < k$  and  $T_{\alpha}$  has k or k + 1 branches.

Back to Theorem 1. We sketch the proof for  $\beta^2 - k\beta + d = 0$ ,  $k \in \mathbb{N}$ , so  $k - 1 < \beta < k$  and  $T_{\alpha}$  has k or k + 1 branches.

Lemma: If  $\alpha \in [k - \beta, 1)$ , then  $T_{\alpha}$  has k + 1 branches, but there is matching after two steps.

Back to Theorem 1. We sketch the proof for  $\beta^2 - k\beta + d = 0$ ,  $k \in \mathbb{N}$ , so  $k - 1 < \beta < k$  and  $T_{\alpha}$  has k or k + 1 branches.

Lemma: If  $\alpha \in [k - \beta, 1)$ , then  $T_{\alpha}$  has k + 1 branches, but there is matching after two steps.

Hence, take  $\alpha \in [0, k - \beta)$  and call the domains of the branches  $\Delta_0, \ldots, \Delta_{k-1}$ . Compute

$$T_{lpha}(1)=eta+lpha_{=T(0)}-(k-1)=T_{lpha}(0)+ec{eta-(k-1)}{\gamma},$$

Back to Theorem 1. We sketch the proof for  $\beta^2 - k\beta + d = 0$ ,  $k \in \mathbb{N}$ , so  $k - 1 < \beta < k$  and  $T_{\alpha}$  has k or k + 1 branches.

Lemma: If  $\alpha \in [k - \beta, 1)$ , then  $T_{\alpha}$  has k + 1 branches, but there is matching after two steps.

Hence, take  $\alpha \in [0, k - \beta)$  and call the domains of the branches  $\Delta_0, \ldots, \Delta_{k-1}$ . Compute

$$\mathcal{T}_{lpha}(1)=eta+ \underbrace{lpha}_{=\mathcal{T}(0)}-(k-1)=\mathcal{T}_{lpha}(0)+ \underbrace{eta-(k-1)}_{\gamma}.$$

Lemma: If  $T^{\ell}(0) \in \Delta_i$  and  $T^{\ell}(1) \in \Delta_{i+(k-1)-d}$  for  $1 \leq \ell < n, i = i(\ell)$ , then

 $T^n(1) - T^n(0) = \gamma.$ 

Recall:  $T^n(1) - T^n(0) = \gamma$ .

Lemma: If  $T^{n}(0) \in \Delta_{i}$  and  $T^{n}(1) \in \Delta_{i+k-d}$  then the distance  $|T^{n+1}(1) - T^{n+1}(0)| = \frac{d}{\beta}$  and there is matching in 2 steps.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Recall:  $T^n(1) - T^n(0) = \gamma$ .

Lemma: If  $T^{n}(0) \in \Delta_{i}$  and  $T^{n}(1) \in \Delta_{i+k-d}$  then the distance  $|T^{n+1}(1) - T^{n+1}(0)| = \frac{d}{\beta}$  and there is matching in 2 steps.

Hence, to avoid as matching,  $T^{\ell}(0)$  has to avoid the sets

$$V_i := \{x \in \Delta(i) : x + \gamma \in \Delta(i + k - d)\} \\ = \left[\frac{i + k - d - \alpha}{\beta_k} - \gamma, \frac{i + 1 - \alpha}{\beta_k}\right].$$

Recall:  $T^n(1) - T^n(0) = \gamma$ .

Lemma: If  $T^{n}(0) \in \Delta_{i}$  and  $T^{n}(1) \in \Delta_{i+k-d}$  then the distance  $|T^{n+1}(1) - T^{n+1}(0)| = \frac{d}{\beta}$  and there is matching in 2 steps.

Hence, to avoid as matching,  $T^{\ell}(0)$  has to avoid the sets

$$V_i := \{x \in \Delta(i) : x + \gamma \in \Delta(i + k - d)\} \\= \left[\frac{i + k - d - \alpha}{\beta_k} - \gamma, \frac{i + 1 - \alpha}{\beta_k}\right].$$

Lemma: If

$$T^n(0) \in V = \cup_{i=0}^{d-1} V_i$$

then there is matching in two steps.

Lemma: The map  $g_{\alpha} : [0, k - \beta] \rightarrow [0, k - \beta],$  $g_{\alpha}(x) := \begin{cases} k - \beta & \text{if } x \in V, \\ T_{\alpha}(x) & \text{otherwise.} \end{cases}$ 

is a non-decreasing degree *d* circle endomorpism, and  $g_{\alpha}^{n}(0) \in V$  for some n > 1 precisely if  $k - \beta$  is periodic.

うして ふゆう ふほう ふほう うらつ

# The maps $T_{\alpha}$



#### The maps $T_{\alpha}$



and  $g_{\alpha}$ 

Lemma: The map  $g_{\alpha} : [0, k - \beta] \rightarrow [0, k - \beta]$ ,

$$g_{lpha}(x) := egin{cases} k-eta & ext{if } x \in V, \ T_{lpha}(x) & ext{otherwise.} \end{cases}$$

is a non-decreasing degree *d* circle endomorpism, and  $g_{\alpha}^{n}(0) \in V$  for some n > 1 precisely if  $k - \beta$  is periodic.

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ う へ つ ・

Lemma: The map  $g_{\alpha}: [0, k - \beta] \rightarrow [0, k - \beta]$ ,

$$g_{lpha}(x) := egin{cases} k-eta & ext{if } x \in V, \ T_{lpha}(x) & ext{otherwise}. \end{cases}$$

is a non-decreasing degree *d* circle endomorpism, and  $g_{\alpha}^{n}(0) \in V$  for some n > 1 precisely if  $k - \beta$  is periodic.

Lemma: Define

 $X_{\alpha} = \{x \in \mathbb{S}^1 : g_{\alpha}^n(x) \notin V \text{ for all } n \ge 0\}.$ 

If there is no matching, then  $\dim_H(X_\alpha) = \frac{\log d}{\log \beta}$ .

Lemma: The map  $g_{\alpha} : [0, k - \beta] \rightarrow [0, k - \beta]$ ,

$$g_{lpha}(x) := egin{cases} k-eta & ext{if } x \in V, \ T_{lpha}(x) & ext{otherwise}. \end{cases}$$

is a non-decreasing degree *d* circle endomorpism, and  $g_{\alpha}^{n}(0) \in V$  for some n > 1 precisely if  $k - \beta$  is periodic.

Lemma: Define

 $X_{\alpha} = \{x \in \mathbb{S}^1 : g_{\alpha}^n(x) \notin V \text{ for all } n \geq 0\}.$ 

If there is no matching, then  $\dim_H(X_{\alpha}) = \frac{\log d}{\log \beta}$ .

Idea of Proof. For each *n*, we cover  $X_{\alpha}$  by  $O(d^n)$  intervals of length  $\beta^{-n}$ .

Proof of Theorem 1 for  $\beta^2 - k\beta + d = 0$ .

The task is to transfer the previous lemma from dynamical to parameter space.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Proof of Theorem 1 for  $\beta^2 - k\beta + d = 0$ .

The task is to transfer the previous lemma from dynamical to parameter space.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

• Use that  $\alpha \mapsto T^n(\alpha)$  is piecewise linear with slope  $\frac{\beta^n-1}{\beta-1}$ .

Proof of Theorem 1 for  $\beta^2 - k\beta + d = 0$ .

- The task is to transfer the previous lemma from dynamical to parameter space.
- Use that  $\alpha \mapsto T^n(\alpha)$  is piecewise linear with slope  $\frac{\beta^n-1}{\beta-1}$ .
- There is a one-to-one correspondence between intervals J in the cover of X<sub>α</sub> and interval U of cover of A<sub>β</sub>, and |J| and |U| are comparable (independently of n).

Proof of Theorem 1 for  $\beta^2 - k\beta + d = 0$ .

- The task is to transfer the previous lemma from dynamical to parameter space.
- Use that  $\alpha \mapsto T^n(\alpha)$  is piecewise linear with slope  $\frac{\beta^n-1}{\beta-1}$ .
- There is a one-to-one correspondence between intervals J in the cover of X<sub>α</sub> and interval U of cover of A<sub>β</sub>, and |J| and |U| are comparable (independently of n).

Therefore, for each n, the set A<sub>α</sub> can be covered by O(d<sup>n</sup>) intervals of length O(β<sup>-n</sup>).

There is another frequently used class of Pisot units, namely leading solutions  $\beta_k$  of

$$\beta^k - \beta^{k-1} - \beta^{k-2} - \dots - 1 = 0.$$

for  $k \geq 3$ .

#### Theorem (Non-Quadratic Pisot Units)

For  $\beta_3$  (tribonacci), there is prevalent matching. The non-matching set satisfies  $0 < \dim_H(A_\beta) < 1$ .

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ う へ つ ・

There is another frequently used class of Pisot units, namely leading solutions  $\beta_k$  of

$$\beta^{k} - \beta^{k-1} - \beta^{k-2} - \dots - 1 = 0.$$

for  $k \geq 3$ .

#### Theorem (Non-Quadratic Pisot Units)

For  $\beta_3$  (tribonacci), there is prevalent matching. The non-matching set satisfies  $0 < \dim_H(A_\beta) < 1$ .

We expect the same result for  $\beta_k$ ,  $k \ge 4$ , but at the moment, we have no proof.

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ う へ つ ・

#### Matching for non-Quadratic Pisot Units Lemma: For every $k \ge 2$ and $j \ge 0$ we have

 $|T_{\alpha}^{j}(0) - T_{\alpha}^{j}(1)| \in \Big\{\frac{e_{1}}{\beta} + \frac{e_{2}}{\beta^{2}} + \dots + \frac{e_{k}}{\beta^{k}} : e_{1}, \dots, e_{k} \in \{0, 1\}\Big\}.$ 

#### Matching for non-Quadratic Pisot Units Lemma: For every $k \ge 2$ and $j \ge 0$ we have

$$|T_{\alpha}^{j}(0) - T_{\alpha}^{j}(1)| \in \Big\{ \frac{e_{1}}{\beta} + \frac{e_{2}}{\beta^{2}} + \cdots + \frac{e_{k}}{\beta^{k}} : e_{1}, \ldots, e_{k} \in \{0, 1\} \Big\}.$$



Figure: The transition graph for the tribonacci number  $\beta_3$ . The red numbers indicate the difference in branch between  $T^j_{\alpha}(0)$  and  $T^j_{\alpha}(1)$ .



The diagram expresses only a the "fiber part" of a skew-product. So it is more complicated than a SFT.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

э



- The diagram expresses only a the "fiber part" of a skew-product. So it is more complicated than a SFT.
- There are linked non-trivial loops that give a Cantor set of positive Hausdorff dimension inside the bifurcation set.



- The diagram expresses only a the "fiber part" of a skew-product. So it is more complicated than a SFT.
- There are linked non-trivial loops that give a Cantor set of positive Hausdorff dimension inside the bifurcation set.
- ▶ Abundancy of paths to matching gives upper bound < 1.



- The diagram expresses only a the "fiber part" of a skew-product. So it is more complicated than a SFT.
- There are linked non-trivial loops that give a Cantor set of positive Hausdorff dimension inside the bifurcation set.
- ▶ Abundancy of paths to matching gives upper bound < 1.



Figure: The transition graph for the Pisot number  $\beta_4$  is similar but too complicated to handle.