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Generalized [-transformations

The generalized (= translated) [-transformation is defined as

T30 1 x = Bx+a (mod 1)

For this talk, we will fix 5 and vary a.. Hence we write T,(x) (or
just T).

For |3] > 1, T has an acip p.



Matching

Definition: The generalized S-transformation has matching if there
is n such that T7(0) = T2(1).

The set |, T({0,1}) is the prematching set.

<j<n
Matching occurs “prevalently” for several piecewise linear families,
with slopes that are Pisot numbers, i.e., positive algebraic numbers
whose algebraic conjugates are within the unit disk..
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Definition: The generalized S-transformation has matching if there
is n such that T7(0) = T2(1).

The set |, T({0,1}) is the prematching set.

<j<n
Matching occurs “prevalently” for several piecewise linear families,
with slopes that are Pisot numbers, i.e., positive algebraic numbers
whose algebraic conjugates are within the unit disk..

Definition: We speak of prevalent matching if the set of o where
matching occurs has full Lebesgue measure, and its complement,
the non-matching or bifurcation set Ag, is nowhere dense.



Consequences of matching

» Theorem If a generalized -transformation with |3| > 1 has
matching, then it has an invariant density h which is constant
on the components of [0, 1]\prematching set.



Consequences of matching

» Theorem If a generalized [-transformation with |3| > 1 has
matching, then it has an invariant density h which is constant
on the components of [0, 1]\prematching set.

» For T,, the entropy is log 3, due to constant slope 3. For
other piecewise linearfamilies, with non-constnt slope, entropy
is monotone on matching intervals (and constant if the
matching is neutral)



Matching for quadratic Pisot integers

The quadratic Pisot integers are those § > 1 satisfying

k>d+1 if +d,

2 _kB+d=0 ith
e = kb A R T

_ logd
" logp-
For all other quadratic numbers, no matching occurs.

Theorem 1: For 3 as above, dimy(Ag)



Matching for quadratic Pisot integers

The quadratic Pisot integers are those § > 1 satisfying

k>d+1 if +d
B _kBtd=0 with - oTL T4
k>d—1 if —d.

Theorem 1: For 3 as above, dimy(Ag) = :ggg,

For all other quadratic numbers, no matching occurs.

Note: d = 1 (quadratic Pisot units) gives dimy(Az) = 0. We
conjecture that this is the only situation where dimy(Ag) = 0.



Matching for non-quadratic algebraic integers

The examples we have of prevalent matching all relate to 5 being
Pisot. However, matching can occur at non-Pisot numbers, e.g.
the quartic Salem number satisfying

B3 - B+1=0

has matching at some non-trivial intervals.

An algebraic number is Salem if its algebraic conjugates are on the unit
disk, with some on the unit circle.



Matching for non-quadratic algebraic integers

The examples we have of prevalent matching all relate to 5 being
Pisot. However, matching can occur at non-Pisot numbers, e.g.

the quartic Salem number satisfying

B3 - B+1=0

has matching at some non-trivial intervals.

An algebraic number is Salem if its algebraic conjugates are on the unit

disk, with some on the unit circle.

Numerical simulations give the following table

Ié] minimal polynomial | dimg(Ag)
tribonacci -2 —-pB—-1=0]0.66..
tetrabonacci | 84— 32 -2 - —-1=0]0.76...
plastic B3—pB—-1=0/0.93...




Towards a proof of matching

Note
TA0) = (B4t Da—apafT - —af - a,
TO,Z(]-) = (Bn_l + -+ 1)Oé + ,3” — bn_lﬂn_l — e — bl,B — bo.

Therefore matching at (minimal) iterate n requires

0= TI() - THO) ="+ 3 F (b — ).

j=0

Hence 8 has to be an algebraic integer.



Towards a proof of matching

Note
TA0) = (B4t Da—apafT - —af - a,
TO,Z(]-) = (Bn_l + -+ 1)Oé + ,3” — bn_lﬁn_l — e — bl,B — bo.

Therefore matching at (minimal) iterate n requires
n—1 .
0=TJ(1)— T(0)=B"+>_ B(b— a).
j=0

Hence 8 has to be an algebraic integer.

The integers b;, a; depend on «, but change only at a finite set.
Hence, if matching occurs, it occurs on an entire parameter interval.
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The a-dependence is only in the integers ex(j) = ex(Jj, )
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Towards a proof of matching

Since [ is an algebraic integer of order n, we can write

T/(0

ek(j) SYA

The a-dependence is only in the integers ex(j) = ex(Jj, @)
Lemma (Sample Lemma)

If | TI(0) — T/(1)| = £/B, then there is matching at iterate j + 1.
Proof.

If | T/(0) — T/(1)| = £/8, then T/(0) and T/(1) belong to

branch-domains of T that are |¢| domains apart, and their images
are the same.
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keN,sok—1< < kand T, has k or k+ 1 branches.
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Matching for quadratic Pisot integers

Back to Theorem 1. We sketch the proof for 32 — k3 +d = 0,
keN,sok—1< < kand T, has k or k+ 1 branches.

Lemma: If a € [k — 3,1), then T, has k + 1 branches, but there is
matching after two steps.

Hence, take ae € [0, k — /3) and call the domains of the branches
Ao, ..., Ar_1. Compute

To(1) =6+ o —(k—1) = Ta(0) + § — (k- 1).
—770) T

Lemma: If T4(0) € A; and T%(1) € Ajy(k—1)—g for
1<?¢<n,i=i(f), then

T7(1) — T"(0) = 7.



Matching for Pisot integers: 3% — k3 +d =0

Recall: T"(1) — T"(0) =~.

Lemma: If T"(0) € Aj and T"(1) € Aj1k—_qg then the distance
| T"H(1) — T™1(0) = § and there is matching in 2 steps.
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Matching for Pisot integers: 3% — k3 +d =0

Recall: T"(1) — T"(0) =~.

Lemma: If T"(0) € Aj and T"(1) € Aj1k—_qg then the distance
| T (1) — TFH(0)| = % and there is matching in 2 steps.

Hence, to avoid as matching, T*(0) has to avoid the sets

Vi = {xeA(i):x+yeA(i+k—d)}
B i—i—k—d—a_ i+1—a)
B T T, '
Lemma: If

n d—1
T'0) e V=Ul,Vi

then there is matching in two steps.



Matching for Pisot integers: 3% — k3 +d =0

Lemma: The map g, : [0,k — 5] — [0, k — [],

£) i {k—ﬁ if x €V,

To(x)  otherwise.

is a non-decreasing degree d circle endomorpism, and gZ(0) € V
for some n > 1 precisely if k — 3 is periodic.
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If there is no matching, then dimy(X,) = :ggg.




Matching for Pisot integers: 3% — k3 +d =0

Lemma: The map g, : [0,k — 5] — [0, k — [],

£) i {k—ﬁ if x €V,

Ta(x)  otherwise.

is a non-decreasing degree d circle endomorpism, and gZ(0) € V
for some n > 1 precisely if k — 3 is periodic.

Lemma: Define

Xo={xeS": g'(x)¢ V forall n>0}.

If there is no matching, then dimy(X,) = :ggg.

Idea of Proof.
For each n, we cover X, by O(d") intervals of length 5~".
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» The task is to transfer the previous lemma from dynamical to
parameter space.
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are comparable (independently of n).



Matching for Pisot integers: 3% — k3 +d =0

Proof of Theorem 1 for 32 — k3 + d = 0.

» The task is to transfer the previous lemma from dynamical to
parameter space.

» Use that o — T"(«) is piecewise linear with slope %
» There is a one-to-one correspondence between intervals J in
the cover of X, and interval U of cover of Ag, and |J| and |U|

are comparable (independently of n).

» Therefore, for each n, the set A, can be covered by O(d")
intervals of length O(5~").



Matching for non-Quadratic Pisot Units

There is another frequently used class of Pisot units, namely
leading solutions S5y of

pl—pt—p?—...—1=0

for k > 3.
Theorem (Non-Quadratic Pisot Units)

For (3 (tribonacci), there is prevalent matching. The non-matching
set satisfies 0 < dimy(Ag) < 1.



Matching for non-Quadratic Pisot Units

There is another frequently used class of Pisot units, namely
leading solutions S5y of

pl—pt—p?—...—1=0

for k > 3.

Theorem (Non-Quadratic Pisot Units)

For (3 (tribonacci), there is prevalent matching. The non-matching
set satisfies 0 < dimy(Ag) < 1.

We expect the same result for 8, k > 4, but at the moment, we
have no proof.



Matching for non-Quadratic Pisot Units

Lemma: For every k > 2 and j > 0 we have

O - T e { G+ G+ + g e e (01}
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Lemma: For every k > 2 and j > 0 we have

; ; e S €
T5O) - Tl e {F+ 5+ +

3B @161,'--,%6{0,1}}.

101

e
1
[111]——[001] —5—[010]—5——[100 | matching |

]

o1 J———=[110]

Figure: The transition graph for the tribonacci number (3. The red
numbers indicate the difference in branch between TZ(0) and T (1).
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» The diagram expresses only a the “fiber part” of a
skew-product. So it is more complicated than a SFT.
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positive Hausdorff dimension inside the bifurcation set.
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» The diagram expresses only a the “fiber part” of a
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» There are linked non-trivial loops that give a Cantor set of
positive Hausdorff dimension inside the bifurcation set.
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Matching for non-Quadratic Pisot Units

‘ ! {0111%1110%

AN
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J

/ O 0
-matching
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Figure: The transition graph for the Pisot number (34 is similar but too
complicated to handle.



