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Generalized β-transformations

The generalized (= translated) β-transformation is defined as















Tβ,α : x 7→ βx + α (mod 1)

α

For this talk, we will fix β and vary α. Hence we write Tα(x) (or
just T ).

For |β| > 1, T has an acip µ.



Matching

Definition: The generalized β-transformation has matching if there
is n such that T n

α(0) = T n
α(1).

The set
⋃

1≤j<n T
j
α({0, 1}) is the prematching set.

Matching occurs “prevalently” for several piecewise linear families,
with slopes that are Pisot numbers, i.e., positive algebraic numbers
whose algebraic conjugates are within the unit disk..

Definition: We speak of prevalent matching if the set of α where
matching occurs has full Lebesgue measure, and its complement,
the non-matching or bifurcation set Aβ , is nowhere dense.
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Consequences of matching

I Theorem If a generalized β-transformation with |β| > 1 has
matching, then it has an invariant density h which is constant
on the components of [0, 1]\prematching set.

I For Tα, the entropy is log β, due to constant slope β. For
other piecewise linearfamilies, with non-constnt slope, entropy
is monotone on matching intervals (and constant if the
matching is neutral)
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Matching for quadratic Pisot integers

The quadratic Pisot integers are those β > 1 satisfying

β2 − kβ ± d = 0 with

{
k > d + 1 if + d ,

k > d − 1 if − d .

Theorem 1: For β as above, dimH(Aβ) = log d
log β .

For all other quadratic numbers, no matching occurs.

Note: d = 1 (quadratic Pisot units) gives dimH(Aβ) = 0. We
conjecture that this is the only situation where dimH(Aβ) = 0.
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Matching for non-quadratic algebraic integers
The examples we have of prevalent matching all relate to β being
Pisot. However, matching can occur at non-Pisot numbers, e.g.
the quartic Salem number satisfying

β4 − β3 − β2 − β + 1 = 0

has matching at some non-trivial intervals.

An algebraic number is Salem if its algebraic conjugates are on the unit
disk, with some on the unit circle.

Numerical simulations give the following table

β minimal polynomial dimB(Aβ)

tribonacci β3 − β2 − β − 1 = 0 0.66...
tetrabonacci β4 − β3 − β2 − β − 1 = 0 0.76...

plastic β3 − β − 1 = 0 0.93...
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Towards a proof of matching

Note

T n
α(0) = (βn−1 + · · ·+ 1)α− an−2β

n−2 − · · · − a1β − a0,

T n
α(1) = (βn−1 + · · ·+ 1)α + βn − bn−1β

n−1 − · · · − b1β − b0.

Therefore matching at (minimal) iterate n requires

0 = T n
α(1)− T n

α(0) = βn +
n−1∑
j=0

βj(bj − aj).

Hence β has to be an algebraic integer.

The integers bj , aj depend on α, but change only at a finite set.
Hence, if matching occurs, it occurs on an entire parameter interval.
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Towards a proof of matching

Since β is an algebraic integer of order n, we can write

T j
α(0)− T j

α(1) =
n∑

k=1

ek(j)

βk
ek(j) ∈ Z.

The α-dependence is only in the integers ek(j) = ek(j , α)

Lemma (Sample Lemma)
If |T j(0)− T j(1)| = `/β, then there is matching at iterate j + 1.

Proof.
If |T j(0)− T j(1)| = `/β, then T j(0) and T j(1) belong to
branch-domains of T that are |`| domains apart, and their images
are the same.
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Matching for quadratic Pisot integers

Back to Theorem 1. We sketch the proof for β2 − kβ + d = 0,
k ∈ N, so k − 1 < β < k and Tα has k or k + 1 branches.

Lemma: If α ∈ [k − β, 1), then Tα has k + 1 branches, but there is
matching after two steps.

Hence, take α ∈ [0, k − β) and call the domains of the branches
∆0, . . . ,∆k−1. Compute

Tα(1) = β + α︸︷︷︸
=T (0)

−(k − 1) = Tα(0) + β − (k − 1)︸ ︷︷ ︸
γ

.

Lemma: If T `(0) ∈ ∆i and T `(1) ∈ ∆i+(k−1)−d for
1 ≤ ` < n, i = i(`), then

T n(1)− T n(0) = γ.
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Matching for Pisot integers: β2 − kβ + d = 0

Recall: T n(1)− T n(0) = γ.

Lemma: If T n(0) ∈ ∆i and T n(1) ∈ ∆i+k−d then the distance
|T n+1(1)− T n+1(0)| = d

β and there is matching in 2 steps.

Hence, to avoid as matching, T `(0) has to avoid the sets

Vi := {x ∈ ∆(i) : x + γ ∈ ∆(i + k − d)}

=
[ i + k − d − α

βk
− γ , i + 1− α

βk

)
.

Lemma: If
T n(0) ∈ V = ∪d−1

i=0 Vi

then there is matching in two steps.
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Matching for Pisot integers: β2 − kβ + d = 0

Lemma: The map gα : [0, k − β]→ [0, k − β],

gα(x) :=

{
k − β if x ∈ V ,

Tα(x) otherwise.

is a non-decreasing degree d circle endomorpism, and gn
α(0) ∈ V

for some n > 1 precisely if k − β is periodic.



The maps Tα
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Matching for Pisot integers: β2 − kβ + d = 0

Lemma: The map gα : [0, k − β]→ [0, k − β],

gα(x) :=

{
k − β if x ∈ V ,

Tα(x) otherwise.

is a non-decreasing degree d circle endomorpism, and gn
α(0) ∈ V

for some n > 1 precisely if k − β is periodic.

Lemma: Define

Xα = {x ∈ S1 : gn
α(x) /∈ V for all n ≥ 0}.

If there is no matching, then dimH(Xα) = log d
log β .

Idea of Proof.
For each n, we cover Xα by O(dn) intervals of length β−n.



Matching for Pisot integers: β2 − kβ + d = 0

Lemma: The map gα : [0, k − β]→ [0, k − β],

gα(x) :=

{
k − β if x ∈ V ,

Tα(x) otherwise.

is a non-decreasing degree d circle endomorpism, and gn
α(0) ∈ V

for some n > 1 precisely if k − β is periodic.

Lemma: Define

Xα = {x ∈ S1 : gn
α(x) /∈ V for all n ≥ 0}.

If there is no matching, then dimH(Xα) = log d
log β .

Idea of Proof.
For each n, we cover Xα by O(dn) intervals of length β−n.



Matching for Pisot integers: β2 − kβ + d = 0

Lemma: The map gα : [0, k − β]→ [0, k − β],

gα(x) :=

{
k − β if x ∈ V ,

Tα(x) otherwise.

is a non-decreasing degree d circle endomorpism, and gn
α(0) ∈ V

for some n > 1 precisely if k − β is periodic.

Lemma: Define

Xα = {x ∈ S1 : gn
α(x) /∈ V for all n ≥ 0}.

If there is no matching, then dimH(Xα) = log d
log β .

Idea of Proof.
For each n, we cover Xα by O(dn) intervals of length β−n.



Matching for Pisot integers: β2 − kβ + d = 0

Proof of Theorem 1 for β2 − kβ + d = 0.

I The task is to transfer the previous lemma from dynamical to
parameter space.

I Use that α 7→ T n(α) is piecewise linear with slope βn−1
β−1 .

I There is a one-to-one correspondence between intervals J in
the cover of Xα and interval U of cover of Aβ , and |J| and |U|
are comparable (independently of n).

I Therefore, for each n, the set Aα can be covered by O(dn)
intervals of length O(β−n).
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Matching for non-Quadratic Pisot Units

There is another frequently used class of Pisot units, namely
leading solutions βk of

βk − βk−1 − βk−2 − · · · − 1 = 0.

for k ≥ 3.

Theorem (Non-Quadratic Pisot Units)
For β3 (tribonacci), there is prevalent matching. The non-matching
set satisfies 0 < dimH(Aβ) < 1.

We expect the same result for βk , k ≥ 4, but at the moment, we
have no proof.
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Matching for non-Quadratic Pisot Units
Lemma: For every k ≥ 2 and j ≥ 0 we have

|T j
α(0)− T j

α(1)| ∈
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β
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Figure: The transition graph for the tribonacci number β3. The red
numbers indicate the difference in branch between T j

α(0) and T j
α(1).
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Matching for non-Quadratic Pisot Units
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I The diagram expresses only a the “fiber part” of a
skew-product. So it is more complicated than a SFT.

I There are linked non-trivial loops that give a Cantor set of
positive Hausdorff dimension inside the bifurcation set.

I Abundancy of paths to matching gives upper bound < 1.



Matching for non-Quadratic Pisot Units

111 001 010

101

011 110

100 matching

1

1

0 0

2

11

1

2

0

I The diagram expresses only a the “fiber part” of a
skew-product. So it is more complicated than a SFT.

I There are linked non-trivial loops that give a Cantor set of
positive Hausdorff dimension inside the bifurcation set.

I Abundancy of paths to matching gives upper bound < 1.



Matching for non-Quadratic Pisot Units

111 001 010

101

011 110

100 matching

1

1

0 0

2

11

1

2

0

I The diagram expresses only a the “fiber part” of a
skew-product. So it is more complicated than a SFT.

I There are linked non-trivial loops that give a Cantor set of
positive Hausdorff dimension inside the bifurcation set.

I Abundancy of paths to matching gives upper bound < 1.



Matching for non-Quadratic Pisot Units

111 001 010

101

011 110

100 matching

1

1

0 0

2

11

1

2

0

I The diagram expresses only a the “fiber part” of a
skew-product. So it is more complicated than a SFT.

I There are linked non-trivial loops that give a Cantor set of
positive Hausdorff dimension inside the bifurcation set.

I Abundancy of paths to matching gives upper bound < 1.



Matching for non-Quadratic Pisot Units

1111

0001 0100 1000 1100

0111 1110

1101 0101 0010 0110

1010 1011 1001 0011

matching

01

2

1
0

2 2 1

0

1 1 0

0

1

0 1

0

21

1

1

2

2

1

1
1

Figure: The transition graph for the Pisot number β4 is similar but too
complicated to handle.


