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Some motivation

Projective geometry and conformal geometry both play an
important role in riemannian geometry. In complex geometry,
conformal hermitian structures have provided insight, but the
impact has been limited. This raises the question:

How does projective geometry illuminate complex
(hermitian and Kähler) geometry?

Contention: projective geometry, with a kählerian
interpretation, is more deeply embedded in Kähler
geometry than conformal geometry is, and has interesting
links with other special geometric structures.

This case cannot be made in the usual context of (holomorphic)
complex projective geometry, because holomorphic unitary
connections are flat. H-projective geometry instead concerns
aspects of complex projective geometry which are not holomorphic.

Irony: the “H” originally stood for “holomorphic”!
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The literature (name dropping)

Projective geometry: too many names to mention!

H-projective geometry: large Japanese and former soviet schools
(T. Otsuki, Y. Tashiro, S. Ishihara, S. Tachibana, Y. Yoshimatsu,
J. Mikes, V. Domashev, N. Sinjukov,...).

Projective and H-projective metrics: recent works by R. Bryant, M.
Dunajski, M. Eastwood, V. Kiosak, V. Matveev, A. Federova, S.
Rosemann,...

Quaternionic geometries: S. Salamon, A. Swann, M. Eastwood,...

Parabolic geometries: A. Cap, J. Slovak, V. Soucek, R. Baston, T.
Diemer, M. Eastwood, S. Gindikin, R. Gover, M. Hammerl, P.
Somberg,...

H-projective case: S. Armstrong, A. Cap, J. Hrdina,...
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Projective structures

Let D be a torsion-free connection on an n-manifold M (e.g.,
D = ∇g for a riemannian metric g on M).

I A curve c in M is a geodesic wrt. D iff for all T tangent to c ,
DT T ∈ span{T}.

I Torsion-free connections D and D̃ have the same geodesics iff
∃ γ ∈ Ω1(M), a 1-form, with

D̃X − DX = [[X , γ]]r ∈ C∞(M, gl(TM)),

[[X , γ]]r (Y ) := γ(X )Y + γ(Y )X .where

Then D and D̃ are said to be projectively equivalent.
We write D̃ = D + γ for short (instead of D̃ = D + [[·, γ]]r ).

I A projective structure on Mn (n > 1) is a projective class
Πr = [D] of torsion-free connections.
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H-projective structures

Let (M, J) be a complex manifold of real dimension n = 2m and
let D be a torsion-free connection on M (a smooth n-manifold)
with DJ = 0 (e.g., D = ∇g for a Kähler metric g on M).

I A curve c is an H-planar geodesic wrt. D iff for all T tangent
to c , DT T ∈ span{T , JT}.

I Torsion-free complex connections D and D̃ have the same
H-planar geodesics iff ∃ γ ∈ Ω1(M), a (real) 1-form, with

D̃X − DX = [[X , γ]]c ∈ C∞(M, gl(TM, J)),

[[X , γ]]c(Y ) := 1
2

(
γ(X )Y + γ(Y )X − γ(JX )JY − γ(JY )JX

)
.

Then D and D̃ are said to be H-projectively equivalent.
We write D̃ = D + γ for short.

I An H-projective structure on M2m (m > 1) is an H-projective
class Πc = [D] of torsion-free complex connections.

5



Quaternionic structures
Let (M,Q) be a quaternionic manifold of real dimension n = 4`
(thus Q ⊂ gl(TM), with fibres isomorphic to sp(1), spanned by
imaginary quaternions J1, J2, J3) and let D be a torsion-free
connection on M preserving Q (e.g., D = ∇g for a quaternion
Kähler metric g on M).

I A curve c is a Q-planar geodesic wrt. D iff for all T tangent
to c , DT T ∈ span{T , JT : J ∈ Q}.

I Fact. Any two torsion-free quaternionic connections D and D̃
have the same Q-planar geodesics: ∃ γ ∈ Ω1(M) with

D̃X − DX = [[X , γ]]q ∈ C∞(M, gl(TM,Q)),

[[X , γ]]q(Y ) := 1
2

(
γ(X )Y + γ(Y )X

−
∑

i

(
γ(JiX )JiY + γ(JiY )JiX

))
.

I The class of torsion-free quaternionic connections may be
denoted analogously by Πq = [D].
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Common framework: parabolic geometries

Projective, H-projective and quaternionic classes Π of torsion-free
connections are affine spaces modelled on 1-forms.

Torsion-free conformal connections (“Weyl connections”) on a
conformal manifold (Mn, c) also form such an affine space.

These are parabolic geometries, i.e., Cartan geometries modelled
on a generalized flag variety G/P, where G is a semisimple Lie
group and P a parabolic subgroup of G , i.e., its Lie algebra p is
parabolic: p = g0 n p⊥ with g0 reductive and p⊥ nilpotent.

In all the examples discussed, G/P is the projectivized highest
weight orbit of G in the tangent space (isotropy) V of a bigger
generalized flag variety X = Q

/(
(GL1 × G ) n V ∗

)
.

The associated compact complex homogeneous manifold XC is a
self-dual hermitian symmetric space ∼= Qcpt

/(
U(1)× Gcpt

)
. The

relevant real form XR is the Shilov boundary of the noncompact
dual of XC (a bounded symmetric domain of tube type with
biholomorphism group QR); this makes VR into a Jordan algebra.
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The Jordan algebra tables
Big group Q G V H Geometry

Sp2n SLn S2Fn SOn Projective
SL2n SLn × SLn Fn ⊗ Fn SLn H-projective
SO4n SL2n ∧2F2n Sp2n Quaternionic

E7 E6 F27 F4 Octonionic
SOm+3 SOm+1 Fm+1 SOm Conformal

(G ,V ) is prehomogeneous with isotropy H: G acts on P(V ) with
an open dense orbit ∼= G/H.

QR GR VR HR GR/P

Sp2n(R) SLn(R) Jn(R) ∼= S2Rn SO(n) RPn−1

SU(n, n) SLn(C) Jn(C) ⊂ Cn ⊗ Cn SU(n) CPn−1

SO2n(H) SLn(H) Jn(H) ⊂ ∧2C2n Sp(n) HPn−1

E7(−25) E6(−26) J3(O) ∼= R27 F4(−52) OP2

SO(m + 1, 2) SO(m, 1) Jm
∼= Rm,1 SO(m) Sm−1

GR acts on P(VR) with highest weight orbit ∼= GR/P; VR has a
Jordan algebra structure with automorphism group HR, and then P
is the stabilizer of a primitive idempotent (“rank 1 projection”).
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The Cartan connection
A Cartan geometry on M, modelled on G/P, where
dim M = dim G/P, is a principal G -bundle over M equipped with

I a principal G -connection and

I a reduction of structure group to P ≤ G

satisfying the Cartan condition: the induced 1-form on M with
values in the bundle g(M)/p(M) associated to g/p is bundle
isomorphism. Thus M inherits the first order geometry of G/P.

By the duality between p⊥ and g/p, T ∗M is isomorphic to the
associated bundle p⊥(M) of nilradicals in p(M). Hence
p(M) ∼= g0(M) n T ∗M, where g0(M) ⊂ gl(TM).

Our examples have the simplifying feature that p⊥ is abelian.
There is then an algebraic bracket

[[, ]] : TM × T ∗M → g0(M) ⊆ gl(TM)

and the affine structure D 7→ D + γ ∈ Π on compatible
connections is given by D + γ := D + [[·, γ]].
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Computing with projective connections

A function F on Π is an invariant if it is constant, i.e.,
∀D ∈ Π, γ ∈ Ω1(M), ∂γF (D) := d

dt F (D + tγ)|t=0 is zero.

For a section s of a vector bundle E associated to the frame
bundle, ∂γDX s = [[X , γ]] · s (the natural action of g0(M) on E ).

Variation of the second derivative:

∂γD2
X ,Y s = [[X , γ]] ·DY s + [[Y , γ]] ·DX s −D[[X ,γ]]·Y s + [[Y ,DXγ]] · s.

Hence the curvature RD ∈ Ω2(M, g0(TM)) of D, given by
D2

X ,Y s − D2
Y ,X s = RD

X ,Y · s, satisfies

∂γRD
X ,Y = −[[Id ∧ Dγ]]X ,Y := −[[X ,DY γ]] + [[Y ,DXγ]].

Can write: RD = W + [[Id ∧ rD ]], where W is invariant
(∂γW = 0), and the normalized Ricci tensor rD ∈ Ω1(M,T ∗M)
satisfies ∂γrD = −Dγ.
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Projective hessians
Consequence:

∂γ(D2
X ,Y s + [[Y , rD

X ]] · s) = [[X , γ]] ·DY s + [[Y , γ]] ·DX s −D[[X ,γ]]·Y s

so D2
X ,Y s + [[X , rD

Y ]] · s is algebraic in D.

On densities of weight k (sections of a certain line bundle O(k))
this simplifies to

∂γ(D2
X ,Y s + krD

X (Y )s) = kγ(X )DY s + kγ(Y )DX s − D[[X ,γ]]·Y s.

In the projective case this gives a natural hessian operator on
sections of O(1) whose solutions are “affine coordinates”. In other
cases, we must make a projection, and obtain the first BGG
operator of the representation V ∗ dual to the Jordan algebra. The
H-projective case yields functions with J-invariant natural hessian:
in Kähler geometry, these are hamiltonians for Killing vector fields!

[Aside: a Hessian operator or Hill’s equation can be used to define
projective structures on 1-manifolds, and similarly H-projective
structures on Riemann surfaces, also known as Möbius structures.]
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Compatible metrics

Q: Given a parabolic geometry with torsion-free connections Π,
describe the space of compatible metrics g with Levi-Civita
connection ∇g ∈ Π. Is it nonempty?

In our examples, the equation for compatible g linearizes for a
weighted inverse metric, using the first BGG operator of the
Jordan algebra V . In projective geometry, this is the well-known
linear first order equation of finite type for h in S2TM ⊗O(−1).

In the H-projective case, we seek compatible Kähler metrics (which
are J-invariant) and so can work with the corresponding
J-invariant 2-vector φ = h(J·, ·) ∈ ∧1,1TM ⊗O(−1). This satisfies

DXφ = X ∧ KD + JX ∧ JKD

for some, hence any, D ∈ Πc ; KD determined by the trace of Dφ.

If D = ∇g for a Kähler metric g , the equation means that the
2-form dual to φ with respect to g is a hamiltonian 2-form!
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H-projective metrics and hamiltonian 2-forms
The mobility of an H-projective structure is the dimension of the
space of solutions of the linear equation for compatible Kähler
metrics.

I Generically the mobility will be zero, and it remains open to
characterize when it is positive, and when an H-projective
structure is Kählerian.

I The theory of hamiltonian 2-forms provides local and global
classification results for mobility ≥ 2, i.e., of H-projectively
equivalent Kähler metrics which are not affinely equivalent.

I Within this classification, the mobility ≥ 3 case can be
identified; such metrics are rare, and in the compact case,
have constant holomorphic sectional curvature.

The complicated geometry of these metrics can be illuminated via
cone constructions, which represent Cartan connections as affine
connections on a (generalized) cone manifold, but there is still
much to be understood.
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Projective structures and Cartan holonomy

RP2m+1 is a circle bundle over CPm (the Hopf fibration), given by
a choice of complex structure on the fundamental representation
R2m+2 of GL(2m + 2,R) (yielding the fundamental representation
Cm+1 of GL(m + 1,C)).

In general, any H-projective manifold M2m has a circle bundle
N2m+1 with a projective structure on it, and the projective Cartan
connection preserves a complex structure in its fundamental
representation.

Conversely, a projective structure on a (2m + 1)-manifold whose
Cartan connection has such a holonomy reduction is locally a circle
bundle over an H-projective manifold.

There are results about the interplay of Cartan holonomy with
other structures (compatible metrics, quaternionic structures), but
much remains unexplored.
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Quaternion Kähler metrics and twistor theory
On a quaternionic manifold (N4`,Q), the compatible (quaternion
Kähler) metrics are given by Q-hermitian sections h of
S2TM ⊗O(−1) satisfying

DX h = X � KD +
∑

i JiX � JiK
D

for some (hence any) D ∈ Πq (with KD a trace of Dh).

This linear equation for compatible quaternion Kähler metrics has
an interpretation in terms of the twistor space Z of N, the unit
sphere bundle in Q. Z is a complex 2`+ 1 manifold with real
structure, containing real “twistor lines” (rational curves with
normal bundle O(1)⊗ C 2`): N is the space of such twistor lines.

The Penrose transform associates h with a holomorphic section π

of ∧2TZ ⊗K
1/(`+1)
Z , which has maximal rank for h nondegenerate.

The standard theory of quaternion Kähler metrics uses instead the

section θ of T ∗Z ⊗ K
−1/(`+1)
Z dual to π∧`, and the inverse of π on

ker θ. If the metric is hyperkähler, this defines a symplectic
foliation of Z over CP1; if not, it is a contact structure on Z .
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Totally complex submanifolds of quaternionic manifolds

Q. Are H-projective structures interesting beyond the realm of
Kähler geometry?

Observation. Let (N4`,Q) be a quaternionic manifold and M2` a
maximal totally complex submanifold, i.e., each tangent space of
M is invariant under some J ∈ Q, but for any I ∈ Q
anticommuting with J, I (TM) is complementary to TM.

Then (M, J) inherits an H-projective structure from (N,Q).

Indeed, we just project the quaternionic connections onto TM
(along the complement, which is independent of I ), observing that
for X ,Y ∈ TM, the projection onto TM of [[X , γ]]q(Y ) is
[[X , i∗γ]]c(Y ), where i : M → N is the inclusion.

This prompts a further question: when does an H-projective
structure arise this way?

If it does then the quaternionic manifold N is locally a
neighbourhood of the zero section in TM ⊗ L for a unitary line
bundle L.
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A generalized Feix–Kaledin construction

In the early 2000’s, B. Feix and D. Kaledin gave independent
constructions of hyperkähler metrics on cotangent bundles of real
analytic Kähler manifolds. The metrics were defined on a
neighbourhood of the zero section. They placed these
constructions within a more general context: hypercomplex
structures on the tangent bundle of a complex manifold equipped
with a real analytic torsion-free hermitian connection whose
curvature has type (1,1).

Theorem. Let (M2`, J,Πc) be a real analytic H-projective
manifold whose H-projective Weyl curvature W has type (1,1).
Then there is a natural quaternionic structure Q on a
neighbourhood N4` of the zero section in TM ⊗ L for a certain
unitary line bundle L.
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Construction via the twistor space

Idea for proof (following Feix). We construct the twistor space Z
of (N,Q).

Flat model. When M = CP`, its complexification is CP` × CP`

and the total space of P(O ⊕O(1,−1)) is birational to CP2`+1 by
a partial blow down of the zero and infinity sections (inversely,
write C2`+2 = C`+1 ⊕ C`+1 and blow up two projective `-spaces in
CP2`+1). This is the twistor space of HP`, and the fibres of
P(O ⊕O(1,−1)) project to twistor lines.

We make the same construction over the complexification Mc of
M (a neighbourhood of the diagonal in M ×M).

Mc has two complementary foliations integrating the (1, 0) and
(0, 1) distributions (which restrict to T 1,0M and T 0,1M in
TM ⊗ C along M).

18



The blow-down

The analogue of P(O ⊕O(1,−1)) is obtained by gluing the line
bundles O(1)⊗O(−1) and O(−1)⊗O(1) by inversion on the
complement of their zero sections. We then need to blow-down the
zero sections along corresponding foliations.

The model for this blow-down is based on the blow-up of C`+1 at
the origin, which is the total space of O(−1) over CP`. Inversely,
we reconstruct C`+1 as the dual space to the space of affine
sections of O(1) over CP`.

This is where the type (1,1) curvature condition on M enters: it
implies that the two foliations of Mc have projectively flat leaves.
Hence the hessian equation for affine sections of O(1) is
completely integrable and we can integrate it leafwise to obtain
rank `+ 1 vector bundles over the leaf spaces.
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