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play an important role in 4-dimensional geometry,
particularly in connection with Einstein manifolds.
This might be dismissed as a combinatorial fluke.

But it is directly related to representation theory:.
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Definition. A Riemannian metric g s said to
be Einstein f it has constant Riccit curvature —
l.€.

r=Ag

for some constant A € R.

A called Einstein constant.

Has same sign as the scalar curvature
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Variational Problem:

If M smooth compact n-manifold, n > 3,
G s = { smooth metrics g on M}

then Einstein metrics are critical points of the scale-
invariant action functional

QM%R

QH/ 59" 2dp1g
M

Conversely:
Weak critical points are Einstein or scalar-flat (s=0).

Try to find Einstein metrics by minimizing?
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A Differential-Topological Invariant:

700 = [ sy,
9 JM

Theorem. Let M be a compact simply connected
n-manifold, n > 3. If n # 4, Ts(M) = 0.

Theorem. There exist compact simply connected
4-manifolds M ; with Ts(M ;) — +o0.

Moreover, can choose M ; such that

7.0) = inf [ sy
9 Ju;

18 realized by an Einstein metric g; with A < 0.
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Why is Dimension Four Exceptional?

The Lie group SO(4) is not simple:

s0(4) = s0(3) @ s0(3).
On oriented (M4, g), —
A=At @A~
where AF are (£1)-eigenspaces of
x 1 A% = A2
x> = 1.

AT self-dual 2-forms.
A7 anti-self-dual 2-forms.
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Importance?
Curvature is a bundle-value 2-form!

Vector-bundle-with-connection (E, V) over
oriented Riemannian (M?, ¢) has curvature

Fy=F"+F~
where F* € AT ® End(E).

If F~ =0, so that F'y = F'T,
V is called self-dual (SD).

Proposition. (AT, V) is SD <= g is Einstein.

Donaldson: moduli spaces of SD connections
— differential topological invariants of M*.
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Seiberg-Witten Theory:

analogous invariants, related to scalar curvature.

Given smooth compact oriented 4-manifold M and

complex line bundle L — M such that

c1(L) = wy mod 2
get twisted spin bundles
VE =S+ ® /2
for any metric g on M. Called spin“-structure.

Every unitary connection ¢/ on L induces
spin® Dirac operator
DY T(Vy) = T(V_)
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both ® and v/.

Here F :g = self-dual part of curvature of v.
Key idea: “counting” solutions defines invariant.
With mild hypotheses, independent of g.

Depends only on M & spin® structure.
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Seiberg-Witten equations:

DVd = 0
Fi=—-—-209%

Unknowns:
both ¢ and V.
Here F :g = self-dual part of curvature of v.

Weitzenbock formula:

0 = 2A|DP + 4|VVD|? + s|d % + D

oives scalar curvature key role in theory.
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Theorem (L '99). Let M* be underlying smooth
manifold of a compact complex surface (M, .J)
with by even. Then Lg(M) # 0 <= (M, .J) is of
general type.

Recall: Z5(M?) := inf, IiY; S?]d,LLg

General type means dimI'(M, O(K®)) grows
quadratically as £ — +o00, where /' denotes

the canonical line bundle A%V,

For complex surfaces, by even <= Kahler type.

Conjecture. For any compact complex surface

(M*,J) with by odd, Ts(M)=0.



Blowing up:



Blowing up:

If NV is a complex surface, may replace p € NV
with CIPy






Blowing up:

If NV is a complex surface, may replace p € NV
with CIP; to obtain blow-up

M ~ N#CP,

in which new CIP; has self-intersection —1.






Blowing up:

If NV is a complex surface, may replace p € NV
with CIP; to obtain blow-up

M ~ N#CP,

in which new CIP; has self-intersection —1.

A complex surface X is called minimal if it is not
the blow-up of another complex surtace.



Blowing up:

If NV is a complex surface, may replace p € NV
with CIP; to obtain blow-up

M ~ N#CP,

in which new CIP; has self-intersection —1.

A complex surface X is called minimal if it is not
the blow-up of another complex surtace.

Any complex surface M can be obtained from a
minimal surface X by blowing up a finite number
of times:

M ~ X#kCP,
One says that X is minimal model of M.
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Theorem (L '96). Let (M* J) be a compact
complex surface of general type, and let X be
its minimal model. Then

To(M) = 321%c12(X) > 0.
Seiberg-Witten argument = every ¢ satisfies
/ sgd,ug > 321%¢14(X)
M

Then must exhibit sequence g; with

2 2.2
/M Sg;dig; 32Ty (X)
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Key observation: Pluri-canonical model X’

admits orbifold Kahler Einstein metric.

Follows from Aubin/Yau because ¢;(X’) < 0.
X' = image M — CPPy via linear system K =2
Orbifold, modeled on C?/T", I' ¢ SU(2).

X" obtained from X by collapsing CPy’s

contained in regions with ¢; = 0.

Stategy: replace neighborhood of each orbifold
point with ALE Ricci-flat manifold.
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Given I' C SU(2) finite subgroup,
the orbifold C?/T" can be viewed as
singular complex surface C C3 by

choosing 3 generators of ['-invariant polynomials.

I p2mi/m
Example. —2rifm c SU(2)
generates I' = Zy,. Setting
wesEG-),  a =), y-
—5\F1 T2 ) $—22’1+Zz : Y = 2122,

then identifies C?/I" with

w? + 2+ ¢y =0.
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Felix Klein’s Table of Singularities (1884)

Qo Ly — w? 4+ 22+ y™ =0

M Dihy, — <— w? +y(2? +y™) = 0

P

' T* <o w? + 23+ y* =0
' O* C w? 4+ 23 + 23 =0
. I* —> w? + 23 +° =0
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Gorenstein singularities. Crepant Resolutions.



Resolutions of Klein Singularities:



Resolutions of Klein Singularities:

vV Klein singularity V ¢ C?,



Resolutions of Klein Singularities:

¥V Klein singularity V' ¢ €2, 3! resolution
VoV



Resolutions of Klein Singularities:

¥V Klein singularity V' ¢ €2, 3! resolution
VoV
with ¢ (TH9V) = 0.



Resolutions of Klein Singularities:

¥V Klein singularity V' ¢ €2, 3! resolution
VoV
with ¢ (TH9V) = 0.

Replaces origin with a union of CPy’s,

IOCSRRAN



Resolutions of Klein Singularities:

vV Klein singularity V' c €2, 3! resolution
VoV
with ¢ (TH9V) = 0.

Replaces origin with a union of CPy’s,
each with self-intersection —2,

IOCSRRAN



Resolutions of Klein Singularities:

vV Klein singularity V' c €2, 3! resolution
VoV

with ¢ (TH9V) = 0.

Replaces origin with a union of CPy’s,

each with self-intersection —2,
meeting transversely,

IOCSRRAN



Resolutions of Klein Singularities:

vV Klein singularity V' c €2, 3! resolution
VoV

with ¢ (TH9V) = 0.

Replaces origin with a union of CPy’s,

each with self-intersection —2,
meeting transversely, & forming connected set:

IOCSRRAN



Resolutions of Klein Singularities:

vV Klein singularity V' c €2, 3! resolution
VoV

with ¢ (THOV) = 0.

Replaces origin with a union of CPy’s,

each with self-intersection —2,
meeting transversely, & forming connected set:

IOCSRRAN

Intersection pattern dual to Dynkin diagram!




Resolutions of Klein Singularities:

vV Klein singularity V' c €2, 3! resolution
VoV

with ¢ (THOV) = 0.

Replaces origin with a union of CPy’s,

each with self-intersection —2,
meeting transversely, & forming connected set:

IOCRRAN

Intersection pattern dual to Dynkin diagram!




Resolutions of Klein Singularities:

vV Klein singularity V' c €2, 3! resolution
VoV

with ¢ (THOV) = 0.

Replaces origin with a union of CPy’s,

each with self-intersection —2,
meeting transversely, & forming connected set:

IOCSRN

Intersection pattern dual to Dynkin diagram!




Resolutions of Klein Singularities:

vV Klein singularity V' c €2, 3! resolution
VoV

with ¢ (THOV) = 0.

Replaces origin with a union of CPy’s,

each with self-intersection —2,
meeting transversely, & forming connected set:

IOCRRAN

Intersection pattern dual to Dynkin diagram!




Resolutions of Klein Singularities:

vV Klein singularity V' c €2, 3! resolution
VoV

with ¢ (THOV) = 0.

Replaces origin with a union of CPy’s,

each with self-intersection —2,
meeting transversely, & forming connected set:

IOCSRRAN

Intersection pattern dual to Dynkin diagram!



















McKay Correspondence



McKay Correspondence

Given p : [' < SU(2) finite subgroup,



McKay Correspondence

Given p : [' < SU(2) finite subgroup,
construct Dynkin diagram, as follows:



McKay Correspondence

Given p : [' < SU(2) finite subgroup,
construct Dynkin diagram, as follows:

One node for each non-trivial irred. representation

,Oj = End(Vﬂ



McKay Correspondence

Given p : [' < SU(2) finite subgroup,
construct Dynkin diagram, as follows:

One node for each non-trivial irred. representation
pj ' — End(V;)

Next decompose

p®@ pj = (p) "
/



McKay Correspondence

Given p : [' < SU(2) finite subgroup,
construct Dynkin diagram, as follows:

One node for each non-trivial irred. representation
pj ' — End(V;)
Next decompose
p®@ pj = (p) "

4
as sum of irreducibles. Then n;p =mny; =0 or 1.



McKay Correspondence

Given p : [' < SU(2) finite subgroup,
construct Dynkin diagram, as follows:

One node for each non-trivial irred. representation
pj ' — End(V;)

Next decompose

p @ pj = Plpy) "t
4
as sum of irreducibles. Then n;p =mny; =0 or 1.

Now draw edge joining nodes j & £ if n;p 7 0.



McKay Correspondence

Given p : [' < SU(2) finite subgroup,
construct Dynkin diagram, as follows:

One node for each non-trivial irred. representation
pj ' — End(V;)

Next decompose

p @ pj = Plpy) "t
4
as sum of irreducibles. Then n;p =mny; =0 or 1.

Now draw edge joining nodes j & £ if n;p 7 0.

Reproduces Dynkin diagram of crepant resolution!
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nite, and let Y be the smooth 4-manifold gotten
by resolving the singularity of R4/F. Then Y
admaits a family of ALE Ricci-flat metrics. Ev-
ery such metric is hyper-Kahler, and the mod-
ult space of these metrics is connected: roughly,
[Weyl chamber ]° C h@R3, where h = H*(Y,R)
is Clartan of Lie algebra g corresponding to Dynkin
diagram associated with 1.

A1: Eguchi-Hanson
Ay Gibbons-Hawking /Hitchin
Dy.: conjectured by Hitchin
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If G' compact acts on simply-connected
hyper-Kahler V by tri-holomorphic isometries,

moment map is G-equivariant map

Vo gtoR?
encoding Hamiltonians for generators.

If G acts freely on g~ (), then

V)G = Q)G

inherits natural hyper-Kahler structure, and

dim(V/)/G) =dimV —4dim G
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[ c SU(2) acts on H and Rl = RI'T. Set

V = [H ®g End®RD)|! = [C2 @ End(CT)"

G =[SUCD)" 2 U(ny) x -+ x U(ny)

where ny,...,ny dim’ns non-triv. irred. reps. I".

Then Y = V//G gives ALE hyper-Kahler

structure to resolution of C?/T".

Construction depends on (: 3k parameters.
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Play ubiquitous role for Einstein 4-manifolds.

But turns out that scalar-flat Kahler ALE spaces
also play an important role.

For example, proof of main result also needs one
such example (not discussed here).

Also play key role in recent existence proofs
for Einstein metrics (Chen-L-Weber "08, 1 "12)

Problem: Classity them!

We know many examples (L. 88, 91, C-S '05),
but have classification only in toric case.

Generalized McKay correspondence suggests
approach, currently under investigation.



