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Definitions and questions
Conformal geometry

Conformal manifold: (M, [g]), [g] = class of conformally equivalent
semi-Riemannian metrics, dim(M) = p + q.
@ Flat model: SP9 := N/RT = G/P with
e N null cone in RPT1.4+1 with R*-action,
o G:=S0%p+1,q+1), P:= Stabg(null line in RP+1.4+1),
® g =g ®go®g- With go = co(p, q), 8= ~RP9, p =g, & go.
The curved version is described by
@ A P-bundle G (conformal Cartan bundle)

G Go=CO(p,
G 5 G°=|{conformal frames} COe.a) 1

1

horizontal subspaces in TG, kernel of some w9, g € [g]

@ Normal conformal Cartan connection w € TG ® g,
o w: TG — gparallelism, Ryw = Ad(p™")w, w(X) = X €,
e Q(X,Y) e p (torsion-free) and curvature condition.



Definitions and questions
What is conformal holonomy?

w does not give horizontal subspaces and no parallel transport.
@ w defines connection & on G-bundle G = G xp G by dlg = w.
e tractor connection V on (standard) tractor bundle

_ A p+1.g+1 _ p+1,g+1
T =GX%XgR =G Xp R .

Conformal holonomy: Holy(M, [g]) := Hol, (7", V) = Holp(QA, o) c G.
@ Which groups can occur?
@ Are they holonomy groups of semi-Riemannian metrics?
© Which structures correspond to holonomy reductions?
Obstacles:
@ No obvious algebraic criterion for holonomy algebra.
@ Hol is defined up to conjugation in G, not only in P.

@ Reduction to subgroup H might not define a Cartan connection on M,
as we could have dim(H/H N P) # dim(M).




Definitions and questions
Classification of semi-Riemannian holonomy

Let h be the holonomy algebra of a semi-Riemannian manifold.
Ambrose-Singer holonomy theorem,

b =span{ P} o R(X,Y) o Py € SO(TM) | (0) = p. X, Y € Ty(1yM }
and 1st Bianchi-identity for R imply
(B) b =span{R(x,y) | R € K(b),x,y € R"},

with K(b) := { R e N’R" @b | R(x,y)z+ R(y,z)x + R(z,x)y = 0}. For
b c so(p, q) irreducible, (B) yields a classification (Berger '55).

No such algebraic criterion known for conformal holonomy.



Conformal holonom Normal conformal tractor bundle and Einstein metrics

Conformally Einstein metrics and parallel tractors

Let ga € [g] be an Einstein metric, i.e. Ric = (n—1)A - ga. Then

@ 7 admits a constant section n with g(,7) = —A and hence,
Hol(M, [g]) admits an invariant vector.
@ the Fefferman-Graham ambient metric g is given as
o N#0: g=-1ds?+ £dr® +rigy

| S—
cone metric

e AN=0: g=—dudt+ t°gp
and Hol(M, g) = Hol(M, [g]), i.e., the conformal holonomy is a
semi-Riemannian holonomy.
Conversely, if Hol(M, [g]) admits an invariant line, then on an open dense
subset Mp of M there exist an Einstein metric g € [glum,], and all of the
above holds for Hol(Mo, [glm,])-



Conformal holonom Normal conformal tractor bundle and Einstein metrics

Tractor bundle and its constant sections
[Bailey/Eastwood/Gover]

Let P = Stabg(/), I = null line.

@ Filtration I c I* c RPH19+1 gives T c T+ C 7.

e Projection 7+ = Gxp I — I*/T = TM = G° Xcoy(p.q) (I*/1)-
Every g € [g] splits T = L* ®R = R & TM & R with

00 1 T dr(X) = P(X, Y)
9=10 g 0| and Vx| Y |[=]| VxY+1X+a(XLP) |,
100 o do(X) - g(X. Y)
N p e
X =| X |with VX =0 <= o2gis Einstein metric on the open and
o

dense complement of zero(c).



Irreducible conformal holonomy
Irreducible case: Riemannian conf. structures

Theorem (Berger °55, Di Scala/Olmos '00)
If Hc SO°(1,n+ 1) acts irreducibly, then H = SO°(1,n + 1). J

= A Riemannian conformal manifold has generic conformal holonomy
unless
@ [g] contains an Einstein metric or

@ a certain product of Einstein metrics:
Decomposition thm by S. Armstrong '04: Hol(M, [g]) has invariant
subspace of dim k > 1 <= locally, [g] contains product of Einstein
metrics g1 and go of dim (k — 1) and (n — k + 1) with
—k+1 k-1
M =~ e
and the conformal holonomy is given by the holonomy of the products
of cones. (cf. Leitner ‘04, Leitner/Gover '09).



Irreducible conformal holonomy
I[rreducible case: Lorentzian conf. structures

Theorem (Di Scala/L '11)

LetH c SO°(2, n) act irreducibly. Then H is conjugated to
@ s0°(2,n),
@ SU(1,p), U(1,p), U(1)-SO°(1,p) ifp > 1,n even

@ 5S0°(1,2)C SO(2,3), forn = 3.

@ U(1,p) and U(1)-SO°(1, p) can’t be conformal holonomy groups:
Hol([g]) c U(r,s) = Hol([g]) c SU(r,s)
[Leitner'06, Cap/Gover’'06]

@ Hol([g]) = SU(1, p): Fefferman space in conformal class

@ What about (3)?
(3) corresponds to the symmetric space M® := SL3R/S0°(1,2) of
signature (2, 3) metric given by the Killing form of sizR.



Irreducible conformal holonomy
Isotropy representation of SL,R/SO(p, q)

Semi-Riemannian irreduccible symmetric space SL,R/SO(p, q)
@ symmetric decomposition s[,R = so(p, q) & m
@ irred. rep’n

Ad : SO(p, g) — SO(m, Ku,x) = SO(pq, W)

Theorem (Alt/DiScala/L '12)

If the conformal holonomy of a conformal manifold (M, [g]) is contained in
Ad(SO(2, 1)), then g is locally conformally flat.2

4In the talk | claimed that this result is true not only for (p, q) = (2, 1) but for arbitrary p > g > 1.
The result is still true for n = p 4+ q = 4, but for larger n we cannot fix the original proof.

Corollary

If the conformal holonomy group of a Lorentzian conformal manifold acts
irreducibly, then it is equal to SO(2, n) or SU(1, p).

v




Holonomy reductions and curved orbit decomposition
Holonomy reductions via parallel sections

Principal G-bundle G — M with connection & on G.
H c G be closed and containing Holp(g o), the holonomy group of & at
p € G. Reduction to the H-bundle (depending on p € g)

Hp = {y(1) | v(0) = p, y horizontal} -H c G

holonomy bundle

W a G-module, W = G xg W associated vector bundle. Connection @ on
G induces a covariant derivative V on ‘W.

C¥(G,W)® ~T(W), s = o(x) = [p,s(p)] for p € Gy.
@ o € (‘W) defines map M 3 x - s(Gx) =: Ox = G-orbit in W.
e Vo=0 < so v const. for all horizontal curves y in QA Hence,

o € [(‘W) with Vo = 0 implies
Holp(&) c Stabg(s(p)) and defines s(Gx) = G- s(p) =

ocgel(W),Vo=0 — O= G/Stabg(w) forw e O
g0



Holonomy reductions and curved orbit decomposition
Curved orbits [Cap/Gover/Hammerl *11]

Assume that é and @& come from a (nqrmal conformal) ACartan connection
woftype Pc Gona P-bundle GviaGg = G xp GandVorl(W:gxPW.
w has a holonomy reduction of type O, if 3 o € I'(‘W) with Vo = 0 defining
s € C¥(G, W)@ with G-orbit 0. Note:

@ @-horizontal curves leave G if Hol, () ¢ P.

@ P-orbits s(Gx) c O might change with x € M.

@ s(Gx) = P-w =: [w] € P\O is the P-orbit type of o at x € M,

M= [ ] My, with My := {x € M| s(Gx) = [w]}.
[wleP\O

@ For w € O set Gy, = Stabg(w). Then
P\O = P\G/Gy =~ H\G/P = G, \SP9. l.e.,

P-orbitsinO = G/G, < Gy-orbitsin G/P
P.g-Gyw — Gy-g'-P



Conformal holonom Holonomy reductions and curved orbit decomposition

Curved orbits and holonomy reduction

Theorem (Cap/Gover/Hammerl '11)

Let w be a Cartan connection of type P c G with curvature Q) and with a
holonomy reduction of type O.

@ Letw € O with P-orbit [w] := P -w = PeGy, inO,
e Gy /P = GyeP the corr. Gy-orbitin G/P, Py := Gy, N P.
Then, ¥ x € M, 3 nbhd. U of x in M and a diffeom. ¢ : U — V c G/P:

u % veagrp

@ #(x) =eP,p(UNM,;) = VN GuweP, | ! comm.
P\O - G,\G/P
Gw C G
@ w induces a Cartan connection of type P, c Gy, on | l
M[W] c M

whose curvature is the restriction of Q to G, with values in p,,.




Holonomy reductions and curved orbit decomposition
Proof of Thm for SL,R/SO(p, q)

Ad(SO(p, q))-invariant decomposition sl,R = so(p, q) & m. Then

@ H:= Ad(SO(p,q)) c SO(m, Ky,r) is the stabilisier of a curvature
tensor R € W := A2m ® so(m, Ky;,r)-

@ The null cone N in m consists of matrices S with tr(S?) = 0 and
defines the Mobius sphere N — SP9 = N/R*.

Proposition

Let No :={S € N'| S has n distinct eigenvalues, possibly in C}.
Then Ny is dense in N and, for all S € Np, stab,q()(R-S) = {0}.
l.e., the union of H-orbits of codimension n — 3 is dense in SP-4.

CGH-Thm =

Mo := {x € M| s(Gx) corresponds to orbit of max dim in SP9} is dense.
pw = {0} and invariance of 2 = = 0 along maximal orbits.

Hence, for n = 3 we have Q = 0, i.e., locally conformally flat.



Other classes of symmetric spaces
SL,C/SU(p, q) and SL,H/Sp(p, q)

Let H= SU(p, q) or H= Sp(p,q) = SU(2p,2q) N Sp,C.
Ad(H)-invariant decomposition s[,K = h & m for K = C, H, respectively.
Let N be the null-cone w.r.t. the Killing form of sI,K.

Proposition

Nop :={S € N'| S has n distinct eigenvalues} is dense in N and, for

S € Ny there is an 1 < r < § such that stab,qy)(R-S) is given as

° (r-so(1,1)€9(n—r) -u(1)))nsInC —
{diag(z1, s Zr X4, Xn—gr, =21, ..., —21) | Zi € C, Xj € R} N slpC,
ifK=C,
@ r-shCa®(n—-2r)-sp(1), ifK=H.
Again, the union of H-orbits of codimension n — 3 is dense in SPa.

Note that both stabilisers are invariant under conjugate transpose.
Consequences for the holonomy reduction?



Holonomy reductions and skew symmetric torsion Reductive Cartan connections

Reductive Cartan connections

A Cartan connection n of type B c H is reductive if b has an Ad(B)-inv
complement nin h = b @ n. Then n decomposes inot

n=n"en"

@ 1" a connection on B-bundle H,
@ n"e T*H ®Dbis Ad(B)-inv.
@ For each u e H, n" defines anisom ¢, : TyM — b/b — n, yielding a

reduction of the frame bundle of M to H. Hence, n° induces a linear
connection V7 on TM.

e If nis torsion-free, then the torsion T"(X,Y) := V] Y -V X - [X, Y]
of V' is given as

Yu(T(X,Y)) = = [Wu(X), gu(Y)], -



Holonomy reductions and skew symmetric torsion Reductive Cartan connections

Totally skew symmetric torsion

Proposition
Let n be a reductive, torsion-free Cartan connection of type B C H.
Assume that ) admits an Ady-invariant metric K : h x ) — R such that
h = b@* n. Then there is a canonical metric g" on M and an affine
connection V" with torsion T such that:

@ VIT"=0andVig" =0,

e g'(T"(.,.),.) is totally skew-symmetric,

@ Hol(V") c Ady(B) c O(n, K).

Proof.
@ Hol(n") c Adu(B) c O(n, K) by construction.
@ g7 :=y K for u € By, is V'-parallel.
@ Ad(B)-inv of K and b_Ln gives skew symmetry of the torsion.
@ T"parallel as ¢, o (1) T = —[.,.]u is Ad(B)-inv.

[]
OSSP



Holonomy reductions and skew symmetric torsion Reductive Cartan connections

An algebraic Lemma

Conditions on a symmetric space G/H such that the holonomy reduction
of the nc Cartan connection satisfies the assumptions of the proposition.

Lemma

Let g = h ® m be a symmetric space, with ) and g simple of non-compact
type, S € N c m and b = staby(RS).
Ifh has a Cartan involution 6 such that 6(b) = b, then

() b="Dbe@nis ad(bh)-inv and orthogonal w.r.t. K,=Killing form of g,

(i) 3 null vector'S € m such that Ky(S, S) # 0 and staby(RS) = b.
Furthermore, if it := span(S, S)* satisfies dim(n) = dim(T) then (1, Ky,
and (m, K;l;) are homothetic, and we have

b = staby(S) = stabb(g).

The proof uses the Karpelevich-Mostov Theorem.




Holonomy reductions and skew symmetric torsion Reductive Cartan connections

Holonomy reduction to isotropy groups

Theorem

Let G/H be a symmetric space with g and ty simple of non-compact type,
and invariant decomposition g = ) @ m.

Let (M, [g]) be a conformal manifold of signature (p, q) with holonomy
reduction to Adg(H) c SO(m) ~SO(p+1,g+ 1).
Assume there is a null vector S € m with stabilizer B = Staby(RS) with

@ b = LA(B) is invariant under a Cartan involution of b,
@ the H-orbit of [S] is open in the Mdbius sphere SP9 of m.
Then My c M corresponding to the H-orbit of [S] in SP9 has
@ a canonical metric go € [glm,],

@ a connection V° with V0g°® = 0 and with skew-symmetric, V°-parallel
torsion T°, and

@ Hol(V°) c Ady(B) c SO(b/b).




Holonomy reductions and skew symmetric torsion Reductive Cartan connections

SL;C/SU(2,1) and nearly para-Kéhler structures

SL,C/SU(p, q) satisfies assumption (1) of the Thm and, for n = 3 also
assumption (2). We find: V® = canonical connection for a para-nearly
Kahler structure (g, J) of constant type % ie.,

@ J € End(TMP®) with J> = 1 and J*g = —g,
@ VxJ(X) =0forall X € TM®, where V = V€,
® g(VxJ(Y), VxJ(Y)) = 3 (a(X. X)g(Y. ¥) = *(X, V) + ¢*(JX, V)

Fact [lvanov/Zamkovoy '05]:

Six-dim’l nearly para-Kahler manifolds are of constant type A and Einstein
with Einstein constant 5A.

Theorem

If (M, [g]) has conformal holonomy in Ad(SU(2,1)) c SO(4,4), then, on
an open dense subset, there exists a nearly para-Kahler metric in [g]. In
particular, the conformal holonomy preserves a time-like vector in R*#,
and is properly contained in PSU(2, 1).

v




Holonomy reductions and skew symmetric torsion Reductive Cartan connections

SL,H/Sp(2, 1) and Sp(2,1)/SLsC x Sp(1)

SLoH/Sp(2, 1) satisfies the assumptions of the Thm.

@ The open orbits in the Mdbius sphere are given by PSp(2, 1)/B with
B = SL,C x Sp(1).

@ This is a naturally reductive homogeneous space with metric Einstein
K of signature (5, 7).

@ The Ricci tensor of g° in [g] is related to the one of K via

Ric® (X, Y) = RicK(yu(X), vu(Y)),
and is thus also Einstein.

Theorem

If (M, [g]) is a conformal manifold of signature (5, 7) with conformal
holonomy in PSp(2, 1) c SO(6, 8), then on an open dense subset there is

an Einstein metric [g]. In particular, the conformal holonomy is a proper
subgroup of PSp(2,1).




Fefferman-Graham ambient metric and conformal holonomy
Fefferman-Graham ambient metric and conf. holonomy

What about other symmetric spaces?

Theorem (Graham/Willse ’11)

Let (M, [g]) be a real analytic conformal structure on an odd-dim’l mf M.
Then parallel tractors in 7~ can be uniquely extended to parallel ambient
tensors for Ricci flat ambient space (M, 9).

Hol(M, g) = Stab(R) # SO(p + 1,q + 1) irreducible with R an algebraic
curvature tensor, then Ric = 0 = (M, g) flat.

Theorem

Let (M, [g]) be a real analytic conformal structure on an odd-dim’l mf M
with irreducible conformal holonomy H = Stab(w). Then H is equal to
SO(p + 1,q+ 1) or Gz(z).




Fefferman-Graham ambient metric and conformal holonomy
Speculations

@ Isotropy groups of irreducible symmetric spaces cannot be conformal
holonomy groups.

@ Conformal holonomy groups are always pseudo-Riemannian
holonomy groups of Ricci flat manifolds.

@ Lie algebras b c so(T) for which Ric : K (h) — ©>T* is injective cannot
be conformal holonomy algebras.

Thank you!
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