Einstein gravity from rational curves in twistor
space

Lionel Mason

The Mathematical Institute, Oxford
Imason@maths.ox.ac.uk

ESI, Vienna, 10/9/2012

Work with Tim Adamo, Freddy Cachazo & David Skinner.
Adamo & M arxiv:1203.1026& arxiv:1207.3602, Cachazo &
Skinner arxiv:1207.0741 Cachazo, M., Skinner
arxiv:1207.4712.

[Cf. also work by Andrew Hodges 1204.1930, Bo Feng & Song
He 1207.3220 and 1207.4064, & Mat Bullimore 1207.3940. ]



Twistor-strings and gravity

Twistors strings ~ remarkable progress for Yang-Mills
amplitudes.
What about gravity?

o Twistor-strings O Conformal gravity (sercovits, witen 2004].
e Twistor-action for conformal gravity m. 200s).
But Einstein gravity C conformal gravity.
~ two strategies:
© Try to compute Einstein gravity answer from
Berkovits-Witten string (N = 4 SUSY) (adamo m. 2012).
® Guess full N = 8 formula, at least on momentum space
generalizing Hodges’ new MHV formula (cachazo skinner 2012, + csmy.

In this talk | review and compare the two approaches and
further developments.



The S-matrix at tree-level

Definition
For field theory with field g and action S[g] the S-matrix is a
sequence of multilinear functionals C(g, ..., gn) of n solutions

gi to linearized fields equs. (gives amplitudes for Scattering).
e Construct tree-level S-matrix as action S[g] of solution g to
field equs from asymptotic data g|» = >4 €igi| .+
C(91,---,9n) = coeff. of [[; ¢ in Scglg],

¢ On 4-dim space-time manifold M with metric g:

e Conformal gravity action Scglg] := % Ju Weyl?.

« Einstein gravity action Sgglg] := 2> [,,(Scal + A)d vol.
¢ Notation C as above and Einstein (tree) S-matrix

M(1,...,n) = Coeff of [[,;¢ in Sgglg].

« Often insert Fourier modes g; ~ ei"X, momentum P;,
Pj? =0, so C, M become functions of P;.



From conformal gravity to Einstein gravity

Einstein field eqs R4, = Agap imply conformal gravity ones
B.p := 0ORa + ... = 0 so Einstein ¢ Conformal gravity.
Proposition (modified Maldacena after Anderson)

The conformal-gravity tree-level S-matrix evaluated on Einstein
gravity wave functions with A > 0 gives Ax Einstein S-matrix.

Proof: (Idea) If g is Einstein R,, = Agap developed from
Einstein data, then:

Scalg] = / Weyl? = Euler class + / A2dvol

whereas
SEG = //\dVOl

So also perturbatively Scg = ASeg = C=AM.
Care is needed to get boundary terms right. O



N = 4 Super Twistor space and Minkowski space
Spacetime M = (R*8, g) coords (x4, §34) a=0,1,4=0',1",a=1,...4.
Twistor space is PT = CP?*, homogeneous coords:
Z=2=0ap" X3 €T :=C?xC?xC%M,  Z~(Z,(cC*.

T = fund. repn of superconformal group SU(2,2|4).

A point x € M + aline X = CP' ¢ PT via incidence relations
WA = P, @ = 0%\,

Two points x, x” are null separated iff X and X’ intersect.

Space-time Twistor Space

X/

— 7




Twistor-strings for conformal gravity
Berkovits-Witten 2004

Fields: Z = Z(0,5), Y = Y,(0,5)do, o coord on worldsheet X:
Z:¥=PT, YeQ'¥%%)e T*PT,

action 57
S[Z,Y,a = / v,0Z',  8Z===d5
b 80'

and field equations 0Z =0 = 0Y.



Twistor-strings for conformal gravity
Berkovits-Witten 2004

Fields: Z = Z(0,5), Y = Y,(0,5)do, o coord on worldsheet X:
Z:¥=PT, YeQ'¥%%)e T*PT,

action
o0z

S[Z,Y,a = / v,0Z',  8Z===d5
5 0o
and field equations 0Z =0 = 0Y.
Data: linear conformal gravity = self-dual & anti-self-dual
F .= (f,g) € H'(PT', T @ T*PT),

which perturbs action by Vertex operators
Ve = Vi 4V, ::/ 12)'Y; + 9(2),dZ".
X

Vs « deformations of C-structure on PT' ~ 0Z = f(2),
Vg gives ‘B-field’ (noncommutative str?).



Berkovits-Witten conjecture for conformal gravity

Path integral reduces to integral over space //5 , of
holomorphic maps Z: ¥ —PT:

Z / d/‘d<VF1 (o) VFn(Z(Un))>d )

g,d=0
g=genusof X, d= degree of map, n = # marked points.



Berkovits-Witten conjecture for conformal gravity

Path integral reduces to integral over space //é;’ , of
holomorphic maps Z : ¥ — PT:

C(t,...,ny= Y / , dpa (Ve (Z(041)) - .. VE(Z(on))) 4 -

g,d=0 M n
g = genus of X, d = degree of map, n = # marked points.
e For tree-amplitudes, take g = 0, so ¥ = CP".
e Coordinatize ¥ with homogeneous coords o = (09, 01).
® SO Mypn=maps Z: CP' — PT, degree-d (weight d in )

d
3 d4|4U
20)= 3 okt . o= TG0
r=0

e Correlator computed from green’s function

J o' )a+1
(Yito) 2/l o = (ot 0

where (0 0') = op0 — o10q and € € X is gauge choice.




Reduction from conformal to Einstein gravity
Linear Einstein SD & ASD fields are given by by
H:= (h,h) e H'(PT',0(2) & O(-2))

e Introduce ‘infinity twistors’ /,z, 127 (fermionic part = 0)

B0 Neag O
/ = Iaﬁ = ¥=-1 .
of 0 /\EA/B/ ’ 0 EA B

I has rank two when A = 0 (A = cosmological const.) &
(67 1 (07 67 (0%
[P = 5¢ PoLs, 1Plgy = N6,
o Gives Poisson structure {, } and contact structure 7,
{hi, o} = Mohyoyuhe, 7= 1yZ'dz’,

Einstein c conformal gravity: (', g,) = (I"dxh, ZKIx,h) so
Einstein vertex operators:

v,,;—/ Y-ah;—/ Y,Mo,h, Vh—/Fl/\T.
> > >



Einstein amplitudes from twistor-strings

If Berkovits-Witten twistor-string correctly gives conformal
gravity amplitudes, then C = AM gives for Einstein, k SD fields:

Kk _ AR VA
AME = [ (Vi Vi Vo),

- /dud<771r1 PtV - Ot - Yo Oy )
Mg, d
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Supersymmetry requires degree of map d = k — 1.
RHS is polynomial degree nin A.

RHS = 0 when A = 0.

O(N) part gives Einstein at A = 0.



Einstein amplitudes from twistor-strings

If Berkovits-Witten twistor-string correctly gives conformal
gravity amplitudes, then C = AM gives for Einstein, k SD fields:

Kk _ AR VA
AME = [ (Vi Vi Vo),

- /dud<771r1 PtV - Ot - Yo Oy )
Mg, d

e Supersymmetry requires degree of map d = k — 1.
e RHS is polynomial degree nin A.
e RHS =0 when A =0.
e O(N) part gives Einstein at A = 0.
To check, use momentum eigenstates, momenta P; = )\j(f\j, nj)

~ — . ~ ds; - i -

by = / sj dsj 62 (sjA—xy) Sl gy = / —2 §%(s—A—y) efsille Al
C C S

compute correlator (), integrate & compare to known results.



A-dependence and low-lying examples

Lemma
Each (Y;-0h; 1) contraction leads to a power of A in the answer.

Proof: Each such contraction leads to /g, = A§¢.0
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A-dependence and low-lying examples

Lemma
Each (Y;-0h; 1) contraction leads to a power of A in the answer.

Proof: Each such contraction leads to /g, = A§¢.0

Degree = 0: maps are just points ~» easy integration over PT,

gives Ax standard k = 1 3 point amplitude +A2x new term.

Degree = 1: Maps are now lines « points in M*/8
=i, =0, Aa=oa.

fixes ‘vol GL(2)', 44, , = M*8 x (CPy)" and duy = d*x.

Three point k = 2: o
e requires one Y-contraction (hyt1horoYs - Ohs).
e Correct answer O(A) and new term O(A?) are obtained

C(1,2,3) = AM(1,2,3) = A “§;22<>223>2 (14A0,)5* (Z P,-)

where (12) = \ja)\5 also set [12] = A5 .



Does A = 0 case give zero? Case: d =1, k = 2.

/du1 </"11T1F)272Y3 - Ohg--- Y, - Ohp > ~AM®=0
///1.,n 1

e (Y-0hjh;) = {h;, hj} = [ij] hih; at A = 0 (similarly for 77,-) SO
each Y; contraction with h;, h; ~ the factor

o [l h)? oy
T e 7
e (Yi-0h;;) = O(N) = 0, so sum of Y; contractions ~ factor
7 [i](€ j) e Tigol i
—¢; = TPTE def fori =
i j; ) EN2 efines ¢; for i = j

e ¢-independent by momentum conservation ) ; AiXi = 0.
o This gives [[7_5(—¢!), but this is generically non-zero!



Does A = 0 case give zero? Case: d =1, k = 2.

/du1 </"11T1F)272Y3 - Ohg--- Y, - Ohp > ~AM®=0
///1.,n 1

e (Y-0hjh;) = {h;, hj} = [ij] hih; at A = 0 (similarly for 77,-) SO
each Y; contraction with h;, h; ~ the factor

o [l h)? oy
T e 7
e (Yi-0h;;) = O(N) = 0, so sum of Y; contractions ~ factor
7 [i](€ j) e Tigol i
—¢; = TPTE def fori =
i j; ) EN2 efines ¢; for i = j

e ¢-independent by momentum conservation ) ; AiXi = 0.
o This gives []7_5(—¢!), but this is generically non-zero!

Resolution: only allow Feynman diagrams for the correlator
that are connected trees.



Connected trees and the weighted matrix-tree theorem

Proposition
If only connected trees are allowed for the contractions, the
conformal gravity amplitude vanishes at \ = 0.
Matrix tree theorem: > Feynman tree graphs =det£, 1,
where: B
 draw master graph G of all possible (Y; h;), (Y; h;)
contractions orienting line from i to j.
@ n - 2 white vertices for Y; - dh;,
® 2 black vertices for h;T;.
® white vertices have n — 1 outgoing edges, n — 3 incoming.
@ black vertices n — 2 incoming.
e The weighted Laplacian matrix £ of G has (i, j)-entries

&; i¢j7n_17n
L=<0 i=n—1.n
0= = i 9] =]

e Let L, 1,:={L— rows & columns n— 1 and n}.



The Hodges matrix
arxiv:1204.1930

Hodges obtained a remarkable new formula for the n-particley
gravitational MHV amplitude as the determinant of an
n— 3 x n— 3 minor of an n x n matrix ¢:

Definition ) )
The Hodges matrix ® := D~'¢D where D = diag{(¢ )2}

o ® has co-rank three

Sy
> dadp=0.
J

following from momentum conservation.

e Lp1n=dn_1n(With n—1 and nth row & column removed)
as they only differ in the n — 1 and nth row and column.

e SodetL, 1,=detd, 1, =0as ® and ¢ have 3-d kernel.

C =0 at A =0 now follows.O



MHYV at order A, the Hodges formula

Expect gravitational MHV amplitude to be given by

1 o -
M8 = /dm (PirihoraYs - Ohg - Yy Oy )
/\ </[1,n 1

A=0

At O(A) one Y; must contract with 74 or 7».

The other n — 3 contractions must connect remaining white
vertices with one outgoing edge connectingto /i, n— 1 or n.
Matrix tree theorem gives sum of contributions as factor

detLjp_1, = det &)in—1 n

multiplied by 3pt amplitude for M(i,n — 1, n).
This is a version of Hodges’ MHV formula.

M(1,,_,,n):M(i,n—1,n)det5>,-n_1n

Note: ® and Hodges formula have straightforward permutation
symmetry and polynomial complexity.



Degree d = k — 1

1 - -
M = /\/ dpik—1 <h1T1 o DTk Ykg1 - Ohgyq - Y- Ohp >
M o

—1,n

Y; contractions now give generalized Hodges matrices

‘ [i]] (€DK P L
(gf,.:{( ) (€ S (i]) = oia0?
Z/;é/ =]
e This has co-rank k + 1 because relations
5 (&)X
Zj #UIA o OjACT K (f_/) =0
follow from 3, Ajoja, ... oja,_, = 0.

Matrix-tree thm gives sum of tree contractions as
determinant (n — k minor of ¢) = 0 as co-rank = k + 1.
At O(A) with one (Y;7;) contraction, Matrix-tree theorem
yields answer as determinant of n — k — 1 minor of ¢.



The Cachazo-Skinner formula for PT = CP3®

Theorem (Cachazo, M, Skinner)
The tree-level S-matrix for N = 8 supergravity is given by

n
MK, ..., n) :/ dpg—1 det’(®¥)det’ (9%) [ [ Do hi (Z(07)),
//fk—hn =1

where & is conjugate to ¢ as above and

o — <)\(Ui)_%\(0j)>
: (i)

etc., has rank k — 1 and det’ is det of a minor of maximal rank
divided by Vandermonde factors in (i j).
Proof: Use recursion: shift momenta with complex parameter
and show that residues at poles give factorized amplitudes. O
Gives full nonlinear (but perturbative) structure of Einstein
equations!

i



Conclusions:

For Berkovits-Witten twistor-string have good evidence:

e confirmed that twistor-string gives zero at A = 0 as
required by Maldacena argument.

e obtained Hodges formula for k = 2 (MHV).
« obtained part of ¥ in Cachazo-Skinner formula.
But more work required for full understanding.

N = 8 Cachazo-Skinner formula ~» many new avenues:
e Is there an N = 8 SUGRA twistor-string as well?
e What is geometric interpretation?
e Quantization?



Happy Birthday MikE!



