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Twistor-strings and gravity

Twistors strings ; remarkable progress for Yang-Mills
amplitudes.
What about gravity?
• Twistor-strings ⊃ Conformal gravity [Berkovits, Witten 2004].
• Twistor-action for conformal gravity [M. 2005].

But Einstein gravity ⊂ conformal gravity.
; two strategies:

1 Try to compute Einstein gravity answer from
Berkovits-Witten string (N = 4 SUSY) [Adamo M. 2012].

2 Guess full N = 8 formula, at least on momentum space
generalizing Hodges’ new MHV formula [Cachazo Skinner 2012, + CSM].

In this talk I review and compare the two approaches and
further developments.



The S-matrix at tree-level

Definition
For field theory with field g and action S[g] the S-matrix is a
sequence of multilinear functionals C(g1, . . . ,gn) of n solutions
gi to linearized fields equs. (gives amplitudes for Scattering).

• Construct tree-level S-matrix as action S[g] of solution g to
field equs from asymptotic data g|I =

∑n
i=1 εigi |I :

C(g1, . . . ,gn) = coeff. of
∏

i εi in SCG[g] ,

• On 4-dim space-time manifold M with metric g:
• Conformal gravity action SCG[g] := 1

κ2

∫
M Weyl2.

• Einstein gravity action SEG[g] := 1
κ2

∫
M(Scal + Λ)d vol.

• Notation C as above and Einstein (tree) S-matrix

M(1, . . . ,n) = Coeff of
∏

i εi in SEG[g] .

• Often insert Fourier modes gj ∼ eiPj ·x , momentum Pj ,
P2

j = 0, so C,M become functions of Pi .



From conformal gravity to Einstein gravity

Einstein field eqs Rab = Λgab imply conformal gravity ones
Bab := 2Rab + . . . = 0 so Einstein ⊂ Conformal gravity.

Proposition (modified Maldacena after Anderson)
The conformal-gravity tree-level S-matrix evaluated on Einstein
gravity wave functions with Λ > 0 gives Λ× Einstein S-matrix.
Proof: (Idea) If g is Einstein Rab = Λgab developed from
Einstein data, then:

SCG[g] =

∫
Weyl2 = Euler class +

∫
Λ2dvol

whereas
SEG =

∫
Λdvol

So also perturbatively SCG = ΛSEG ⇒ C = ΛM .
Care is needed to get boundary terms right. 2



N = 4 Super Twistor space and Minkowski space

Spacetime M = (R4|8,g) coords (xAA′ , θaA) A=0,1,A′=0′,1′,a=1,..,4.

Twistor space is PT = CP3|4, homogeneous coords:

Z = ZI = (λA, µ
A′ , χa) ∈ T := C2×C2×C0|4, Z ∼ ζZ , ζ ∈ C∗ .

T = fund. repn of superconformal group SU(2,2|4).

A point x ∈M↔ a line X = CP1 ⊂ PT via incidence relations

µA′ = −ixAA′λA , χa = θaAλA .

Two points x , x ′ are null separated iff X and X ′ intersect.

X ′

X
Zx

x′

Space-time Twistor Space



Twistor-strings for conformal gravity
Berkovits-Witten 2004

Fields: Z = Z (σ, σ̄), Y = Yσ(σ, σ̄)dσ, σ coord on worldsheet Σ:

Z : Σ→ PT , Y ∈ Ω1,0(Σ)⊗ T ∗PT ,

action
S[Z ,Y ,a] =

∫
Σ

YI ∂̄Z I , ∂̄Z =
∂Z
∂σ̄

dσ̄

and field equations ∂̄Z = 0 = ∂̄Y .

Data: linear conformal gravity = self-dual ⊕ anti-self-dual

F := (f ,g) ∈ H1(PT′,T ⊕ T ∗PT),

which perturbs action by Vertex operators

VF := Vf + Vg :=

∫
Σ

f (Z )IYI + g(Z )IdZ I .

Vf ↔ deformations of C-structure on PT′ ; ∂̄Z = f (Z ),
Vg gives ‘B-field’ (noncommutative str?).
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Berkovits-Witten conjecture for conformal gravity

Path integral reduces to integral over space M g
d ,n of

holomorphic maps Z : Σ→ PT:

C(1, . . . ,n) =
∞∑

g,d=0

∫
M g

d,n

dµd
〈
VF1(Z (σ1)) . . .VFn (Z (σn))

〉
d ,

g = genus of Σ, d = degree of map, n = # marked points.
• For tree-amplitudes, take g = 0, so Σ ∼= CP1.
• Coordinatize Σ with homogeneous coords σ = (σ0, σ1).
• So Md ,n = maps Z : CP1 → PT, degree-d (weight d in σ)

Z (σ) =
d∑

r=0

Urσ
r
0σ

d−r
1 , dµd =

∏
r d4|4Ur

Vol GL(2)
.

• Correlator computed from green’s function

〈YI(σ) Z J
j (σ′)〉d =

δJ
I

(σ σ′)

(ξ σ′)d+1

(ξ σ)d+1

where (σ σ′) = σ0σ
′
1 − σ1σ

′
0 and ξ ∈ Σ is gauge choice.
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Reduction from conformal to Einstein gravity

Linear Einstein SD ⊕ ASD fields are given by by

H := (h, h̃) ∈ H1(PT′,O(2)⊕O(−2))

• Introduce ‘infinity twistors’ Iαβ, Iαβ (fermionic part = 0)

Iαβ =

(
εAB 0
0 ΛεA′B′

)
, Iαβ =

(
ΛεAB 0

0 εA′B′

)
.

I has rank two when Λ = 0 (Λ = cosmological const.) &

Iαβ =
1
2
εαβγδIγδ , IαβIβγ = Λδαγ ,

• Gives Poisson structure {, } and contact structure τ ,

{h1,h2} := I IJ∂Ih1∂Jh2 , τ = IIJZ IdZ J ,

Einstein ⊂ conformal gravity: (f I ,gJ) = (I IK∂K h,Z K IKJ h̃) so
Einstein vertex operators:

Vh :=

∫
Σ

Y · ∂h :=

∫
Σ

YI I IJ∂Jh , Vh̃ =

∫
Σ

h̃ ∧ τ .



Einstein amplitudes from twistor-strings

If Berkovits-Witten twistor-string correctly gives conformal
gravity amplitudes, then C = ΛM gives for Einstein, k SD fields:

ΛMk
n =

∫
Md,n

dµd

〈
Vh̃1
· · ·Vh̃k

Vhk+1 · · ·Vhn

〉
d

=

∫
Md,n

dµd

〈
h̃1τ1 · · · h̃kτkYk+1 · ∂hk+1 · · ·Yn · ∂hn

〉
d

• Supersymmetry requires degree of map d = k − 1.
• RHS is polynomial degree n in Λ.
• RHS = 0 when Λ = 0.
• O(Λ) part gives Einstein at Λ = 0.

To check, use momentum eigenstates, momenta Pj = λj(λ̃j , ηj)

h̃j =

∫
C

sj dsj δ̄
2(sjλ−λj) eisj [[µ λ̃j ]] , hj =

∫
C

dsj

s3
j
δ̄2(sj−λ−λj) eisj [[µ λ̃j ]] ,

compute correlator 〈 〉, integrate & compare to known results.
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Λ-dependence and low-lying examples

Lemma
Each 〈Yi ·∂hi τj〉 contraction leads to a power of Λ in the answer.
Proof: Each such contraction leads to IαβIβγ = Λδαγ .2

Degree = 0: maps are just points ; easy integration over PT,
gives Λ× standard k = 1 3 point amplitude +Λ2× new term.

Degree = 1: Maps are now lines↔ points in M4|8

µA′ = −ixAA′λA , χa = θaAλA , λA = σA .

fixes ‘vol GL(2)’, M1,n = M4|8 × (CP1)n and dµ1 = d4x .

Three point k = 2:
• requires one Y -contraction 〈h̃1τ1h̃2τ2Y3 · ∂h3〉.
• Correct answer O(Λ) and new term O(Λ2) are obtained

C(1,2,3) = ΛM(1,2,3) = Λ
〈1 2〉2

〈1 3〉2〈2 3〉2
(1+Λ2p)δ4|8

(∑
i

Pi

)
where 〈1 2〉 = λ1Aλ

A
2 also set [1 2] = λ̃1A′ λ̃

A′
2 .
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Does Λ = 0 case give zero? Case: d = 1, k = 2.

∫
M1,n

dµ1

〈
h̃1τ1h̃2τ2Y3 · ∂h3 · · ·Yn · ∂hn

〉
1

= ΛM0
n = 0

• 〈Y · ∂hi hj〉 = {hi ,hj} = [i j] hihj at Λ = 0 (similarly for h̃j ) so
each Yi contraction with hj , h̃j ; the factor

φ̃i
j :=

[ij]〈ξ j〉2

〈ij〉〈ξi〉2
, i 6= j

• 〈Yi · ∂hi τj〉 = O(Λ) = 0, so sum of Yi contractions ; factor

−φ̃i
i :=

∑
j 6=i

[ij]〈ξ j〉2

〈ij〉〈ξi〉2
, defines φ̃i

j for i = j

• ξ-independent by momentum conservation
∑

i λi λ̃i = 0.
• This gives

∏n
i=3(−φ̃i

i) , but this is generically non-zero!

Resolution: only allow Feynman diagrams for the correlator
that are connected trees.
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Connected trees and the weighted matrix-tree theorem

Proposition
If only connected trees are allowed for the contractions, the
conformal gravity amplitude vanishes at Λ = 0.
Matrix tree theorem:

∑
Feynman tree graphs = detLn−1 n

where:
• draw master graph G of all possible 〈Yi hj〉, 〈Yi h̃j〉

contractions orienting line from i to j .
1 n − 2 white vertices for Yi · ∂hi ,
2 2 black vertices for h̃iτi .
3 white vertices have n − 1 outgoing edges, n − 3 incoming.
4 black vertices n − 2 incoming.

• The weighted Laplacian matrix L of G has (i , j)-entries

L =


φ̃i

j i 6= j ,n − 1,n
0 i = n − 1,n
φ̃i

i := −
∑

j 6=i φ̃
i
j i = j

• Let Ln−1 n := {L− rows & columns n − 1 and n}.



The Hodges matrix
arxiv:1204.1930

Hodges obtained a remarkable new formula for the n-particley
gravitational MHV amplitude as the determinant of an
n − 3× n − 3 minor of an n × n matrix Φ̃:

Definition
The Hodges matrix Φ̃ := D−1φ̃D where D = diag{〈ξ i〉2}

• Φ̃ has co-rank three ∑
j

Φ̃i
jλjAλjB = 0 .

following from momentum conservation.
• Ln−1 n = φ̃n−1 n (with n− 1 and nth row & column removed)

as they only differ in the n − 1 and nth row and column.
• So detLn−1 n = det φ̃n−1 n = 0 as Φ̃ and φ̃ have 3-d kernel.

C = 0 at Λ = 0 now follows.2



MHV at order Λ, the Hodges formula

Expect gravitational MHV amplitude to be given by

M0
n =

1
Λ

∫
M1,n

dµ1

〈
h̃1τ1h̃2τ2Y3 · ∂h3 · · ·Yn · ∂hn

〉
1

∣∣∣∣∣
Λ=0

• At O(Λ) one Yi must contract with τ1 or τ2.
• The other n − 3 contractions must connect remaining white

vertices with one outgoing edge connecting to i , n− 1 or n.
• Matrix tree theorem gives sum of contributions as factor

detLi n−1 n = det Φ̃i n−1 n

multiplied by 3pt amplitude forM(i ,n − 1,n).
• This is a version of Hodges’ MHV formula.

M(1, . . . ,n) =M(i ,n − 1,n) det Φ̃i n−1 n

Note: Φ̃ and Hodges formula have straightforward permutation
symmetry and polynomial complexity.



Degree d = k − 1

Mk
n =

1
Λ

∫
Mk−1,n

dµk−1

〈
h̃1τ1 · · · h̃kτkYk+1 · ∂hk+1 · · ·Yn · ∂hn

〉
k−1

∣∣∣∣∣
Λ=0

• Yi contractions now give generalized Hodges matrices

φ̃j
i =

{
[i j]
(i j)

(ξ j)k

(ξ i)k i 6= j

−
∑

l 6=i φ̃
l
i i = j

(i j) = σiAσ
A
j

• This has co-rank k + 1 because relations∑
j φ̃

j
iσjA1 . . . σjAk

(ξ i)k

(ξ j)k = 0

follow from
∑

j λ̃jσjA1 . . . σjAk−1 = 0.
• Matrix-tree thm gives sum of tree contractions as

determinant (n − k minor of φ̃) = 0 as co-rank = k + 1.
• At O(Λ) with one 〈Yi τj〉 contraction, Matrix-tree theorem

yields answer as determinant of n − k − 1 minor of φ̃.



The Cachazo-Skinner formula for PT = CP3|8

Theorem (Cachazo, M, Skinner)
The tree-level S-matrix for N = 8 supergravity is given by

Mk
n(1, . . . ,n) =

∫
Mk−1,n

dµk−1 det′(Φ̃k )det′(Φk )
n∏

i=1

Dσi hi (Z (σi)) ,

where Φ̃ is conjugate to φ̃ as above and

Φj
i =
〈λ(σi)λ(σj)〉

(i j)
i 6= j

etc., has rank k − 1 and det′ is det of a minor of maximal rank
divided by Vandermonde factors in (i j).
Proof: Use recursion: shift momenta with complex parameter
and show that residues at poles give factorized amplitudes. 2

Gives full nonlinear (but perturbative) structure of Einstein
equations!



Conclusions:

For Berkovits-Witten twistor-string have good evidence:
• confirmed that twistor-string gives zero at Λ = 0 as

required by Maldacena argument.
• obtained Hodges formula for k = 2 (MHV).
• obtained part of Φ̃k in Cachazo-Skinner formula.

But more work required for full understanding.

N = 8 Cachazo-Skinner formula ; many new avenues:
• Is there an N = 8 SUGRA twistor-string as well?
• What is geometric interpretation?
• Quantization?



Happy Birthday MikE!


