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Main definition and some history

Def. Let g be a Riemannian or pseudo-Riemannian metric on M.
A metric ḡ on the same manifold M is geodesically equivalent to g , if
every g -geodesic is a (possibly, reparameterized) ḡ -geodesic.

The notion is natural and the study of geodesically equivalent metrics
was one of the favorite topics in the XIXth/beginning of XXth century:
Beltrami, Dini, Levi-Civita, Painlevé, Eisenhart, Weyl, Veblen, Thomas
obtained nontrivial results.

The subject has a revival now: many new methods appear and many
classical problems were solved.



Examples of Lagrange 1789 and of Dini 1869
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f(X)
X

Radial projection f : S2 → R
2

takes geodesics of the sphere to
geodesics of the plane, because
geodesics on the sphere/plane are
intersection of planes containing
0 with the sphere/plane.

Example (Dini 1869) The metric
(X (x)− Y (y))(dx2 + dy2)

is geodesically equivalent to
(

1
Y (y) −

1
X (x)

) (
dx2

X (x) + dy2

Y (y)

)

, (if they have

sense).



The equation for geodesic equivalence and the degree of
mobility

Theorem (Sinjukov 1962). Let g be a metric. The metrics ḡ that are
geodesically equivalent to g are in one-to-one correspondence with the
solutions of the following system of PDE on the (0,2)-tensorfield a = aij

and (0,1)-tensorfield λi such that det(a) 6= 0 at all points:

aij,k = λigjk + λjgik . (∗)

The one-to-one correspondence is given by

ḡ −→



a =

(
det(ḡ)

det(g)

) 1
n+1

gḡ−1g , λ = 1
2dtraceg (a)



 .

Historical remark. In dim 2, the Sinjukov-equations were known to
Liouville 1889. There exist two improvements of this system of equations
(Bolsinov-M∼ 2002 and Eastwood-M∼ 2007) that made the system
more convenient for certain goals.

Def. The dimension of the space of solutions of this system is called
the degree of mobility and is denoted by D(g).



Main question of my talk and the previously known
answers

Question we will partially answer: What values can the degree of
mobility accept?

For every dimension n, we would like to have a list of all possible degrees
of mobility of all possible metrics. We work locally, or on
simply-connected manifolds.

Answer in dimension 2 (Koenigs 1886). In dimension 2, the possible
degrees of mobility are {1, 2, 3, 4, 6}.
Maximal degree of mobility (Weyl and Eisenhart, 1920th). It is
(n+1)(n+2)

2 and is accepted on the metrics of constant curvature.
Submaximal degree of mobility (Sinjukov-Mikes 1962). It is
(n−2)(n−1)

2 + 1.
Answer in dimension 3 (Kiosak-M∼ 2011): D(g) ∈ {1, 2, 10}.



Main result

Thm. Let g be a metric of Riemannian or Lorentz signature on a
simply-connected manifold of dimension ≥ 3. Assume there exists at
least one metric that is geodesically equivalent to g , but is not affinely
equivalent to g . Then, the degree of mobility can accept (precisely) one
of the following numbers only

◮ 2;

◮
k(k+1)

2 + ℓ, where k ∈ {0, ..., n − 2} and ℓ ∈ {1, ...,
[

n−k+1
3

]
}.

◮
(n+2)(n+1)

2 (constant curvature case).

Remark. The submaximal degree of mobility (n−2)(n−1)
2 + 1 corresponds

to k = n − 2 and ℓ = 1.
Historical remark. In the Riemannian case the answer is due to

Shandra 2000 and Kiosak-Matveev-Mikes-Shandra 2010: the principal
idea is due to Shandra but the paper S2000 contains a mistake that was
corrected in KMMS2010; so the new result is actually the Lorentz case.

We did not expect that the answer in the Lorentz and Riemannian signatures coincide. As we know (in particular

from recent results of Dennis The - Boris Kruglikov) it is rather typical that the dimensions of the space of

solutions of geometric equations on a pseudo-Riemannian manifold depend on the signature of the metric.
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The schema of my explanation of the result.

Naive approach that probably would not work. Given an explicit
metric, it is a purely algorithmic “Mapleized” task to find the dimension
of the space of solution – one needs to prolong the system and calculate
the rank of the prolongations. If the metric is not fixed, apriori there
could be many combinatorial possibilities for the behavior of the
prolonged system and in most problems of such type only the maximal
and submaximal dimensions could be found.

◮ I will first explain the “Shandra” idea in the Riemannian case

◮ I will give an example of a Lorentz signature such that the
Riemannian proof does not work, show the difficulties in the
transition Riemannian −→ Lorentz, and sketch how we could
overcome them.

◮ And then I come to applications and to the other topic of the talk –
h-projectively equivalent metrics



Principle observation

Thm (Kiosak-Matveev 2011; Riemannian case is in
Solodovnikov 1956). Let g be a metric on an n ≥ 3-dimensional
connected manifold with D(g) ≥ 3. Then, there exists a constant
B such that for any solution (a, λ) of the equations
aij ,k = λigjk + λjgik there exists a function µ such that in addition
the following two equations are fulfilled:

λi ,j = µgij − Baij

µ
,i = 2Bλi .

Remark. Theorem is nontrivial. We went until 5th prolongation
to prove it.
Remark. The constant B depends on the metric (and is the same

for all solutions (a, λ)).



Geodesically equivalent metrics as parallel sections.

We assume that n = dim(M) ≥ 3 and D(g) ≥ 3. Then, metrics ḡ that
are geodesically equivalent to g are in one-to-one correspondence to the
solutions (a, λ, µ) of the system of equations

aij,k = λigjk + λjgik (∗)

λi,j = µgij − Baij

µ,i = 2Bλi ,

i.e., are parallel sections on the following connection on
S2M ⊗ T ∗M ⊗ R:

Dk





aij

λi

µ



 =





aij,k − λigjk − λjgik

λi,k − µgik + Baik

µ,k − 2Bλk



 .

Remark. It is NOT the prolongation connection of the equation (∗). Its

parallel sections are essentially the same as that of the prolongation

connection of the equation (∗), but the connections are different. The

system of equations is in a certain sense projectively invariant and the

investigation of its projective properties is a joint project with R. Gover.



Let us study this connection in details.

If the constant B 6= 0, one can think B = 1; otherwise replace g by 1
B

g .
Let us first assume B = 1; then the connection has the following form

Dk





aij

λi

µ



 =





aij,k − λigjk − λjgik

λi,k − µgik + aik

µ,k − 2λk



 .

Principal Observation. The parallel sections of this connection are in
one-to-one correspondence with the parallel symmetric (0, 2)-tensors on
the cone (M̂, ĝ) = (R>0 ×M, dt2 + t2g).

The one-to-one correspondence is given by

(a, λ, µ) 7→








µ −t · λ1 . . . −t · λn

−t · λ1 t2 · a11 . . . t2 · a1n

...
...

...
−t · λn t2 · an1 . . . t2 · ann








.

Proof is an easy exercise – write down the Levi-Civita connection of
the cone and see that it coincides with the above one.



Main message of the previous slide

Assume D(g) ≥ 3 and B = B(g) 6= 0; we assume B = 1. Then,

The metrics geodesi-
cally equivalent to g

1:1
←→

Nondegenerate parallel symmetric
(0, 2)-tensors on the cone manifold
(M̂, ĝ) = (R>0 ×M, dt2 + t2g).



Illustration of the transition (geodesically equivalent
metrics) −→ (parallel symmetric (0,2)-tensors).

We take the standard sphere Sn ⊂ R
n+1. It has constant curvature and

therefore the maximal degree of mobility (n+1)(n+2)
2 .

Let us explain that in this case metrics geodesically equivalent to gsphere

are in 1 : 1 correspondence with parallel symmetric (0, 2)-tensors on
(Rn+1, geuclidean) = (R>0 × Sn, dr2 + r2gsphere).



Fact. Geodesics of the sphere are the
great circles, that are the intersec-
tions of the 2-planes containing the
center of the sphere with the sphere.

Beltrami (1865) observed:

For every A ∈ SL(n + 1)
we construct

−−−−−−−−→ a : Sn → Sn, a(x) := A(x)
|A(x)|

◮ a is a diffeomorphism

◮ a takes great circles (geodesics) to great circles (geodesics)

Thus, SL(n + 1) produces geodesically equivalent metrics; and two
elements of SL(n + 1) generate the same geodesically equivalent metric if
A′ = AO for some orthogonal O. We known that with the help of the
equivalence A −→ AO one can make any matrix A symmetric, so the set
of the metrics geodesically equivalent to g are in 1:1 correspondence with
symmetric (n + 1)× (n + 1)−matrices.
From the other side, the value of B for the metric of constant curvature
is B = +1, and the cone (R>0 × Sn, ĝ) is (Rn+1, geuclidean). The
symmetric covariantly constant tensors on (Rn+1, geuclidean) are also in 1:1
correspondence with symmetric (n + 1)× (n + 1)−matrices.



It is easy to calculate the dimension of the space of the
parallel symmetric (0, 2)-tensors on the Riemannian cone.

By de Rham decomposition theorem, any Riemannian metric is (locally)
decomposable into the direct product:

(M̂, ĝ) = (M0, g0)
︸ ︷︷ ︸

flat

+(M1, g1)
︸ ︷︷ ︸

irreduc.

+... + (Mℓ, gℓ)
︸ ︷︷ ︸

irreduc.

.

Every covariantly constant (0,2)-tensor on M is the direct sum of the
covariantly constant tensors living on the pieces. The flat piece (of

dimension k) gives a k(k+1)
2 -dimensional space of parallel symmetric

(0,2)-tensors, and each of the others (Mi , gi ) gives a one-dimensional

space C · gi , so all together we obtain k(k+1)
2 + ℓ.

How big could be ℓ? Since (M̂, ĝ) is the cone, all irreducible pieces
(Mi , gi ), i > 0, are also cones and are therefore at least 3-dimensional,
since the only two-dimensional cone manifold has the metric dt2 + t2dx2

and is flat. Thus, ℓ is at most
[

n+1−k
3

]
. The Theorem is proved under

the additional assumptions we assumed on the way to make the
life simpler.



What additional assumptions we assumed in the
explanation?

We assumed that the initial g is Riemannian and B > 0.

◮ If B < 0, then the normalization g 7→ 1
B

g makes the Riemannian
metric to be negatively defined, and we end up with the cone of the
signature (−, ...,−

︸ ︷︷ ︸

n

,+). This is not a big problem though: the

covariantly constant symmetric tensors of the Lorentzian manifolds
are well-understood:
Thm (Eisenhart): Every covariantly constant symmetric
(0, 2)-tensor on a indecomposable Lorentzian manifold has the form
const · gij + vivj for a covariantly constant (0,1)-tensor v .
Using this result, one can essentially repeat the argumentation from
the Riemannian case

◮ Suppose B = 0. Then, the following theorem (probably Gorbatyi
1982; the paper is impossible to find) works:
Thm. If g is Riemannian (of dim ≥ 3), has D(g) ≥ 3 and B = 0,
then for any open subset with compact closure one can find a
geodesically equivalent metric with B > 0.

These two observation finish the proof of the Riemannian part of the thm.



What difficulties arise in the Lorentz case?

◮ The case B > 0 corresponds to the case B < 0 in the
Riemannian case and no difficulties appear.

◮ The case B < 0 is more complicated. We need to describe the
covariantly constant (0, 2)-tensors on cone manifolds of
signature (−, ...,−

︸ ︷︷ ︸

n−1

, +, +):

Thm. Every covariantly constant symmetric (0, 2)-tensor on a
indecomposable manifold (Mn+1, g) of signature (n − 1, 2)
has the form (for a, b, c , d ∈ R

a · vivj + b · (viuj + vjui ) + c · uiuj + d · gij

for covariantly constant (0,1)-tensors u and v .

With the help of this theorem, the Riemannian arguments
still work and the answer survives.



What if B = 0? Bad Example:

Thm (Gorbatyi?). If g is Riemannian of dim ≥ 3, has
D(g) ≥ 3 and B = 0, then for any open subset with com-
pact closure one can find a geodesically equivalent metric
with B > 0.
Thm (nontrivial).

◮ In the Lorentz signature, there exist examples of metrics with
D(g) ≥ 3 such that B = 0 and such that all metrics
geodesically equivalent to g still have B = 0.

◮ The smallest dimension when the examples are possible is 6
(in the Einstein case: 10); which implies (by careful counting)
that the list of the degrees of mobility remain unchanged.

g =



















0 x1 0 0 0 0

x1 0 0 0 0 0

0 0 α (x3, x4) (a − x2)2 0 0 0

0 0 0 α (x3, x4) (a − x2)2 0 0

0 0 0 0 β (x5, x6) (b − x2)2 0

0 0 0 0 0 β (x5, x6) (b − x2)2





















General philosophic observations

If you prove a result which is nontrivial
︸ ︷︷ ︸

you learned a lot

, then in the

neighborhood of these results there are at least two more.



The dimensions of the space of projective vector fields

Def. A projective vector field is a vector field whose flow sends geodesics
to geodesics. We denote by proj the vector space of projective vector
fields and by iso the space of Killing vector fields.
Thm. Let (Mn≥3, g) be a connected simply connected manifold of

Riemannian or Lorentzian signature. Then, the number

dim(proj(g))− dim(iso(g))

is one from the following list:

◮ 0 or 1;

◮
k(k+1)

2 + ℓ− 1, where k ∈ {0, ..., n − 2} and ℓ ∈ {1, ...,
[

n−k+1
3

]
}.

◮
(n+2)(n+1)

2 − 1 (constant curvature case).

D(g) has values from the following list:

◮ 2;

◮
k(k+1)

2 + ℓ, where k ∈ {0, ..., n− 2} and ℓ ∈ {1, ...,
[

n−k+1
3

]
}.

◮
(n+2)(n+1)

2 (constant curvature case).



Example and idea of the proof.

Consider again the standard sphere:
we have seen that projective trans-
formations are essentially elements of
SL(n + 1), and the isometries are the
elements of SO(n + 1).

From the other side, we know that SL(n + 1) is the group of
volume-preserving linear (=centro-affine) transformations of R

n+1, and
the Killing vector fields are orthogonal transformations.
We see in this “round” example that we have a natural surjective

mapping

Φ : centro-affine trns of R
n+1 −→ projective trns of S

n

with 1-dimensional kernel and sending isometries to isometries.

The phenomena survives for all metrics.



Thm. Let g be a metric on a connected Mn≥3 with D(g) ≥ 3 and
B 6= 0. Assume there exists a metric which is geodesically equivalent to g
and is not affine equivalent to g . Then, there exists a (canonical)
surjective linear mapping

Φ : aff (ĝ)→ proj(g)

with one-dimensional kernel that sends isometries to isometries.

Example. The group of projective transformations of the standard
Sn ⊂ R

n+1 is (essentially) SL(n + 1); the isometry group of Sn is
SO(n + 1).
The cone over Sn is R

n+1 \ {0} and its group of affine transformations is
GL(n + 1) = R× SL(n + 1); the group of the isometries of R

n+1 \ {0} is
again SO(n + 1).



On the cone (M̂, ĝ) we can easily count all affine transformations
(modulo isometries):

(M̂, ĝ) = (M0, g0)
︸ ︷︷ ︸

flat k-dim.

+(M1, g1)
︸ ︷︷ ︸

irreduc.

+... + (Mℓ, gℓ)
︸ ︷︷ ︸

irreduc.

.

The piece (M0, g0) gives k(k+1)
2 and each pieces (Mi , gi ) give one (the

cone manifolds have a homothety vector field).
Thus, if D(g) ≥ 3, then dim(proj(g))− dim(iso(g)) = D(g)− 1.



What if the initial metric is Einstein?

Remark. The condition that the metric is Einstein is a projectively
invariant property (Mikes 1982; Kiosak-Matveev 2009).
Theorem. Let g be a metric of Riemannian or Lorentz signature on a

simply-connected manifold of dimension ≥ 3. Assume there exists at least
one metric that is geodesically equivalent to g , but is not affinely
equivalent to g . Then, the degree of mobility can accept one of the
following numbers only

◮
k(k+1)

2 + ℓ, where k ∈ {0, ..., n − 4} and ℓ ∈ {1, ...,
[

n−k+1
5

]
}.

◮
(n+2)(n+1)

2 (constant curvature case).



Compare the lists for Einstein and possibly non-Einstein
metric

Possibly non-Einstein metric

◮ 2;

◮
k(k+1)

2 + ℓ, where
k ∈ {0, ..., n − 2} and
ℓ ∈ {1, ...,

[
n−k+1

3

]
}.

◮
(n+2)(n+1)

2 (constant curvature
case).

Einstein metric

◮
k(k+1)

2 + ℓ, where
k ∈ {0, ..., n − 4} and
ℓ ∈ {1, ...,

[
n−k+1

5

]
}.

◮
(n+2)(n+1)

2 (constant curvature
case).

Corollary (proved before by Kiosak-Matveev 2009). 4-dimensional
Einstein manifolds of nonconstant curvature are geodesically rigid:
Unparameterized geodesics determine the affine connection uniquely.

This corollary answers the question asked by Weyl in 1924, Petrov 1966,
Ehlers-Pirani-Schild 1972.

This corollary is closely related to a possible joint project(publication)

with Andrzej Trautman initiated by Nurowski.



The “extended” system in the Einstein case.

Possibly non-Einstein metric with
D(g) ≥ 3: geodesically equivalent
metrics are essentially parallel secti-
ons of the following connection on
S2M ⊗ T ∗M ⊗ R:

Dk





aij

λi

µ



 =





aij,k − λi gjk − λj gik

λi,k − µgik + Baik

µ
,k − 2Bλk



 .

Einstein metrics: geodesically equiva-
lent metrics are essentially parallel
sections of the following connection
on S2M ⊗ T ∗M ⊗ R:

Dk





aij

λi

µ



 =






aij,k − λi gjk − λj gik

λi,k − µgik + R
n(n−1)

aik

µ
,k − 2 R

n(n−1)
λk




 ,

where R is the scalar curvature

In the Einstein case, the connection D is essentially the tractor
“Thomas-Eastwood” connection on the projective tractor bundle
The Einstein metrics in the projective class are normal solutions from the
yesterday talk of R. Gover.
A nontrivial observation: If we have an Einstein metric in the projective
class, all solutions of the “metrisability equation” are normal.



Explanation of differences in answers for Einstein and
possibly non-Einstein metrics

Possibly non-Einstein metric

◮ 2;

◮
k(k+1)

2 + ℓ, where
k ∈ {0, ..., n − 2} and
ℓ ∈ {1, ...,

[
n−k+1

3

]
}.

◮
(n+2)(n+1)

2 (constant curvature
case).

Einstein metric

◮
k(k+1)

2 + ℓ, where
k ∈ {0, ..., n − 4} and
ℓ ∈ {1, ...,

[
n−k+1

5

]
}.

◮
(n+2)(n+1)

2 (constant curvature
case).

Explanation in the Riemannian case: recall that we have the
decomposition

(M̂, ĝ) = (M0, g0)
︸ ︷︷ ︸

flat of dim. k

+(M1, g1)
︸ ︷︷ ︸

irreduc.

+... + (Mℓ, gℓ)
︸ ︷︷ ︸

irreduc.

.

Now, if M is Einstein then all (Mi , gi ) should be Ricci-flat. Since they are
cone manifolds, each block (Mi , gi ) has the dimension ≥ 5.



What if M is compact?

Thm. Let g be a pseudo-Riemannian metric (arbitrary signature!) of
nonconstant curvature on a closed connected M. Then, if D(g) ≥ 3,
every metric geodesically equivalent to g is affinely equivalent to g .

Idea of the proof. The case B = 0 can be eliminated by a trick I will
not explain. Now, the case B 6= 0 corresponds to the cones over a closed
manifold and cones over closed manifolds do not have nontrivial parallel
symmetric (0, 2)-tensors:

◮ Riemannian case: Gallot 1978/Tanno 1978 (wrong proof by Obata
1965).

◮ Arbitrary signature case under the assumption that the
manifold is complete: Alekseevsky-Cortes-Galaev-Leistner 2009,

◮ No assumptions. Matveev-Mounoud 2011.



The h-projective analog of the story (joint with S.
Rosemann)

Assume now that M2n carries a complex structure J.

Def. Let ∇ =
(

Γi
jk

)

be a symmetric affine connection on (M2n, J)

compatible with J (i.e., ∇J = 0. ) An h-planar curve c : I → M,
c : t 7→ x(t) on (M, g) is given as solution of

d2xa

dt2 + Γa
bc

dxb

dt
dxc

dt
= α(t) dxa

dt
+ β(t) dxk

dt
Ja
k

(= (α(t) + i · β(t)) · dx
dt

.)

◮ ∃ infinitely many h-planar
curves γ with γ(0) = x and
γ̇(0) = ζ for each x ∈ M and
ζ ∈ TxM.

ζ

x
γ

◮ reparameterized geodesics satisfy ∇γ̇ γ̇ = αγ̇.

Def. Two metrics g and ḡ (compatible with the same J) are
h-projectively equivalent, if every h-planar curve for ∇g is an h-planar
curve for ∇ḡ .



Some history of h-projective equivalence

◮ Introduced by T. Otsuki, Y. Tashiro in 1954.

◮ Between 1960-1980 actively studied in Japanese (Obata, Yano) and
Soviet (Odessa and Kazan) differential geometry schools.

◮ Reinvented recently independently under other names:

◮ Apostolov, Calderbank, Gauduchon, (Toennesen-Friedman)
(JDG 2004 and many other publications):
Local and global classification of pairs of h-projectively
equivalent Kähler Riemannian metrics.

◮ Kiyohara (Notes of AMS 1997) and Topalov-Kiyohara (PAMS
2011):
Non-degenerate pairs of h-projectively equivalent metrics have
Liouville-integrable geodesic flow and applications of this.

◮ Few classical problems were solved recently, in particular the
Yano-Obata conjecture.: Fedorova-Kiosak-Matveev-Rosemann
(PLMS 2012) and Matveev-Rosemann (JDG to appear).



Equation for the h-projective equivalence (Mikes -
Domashev 1978)

Metrics ḡ that are h-projectively equivalent to g are in 1 : 1
correspondence with the nondegenerate solutions (aij , λi ) of

aij,k = λigjk + λjgik+λaJ
a
iJjk + λbJ

b
jJik (∗∗)

Here (a, λ) and g are related by the formula

a =

(
det(ḡ)

det(g)

) 1
2(n+1)

gḡ−1g , λ = 1
4dtraceg (a)).

We see that the equation is similar to the one in the projective case. In
particular it is linear and of finite type.

Def. The dimension of the space of solutions of this system is called
the degree of mobility of (g , J).

Remark. There also exist a h-projectively invariant version of the

equations (∗∗) (Matveev-Rosemann 2011/Calderbank 2011).

Investigation of the existence of solutions of this system in dimension 4 is

a joint project with Th. Mettler.



Thm. Let g be a Riemannian metric on a simply-connected manifold of
dimension 2n ≥ 4. Assume there exists at least one metric that is
h-projectively equivalent to g , but is not affinely equivalent to g . Then,
the degree of mobility can accept one of the following numbers only

◮ k2 + ℓ, where k ∈ {0, ..., n − 1} and ℓ ∈ {1, ...,
[

n−k+1
2

]
}.

◮ (n + 1)2 (constant curvature case).

For example:

◮ n = 2:
D(g , J) = 1, 2, 9

◮ n = 3:
D(g , J) = 1, 2, 5, 16

◮ n = 4:
D(g , J) = 1, 2, 3, 5, 10, 25

◮ n = 5:
D(g , J) = 1, 2, 3, 5, 6, 10, 17, 36



Principle observation

Theorem (Fedorova-Kiosak-Matveev-Rosemann (PLMS 2012)).
Let g be a metric on 2n ≥ 4-dimensional connected manifold with
D(g) ≥ 3. Then, there exists a constant B such that for any solution
(a, λ) of the equations
aij,k = λigjk + λjgik+λaJ

a
iJjk + λbJ

b
jJik (∗∗)

there exists a function µ such that the following two equations are
fulfilled:

λi,j = µgij − Baij

µ,i = −2Bλi .

This is again a connection!!!
Question. What geometric object lies behind this connection?



Calabi Kähler cone

Recall that the cone over (M, g) is the manifold

(M̂, ĝ) = (R>0 ×M, dt2 + t2g).

One can of course do this construction for Kähler manifolds as well; in
this case we do not obtain nice properties of ĝ though.
There exists though a Kähler analog of the cone construction (called

“conification ” in folklore)

(M2n, g , J) 7−→ (M̂2n+2 = R
2 ×M, ĝ , Ĵ)

that produces a (2n + 2)-dimensional Kähler manifold.

The connection in the previous slide (assuming B 6= 0) is essentially
the Levi-Civita connection on the Calabi cone and parallel sections
of it are essentially the parallel symmetric (0, 2)-tensors.
Thus, the Shandra idea still works.



Conclusion

The topic is hot – join!!!

Thanks a lot


