Twistor theory for generalized complex manifolds

Rebecca Glover and Justin Sawon

THE UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

"The Interaction of Geometry and Representation Theory" ESI in Vienna, 10-14th September, 2012

- 1. Generalized complex geometry
- 2. Twistor spaces for HK manifolds
- 3. Generalized twistor spaces
- 4. Generalized twistor correspondence

1

5. Quaternionic manifolds

1. Generalized complex geometry

The inner product and bracket on $C^{\infty}(T \oplus T^*)$:

$$\langle X + \xi, Y + \eta \rangle := \frac{1}{2}(\xi(Y) + \eta(X))$$

$$[X + \xi, Y + \eta] := [X, Y] + \mathcal{L}_X \eta - i_Y d\xi$$

The Courant bracket satisfies

$$[e_1, [e_2, e_3]] = [[e_1, e_2], e_3] + [e_2, [e_1, e_3]]$$

$$[e_1, e_1] = \pi^* d \langle e_1, e_1 \rangle$$

where $e_i \in C^{\infty}(T \oplus T^*)$ and $\pi : T \oplus T^* \to T$ is projection.

Defn (Hitchin 2002): A *generalized complex structure* is an orthogonal endomorphism

 $\mathcal{J}: T \oplus T^* \to T \oplus T^*$

such that $\mathcal{J}^2 = -1$ and the +i-eigenspace

$$L \subset (T \oplus T^*) \otimes \mathbb{C}$$

is closed under the bracket, $[L, L] \subset L$.

Eg 1.

$$\mathcal{J}_I := \left(\begin{array}{cc} -I & 0\\ 0 & I^* \end{array}\right)$$

where I is a complex structure.

Eg 2.

$$\mathcal{J}_{\omega} := \left(\begin{array}{cc} 0 & -\omega^{-1} \\ \omega & 0 \end{array} \right)$$

where ω is a symplectic structure, thought of as a map $\omega : T \to T^*$.

A generalized complex structure \mathcal{J} is determined by a *pure spinor* $\Phi \in C^{\infty}(\wedge^{\bullet}T^* \otimes \mathbb{C})$.

The +i-eigenspace of \mathcal{J} , $L \subset (T \oplus T^*) \otimes \mathbb{C}$, consists of (X, ξ) which annihilate Φ .

Eg 1. For \mathcal{J}_I the pure spinor is $dz_1 \wedge \ldots \wedge dz_n$ and $L = T^{0,1} \oplus \Omega^{1,0}$.

Eg 2. For \mathcal{J}_{ω} the pure spinor is $e^{i\omega}$ and $L = \{X - i\omega(X, -)\}.$

5

A generalized complex manifold of dimension 2n is stratified by *type*,

$$\frac{1}{2} \dim T^* \cap \mathcal{J}T^* \qquad \left(\begin{array}{cc} = n & \text{for } \mathcal{J}_I \\ = 0 & \text{for } \mathcal{J}_\omega \end{array}\right)$$

Generalized Darboux Thm (Gualtieri 2004): On an open set of constant type = k, a generalized complex manifold is equivalent to the product of an open set in \mathbb{C}^k and an open set in ($\mathbb{R}^{2n-2k}, \omega_0$). Let S be a K3 surface with \mathbb{C} -structure I and holomorphic symplectic form $\sigma = \omega_J + i\omega_K$. Then

$$\mathcal{J}_{\theta} := \cos \theta \begin{pmatrix} -I & 0 \\ 0 & I^* \end{pmatrix} + \sin \theta \begin{pmatrix} 0 & -\omega_J^{-1} \\ \omega_J & 0 \end{pmatrix}$$

interpolates between \mathcal{J}_I and \mathcal{J}_{ω_J} . Note that

$$\mathcal{J}_{\theta} = e^{-B} \mathcal{J}_{(\csc\theta)\omega_J} e^B$$

where $B = -(\cot \theta)\omega_K$ and

$$e^B := \begin{pmatrix} 1 & 0 \\ B & 1 \end{pmatrix} : T \oplus T^* \to T \oplus T^*$$

is known as a *B*-field transform.

Let M be a hyperkähler manifold with \mathbb{C} -structures I, J, K, and Kähler structures ω_I , ω_J , ω_K .

They give six generalized complex structures:

$$\mathcal{J}_I, \quad \mathcal{J}_J, \quad \mathcal{J}_K, \quad \mathcal{J}_{\omega_I}, \quad \mathcal{J}_{\omega_J}, \quad \mathcal{J}_{\omega_K}$$

Our goal is to assemble them all into one family.

2. Twistor spaces for HK manifolds

The set of \mathbb{C} -structures compatible with the hyperkähler metric is

$$\{aI + bJ + cK|a^2 + b^2 + c^2 = 1\}.$$

This is actually a holomorphic family,

$$S^2 \cong \mathbb{P}^1,$$

as there is a family of holomorphic two-forms

$$\sigma_{\eta} := (\omega_J + i\omega_K) + 2\eta\omega_I - \eta^2(\omega_J - i\omega_K)$$

depending holomorphically on $\eta \in \mathbb{P}^1$.

For each $\eta \in \mathbb{P}^1$, σ_η determines a \mathbb{C} -structure I_η on M. The -i-eigenspace of I_η ,

$$T^{\mathbf{0},\mathbf{1}}_{\eta} \subset T \otimes \mathbb{C},$$

consists of vectors whose interior product with $\sigma_\eta^{\wedge n}$ is zero.

These \mathbb{C} -structures I_{η} can be combined into a single \mathbb{C} -structure on the smooth manifold $M \times \mathbb{P}^1$.

Defn: The resulting \mathbb{C} -manifold $Z \to \mathbb{P}^1$ of dimension 2n + 1 is called the *twistor space* of M.

3. Generalized twistor spaces

We want the set of generalized complex structures \mathcal{J} compatible with the *generalized metric*

$$G(X + \xi, Y + \eta) = \frac{1}{2} \left(g(X, Y) + g^{-1}(\xi, \eta) \right),$$

i.e., such that $G(\mathcal{J}e_1, \mathcal{J}e_1) = G(e_1, e_2).$

We will describe three approaches.

i) For each θ

 $\mathcal{J}_{\theta} := (\cos \theta) \mathcal{J}_{I} + (\sin \theta) \mathcal{J}_{\omega_{J}}$

is compatible with G. We can replace ω_J by

 $(\cos\phi)\omega_J + (\sin\phi)\omega_K.$

Then θ and ϕ are spherical coordinates on $S^2 \cong \mathbb{P}^1$.

We can also replace I by I_{η} where $\eta \in \mathbb{P}^1$.

This yields a $\mathbb{P}^1 \times \mathbb{P}^1$ -family of generalized complex structures $\mathcal{J}_{\alpha,\beta}$.

The diagonal $\Delta \subset \mathbb{P}^1 \times \mathbb{P}^1$ parametrizes complex structures \mathcal{J}_{I_η} .

The "antipodal graph"

$$\{(\eta, -\bar{\eta}^{-1}) | \eta \in \mathbb{P}^1\} \subset \mathbb{P}^1 imes \mathbb{P}^1$$

parametrizes symplectic structures $\mathcal{J}_{\omega_{\eta}}$.

The generalized complex structures $\mathcal{J}_{\alpha,\beta}$ are determined by a family of pure spinors

$$\Phi_{\alpha,\beta} := i^n (\alpha - \beta)^n \exp\left(\frac{\sigma + (\alpha + \beta)\omega_I - \alpha\beta\bar{\sigma}}{i(\alpha - \beta)}\right)$$

which depend holomorphically on $(\alpha, \beta) \in \mathbb{P}^1 \times \mathbb{P}^1$. When n = 1

$$\Phi_{\alpha,\beta} := \sigma + (\alpha + \beta)\omega_I + i(\alpha - \beta)\left(1 - \frac{\sigma\bar{\sigma}}{4}\right) - \alpha\beta\bar{\sigma}.$$

Recall that the +i-eigenspace,

 $L_{\alpha,\beta} \subset (T \oplus T^*) \otimes \mathbb{C},$ of $\mathcal{J}_{\alpha,\beta}$ consists of (X,ξ) which annihilate $\Phi_{\alpha,\beta}$. ii) Given a hyperkähler metric on a K3 surface, there is a corresponding positive 3-plane

$$V := \langle \omega_I, \omega_J, \omega_K \rangle \subset \mathsf{H}^2(M, \mathbb{R}).$$

The locus of holomorphic two-forms $[\sigma_{\eta}]$ of the \mathbb{P}^1 -twistor family is the null conic in $\mathbb{P}(V \otimes \mathbb{C}) \cong \mathbb{P}^2$.

There is also a positive 4-plane

$$W := \left\langle \omega_I, \omega_J, \omega_K, 1 - \frac{\omega^2}{2} \right\rangle \subset \mathsf{H}^{\mathsf{even}}(M, \mathbb{R}).$$

The locus of pure spinors $[\Phi_{\alpha,\beta}]$ of the $\mathbb{P}^1 \times \mathbb{P}^1$ generalized twistor family is the null quadric surface in $\mathbb{P}(W \otimes \mathbb{C}) \cong \mathbb{P}^3$. **iii)** Let (g, I_+, I_-) be a bi-Hermitian structure on M. Then

$$\mathcal{J} = \frac{1}{2} \begin{pmatrix} I_{+} + I_{-} & -(\omega_{+}^{-1} - \omega_{-}^{-1}) \\ \omega_{+} - \omega_{-} & -(I_{+}^{*} + I_{-}^{*}) \end{pmatrix}$$
$$\mathcal{J}' = \frac{1}{2} \begin{pmatrix} I_{+} - I_{-} & -(\omega_{+}^{-1} + \omega_{-}^{-1}) \\ \omega_{+} + \omega_{-} & -(I_{+}^{*} - I_{-}^{*}) \end{pmatrix}$$

give a generalized Kähler structure, i.e., a pair of commuting generalized complex structures.

If $I_+ = I_-$ then $(\mathcal{J}, \mathcal{J}') = (\mathcal{J}_{I_+}, \mathcal{J}_{\omega_+})$ comes from a genuine Kähler structure on M.

On a hyperkähler manifold, we can choose $I_+ = I_\alpha$ and $I_- = I_\beta$ from a \mathbb{P}^1 -twistor family. For each $(\alpha, \beta) \in \mathbb{P}^1 \times \mathbb{P}^1$, (g, I_α, I_β) defines a generalized Kähler structure $(\mathcal{J}_{\alpha,\beta}, \mathcal{J}'_{\alpha,\beta})$.

Along the diagonal $\Delta \subset \mathbb{P}^1 \times \mathbb{P}^1$

$$(\mathcal{J}_{\alpha,\alpha},\mathcal{J}'_{\alpha,\alpha})=(\mathcal{J}_{I_{\alpha}},\mathcal{J}_{\omega_{\alpha}})$$

comes from a Kähler structure on M.

Unfortunately only $\mathcal{J}_{\alpha,\beta}$ depends holomorphically on $(\alpha,\beta) \in \mathbb{P}^1 \times \mathbb{P}^1$. $(\mathcal{J}'_{\alpha,\beta}$ depends on α and $\overline{\beta}$.) Thm (Glover & S–): The generalized complex structures $\mathcal{J}_{\alpha,\beta}$ can be combined into a single generalized complex structure on the smooth manifold $X = M \times \mathbb{P}^1 \times \mathbb{P}^1$.

We call X the generalized twistor space.

Proof: The pure spinor on X is given by

$$\Psi = \Phi_{\alpha,\beta} \wedge d\alpha \wedge d\beta.$$

Integrability follows from $d\Psi = 0$.

Properties:

- there is a generalized reduction $X \to \mathbb{P}^1 \times \mathbb{P}^1$,
- the antipodal maps on the $\mathbb{P}^1 \cong S^2 \mathbf{s}$ give a real structure on X,
- for each m ∈ M, {m}×P¹×P¹ ⊂ X yields a real twistor section with generalized normal bundle O(1,0)^{⊕2n} ⊕ O(0,1)^{⊕2n}.

4. Generalized twistor correspondence

A connection ∇ is Yang-Mills if its curvature Θ satisfies

$$\Lambda(\Theta) = \text{const.Id.}$$

The hyperkähler twistor correspondence gives an equivalence between (non-Hermitian) Yang-Mills connections on bundles over M and holomorphic bundles on Z.

The bundle and connection (E, ∇) on M can be pulled-back by the smooth projection $\pi : Z \to M$ to give $(\pi^*E, \pi^*\nabla^{0,1})$ on Z. **Defn:** A generalized holomorphic bundle on X is a complex vector bundle E equipped with a flat L-connection D, where $L \subset (T \oplus T^*) \otimes \mathbb{C}$ is the +i-eigenspace, a Lie algebroid.

Eg. If $\mathcal{J} = \mathcal{J}_I$ is of complex type, $L^* = \Omega^{0,1} \oplus T^{1,0}$ and the *L*-connection decomposes into

$$D = \bar{\partial}_E + \Upsilon.$$

Then $(E, \overline{\partial}_E)$ is a holomorphic bundle and

$$\Upsilon \in \mathrm{H}^{0}(T^{1,0} \otimes \mathrm{End}E)$$

is a co-Higgs field.

Qu: Are generalized holomorphic bundles on the generalized twistor space X equivalent to some kind of bundles with connections on M?

A generalized holomorphic bundle on X should look like a co-Higgs bundle on $Z \subset X$ (over $\Delta \subset \mathbb{P}^1 \times \mathbb{P}^1$) and a flat unitary bundle on $X \setminus Z$.

5. Quaternionic manifolds

There is a \mathbb{P}^1 -bundle $Z \to M$ over a quaternionic manifold M whose local sections give local almost complex structures on M.

These combine to give a complex structure on Z. We call Z the *twistor space* of M. The fibre product $Z \times_M Z$ is a $\mathbb{P}^1 \times \mathbb{P}^1$ -bundle over M whose local sections give pairs of local almost complex structures (I_{α}, I_{β}) on M.

On a QK manifold, $(g, I_{\alpha}, I_{\beta})$ defines a local almost Kähler structure $(\mathcal{J}_{\alpha,\beta}, \mathcal{J}'_{\alpha,\beta})$ on M.

Qu: Do the $\mathcal{J}_{\alpha,\beta}$ combine to give a generalized complex structure on $X = Z \times_M Z$?

Eg. For $\mathbb{P}^3 \to S^4 \cong \mathbb{HP}^1$ we have $X = \mathbb{P}^3 \times_{S^4} \mathbb{P}^3$.

