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1. Generalized complex geometry

The inner product and bracket on C∞(T ⊕ T ∗):

〈X + ξ, Y + η〉 :=
1

2
(ξ(Y ) + η(X))

[X + ξ, Y + η] := [X, Y ] + LXη − iY dξ

The Courant bracket satisfies

[e1, [e2, e3]] = [[e1, e2], e3] + [e2, [e1, e3]]

[e1, e1] = π∗d〈e1, e1〉

where ei ∈ C∞(T ⊕ T ∗) and π : T ⊕ T ∗ → T is
projection.
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Defn (Hitchin 2002): A generalized complex struc-

ture is an orthogonal endomorphism

J : T ⊕ T ∗ → T ⊕ T ∗

such that J 2 = −1 and the +i-eigenspace

L ⊂ (T ⊕ T ∗)⊗ C

is closed under the bracket, [L, L] ⊂ L.
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Eg 1.

JI :=

(
−I 0
0 I∗

)
where I is a complex structure.

Eg 2.

Jω :=

(
0 −ω−1

ω 0

)
where ω is a symplectic structure, thought of as a

map ω : T → T ∗.
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A generalized complex structure J is determined
by a pure spinor Φ ∈ C∞(∧•T ∗ ⊗ C).

The +i-eigenspace of J ,

L ⊂ (T ⊕ T ∗)⊗ C,

consists of (X, ξ) which annihilate Φ.

Eg 1. For JI the pure spinor is dz1 ∧ . . .∧ dzn and

L = T0,1 ⊕Ω1,0.

Eg 2. For Jω the pure spinor is eiω and

L = {X − iω(X,−)}.
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A generalized complex manifold of dimension 2n

is stratified by type,

1

2
dimT ∗ ∩J T ∗

(
= n for JI
= 0 for Jω

)
.

Generalized Darboux Thm (Gualtieri 2004):

On an open set of constant type = k, a generalized

complex manifold is equivalent to the product of

an open set in Ck and an open set in (R2n−2k, ω0).
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Let S be a K3 surface with C-structure I and holo-

morphic symplectic form σ = ωJ + iωK. Then

Jθ := cos θ

(
−I 0
0 I∗

)
+ sin θ

(
0 −ω−1

J
ωJ 0

)
interpolates between JI and JωJ . Note that

Jθ = e−BJ(csc θ)ωJ
eB

where B = −(cot θ)ωK and

eB :=

(
1 0
B 1

)
: T ⊕ T ∗ → T ⊕ T ∗

is known as a B-field transform.
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Let M be a hyperkähler manifold with C-structures

I, J, K, and Kähler structures ωI, ωJ, ωK.

They give six generalized complex structures:

JI , JJ , JK, JωI , JωJ , JωK

Our goal is to assemble them all into one family.
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2. Twistor spaces for HK manifolds

The set of C-structures compatible with the hy-

perkähler metric is

{aI + bJ + cK|a2 + b2 + c2 = 1}.

This is actually a holomorphic family,

S2 ∼= P1,

as there is a family of holomorphic two-forms

ση := (ωJ + iωK) + 2ηωI − η2(ωJ − iωK)

depending holomorphically on η ∈ P1.
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For each η ∈ P1, ση determines a C-structure Iη on

M . The −i-eigenspace of Iη,

T0,1
η ⊂ T ⊗ C,

consists of vectors whose interior product with σ∧n
η

is zero.

These C-structures Iη can be combined into a sin-

gle C-structure on the smooth manifold M × P1.

Defn: The resulting C-manifold Z → P1 of dimen-

sion 2n + 1 is called the twistor space of M .
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3. Generalized twistor spaces

We want the set of generalized complex structures

J compatible with the generalized metric

G(X + ξ, Y + η) =
1

2

(
g(X, Y ) + g−1(ξ, η)

)
,

i.e., such that G(J e1,J e1) = G(e1, e2).

We will describe three approaches.
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i) For each θ

Jθ := (cos θ)JI + (sin θ)JωJ

is compatible with G. We can replace ωJ by

(cosφ)ωJ + (sinφ)ωK.

Then θ and φ are spherical coordinates on S2 ∼= P1.

We can also replace I by Iη where η ∈ P1.

This yields a P1×P1-family of generalized complex

structures Jα,β.
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The diagonal ∆ ⊂ P1 × P1 parametrizes complex

structures JIη.

The “antipodal graph”

{(η,−η̄−1)|η ∈ P1} ⊂ P1 × P1

parametrizes symplectic structures Jωη.
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The generalized complex structures Jα,β are de-
termined by a family of pure spinors

Φα,β := in(α− β)n exp

(
σ + (α + β)ωI − αβσ̄

i(α− β)

)
which depend holomorphically on (α, β) ∈ P1 × P1.
When n = 1

Φα,β := σ + (α + β)ωI + i(α− β)
(
1−

σσ̄

4

)
− αβσ̄.

Recall that the +i-eigenspace,

Lα,β ⊂ (T ⊕ T ∗)⊗ C,

of Jα,β consists of (X, ξ) which annihilate Φα,β.
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ii) Given a hyperkähler metric on a K3 surface,
there is a corresponding positive 3-plane

V := 〈ωI , ωJ , ωK〉 ⊂ H2(M, R).

The locus of holomorphic two-forms [ση] of the P1-
twistor family is the null conic in P(V ⊗ C) ∼= P2.

There is also a positive 4-plane

W :=

〈
ωI , ωJ , ωK,1−

ω2

2

〉
⊂ Heven(M, R).

The locus of pure spinors [Φα,β] of the P1 × P1-
generalized twistor family is the null quadric sur-
face in P(W ⊗ C) ∼= P3.
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iii) Let (g, I+, I−) be a bi-Hermitian structure on

M . Then

J =
1

2

(
I+ + I− −(ω−1

+ − ω−1
− )

ω+ − ω− −(I∗+ + I∗−)

)

J ′ =
1

2

(
I+ − I− −(ω−1

+ + ω−1
− )

ω+ + ω− −(I∗+ − I∗−)

)
give a generalized Kähler structure, i.e., a pair of

commuting generalized complex structures.

If I+ = I− then (J ,J ′) = (JI+
,Jω+) comes from

a genuine Kähler structure on M .
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On a hyperkähler manifold, we can choose I+ = Iα

and I− = Iβ from a P1-twistor family. For each

(α, β) ∈ P1 × P1, (g, Iα, Iβ) defines a generalized

Kähler structure (Jα,β,J ′
α,β).

Along the diagonal ∆ ⊂ P1 × P1

(Jα,α,J ′
α,α) = (JIα,Jωα)

comes from a Kähler structure on M .

Unfortunately only Jα,β depends holomorphically

on (α, β) ∈ P1 × P1. (J ′
α,β depends on α and β̄.)
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Thm (Glover & S−): The generalized complex

structures Jα,β can be combined into a single gen-

eralized complex structure on the smooth manifold

X = M × P1 × P1.

We call X the generalized twistor space.

Proof: The pure spinor on X is given by

Ψ = Φα,β ∧ dα ∧ dβ.

Integrability follows from dΨ = 0.
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Properties:

• there is a generalized reduction X → P1 × P1,

• the antipodal maps on the P1 ∼= S2s give a real

structure on X,

• for each m ∈ M , {m}×P1×P1 ⊂ X yields a real

twistor section with generalized normal bundle

O(1,0)⊕2n ⊕O(0,1)⊕2n.
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4. Generalized twistor correspondence

A connection ∇ is Yang-Mills if its curvature Θ
satisfies

Λ(Θ) = const.Id.

The hyperkähler twistor correspondence gives an
equivalence between (non-Hermitian) Yang-Mills
connections on bundles over M and holomorphic
bundles on Z.

The bundle and connection (E,∇) on M can be
pulled-back by the smooth projection π : Z → M

to give (π∗E, π∗∇0,1) on Z.
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Defn: A generalized holomorphic bundle on X is

a complex vector bundle E equipped with a flat

L-connection D, where L ⊂ (T ⊕ T ∗) ⊗ C is the

+i-eigenspace, a Lie algebroid.

Eg. If J = JI is of complex type, L∗ = Ω0,1⊕T1,0

and the L-connection decomposes into

D = ∂̄E + Υ.

Then (E, ∂̄E) is a holomorphic bundle and

Υ ∈ H0(T1,0 ⊗ EndE)

is a co-Higgs field.
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Qu: Are generalized holomorphic bundles on the

generalized twistor space X equivalent to some

kind of bundles with connections on M?

A generalized holomorphic bundle on X should

look like a co-Higgs bundle on Z ⊂ X (over ∆ ⊂
P1 × P1) and a flat unitary bundle on X\Z.
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5. Quaternionic manifolds

hypercomplex geom ⊂ quaternionic geom
GL(n, H)-structure GL(n, H)GL(1, H)-structure

∪ ∪
hyperkähler geom ⊂ quaternion-Kähler geom
holonomy = Sp(n) holonomy = Sp(n)Sp(1)

There is a P1-bundle Z → M over a quaternionic
manifold M whose local sections give local almost
complex structures on M .

These combine to give a complex structure on Z.
We call Z the twistor space of M .
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The fibre product Z ×M Z is a P1×P1-bundle over

M whose local sections give pairs of local almost

complex structures (Iα, Iβ) on M .

On a QK manifold, (g, Iα, Iβ) defines a local almost

Kähler structure (Jα,β,J ′
α,β) on M .

Qu: Do the Jα,β combine to give a generalized

complex structure on X = Z ×M Z?

Eg. For P3 → S4 ∼= HP1 we have X = P3 ×S4 P3.
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