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Classical Plancherel Formula

G: semisimple Lie group, e.g. SL(n;R), SU(p, q), . . .

Car(G): conj. classes [H] of Cartan subgroups H of G

χ ∈ Ĥ: unitary character of H ∈ [H] ∈ Car(G)

πχ associated unitary representation of G, constructed
using a “cuspidal” parabolic subgroup of G based on H

Θπχ
: distribution character of πχ

Plancherel formula: if f ∈ C(G) Harish-Chandra Schwartz
space then

f(x) =
∑

Car(G)

∫

Ĥ

Θπχ
(rxf)dµ[H](χ)
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Easiest: Principal Series

θ: Cartan involution of G and K = Gθ maximal compact

dθ : g = k+ s, a ⊂ s maximal abelian subspace of s

A = exp(a) and M = ZK(A) centralizer of A in K

n: sum of positive a–weight spaces on g and N = exp(n)

G = KAN Iwasawa and P =MAN minimal parabolic

T ⊂M and H = (T × A) ⊂ G are Cartan subgroups

Given ην ∈ M̂ and σ ∈ a∗ define χν,σ = ην ⊗ eiσ+ρ ⊗ 1
(representation of P =MAN )

Then πν,σ = IndG
P (χν,σ) is a unitary representation of G

DEFINITION These πν,σ form the principal series for G

– p. 3



Complex Classical Algebras

We start with the three classical simple locally finite
countable–dimensional Lie algebras gC = lim−→ gn,C

later g will denote a real form of gC
The Lie algebras gC are the classical direct limits,
sl(∞,C) = lim−→ sl(n;C),
so(∞,C) = lim−→ so(2n;C) = lim−→ so(2n+ 1;C), and
sp(∞,C) = lim−→ sp(n;C),

Here the direct systems are given by the inclusions of the
form A 7→ (A 0

0 0 ).

We often consider the locally reductive algebra
gl(∞;C) = lim−→ gl(n;C) along with sl(∞;C).
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Real Classical Algebras (1)

The real forms of the classical simple locally finite
countable–dimensional complex Lie algebras gC are

If gC = sl(∞;C), then g is one of
sl(∞;R) = lim−→ sl(n;R), the real special linear Lie
algebra;
sl(∞;H) = lim−→ sl(n;H), the quaternionic special linear
Lie algebra, given by sl(n;H) := gl(n;H) ∩ sl(2n;C);
su(p,∞) = lim−→ su(p, n), the complex special unitary Lie
algebra of real rank p; or
su(∞,∞) = lim−→ su(p, q), complex special unitary algebra
of infinite real rank.
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Real Classical Algebras (2)

If gC = so(∞;C), then g is one of
so(p,∞) = lim−→ so(p, n), the real orthogonal Lie algebra of
finite real rank p;
so(∞,∞) = lim−→ so(p, q), the real orthogonal Lie algebra
of infinite real rank; or
so∗(2∞) = lim−→ so∗(2n)

If gC = sp(∞;C), then g is one of
sp(∞;R) = lim−→ sp(n;R), the real symplectic Lie algebra;
sp(p,∞) = lim−→ sp(p, n), the quaternionic unitary Lie
algebra of real rank p; or
sp(∞,∞) = lim−→ sp(p, q), quaternionic unitary Lie algebra
of infinite real rank.
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Real Classical Algebras (3)

If gC = gl(∞;C), then g is one of
gl(∞;R) = lim−→ gl(n;R), the real general linear Lie
algebra,
gl(∞;H) = lim−→ gl(n;H), the quaternionic general linear
Lie algebra;
u(p,∞) = lim−→ u(p, n), the complex unitary Lie algebra of
finite real rank p; or
u(∞,∞) = lim−→ u(p, q), the complex unitary Lie algebra of
infinite real rank.
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Some Linear Algebra

Let gC be one of gl(∞,C), sl(∞,C), so(∞,C), and
sp(∞,C).

For our purposes they should be described as follows

VC and WC are nondegenerately paired countable
dimensional complex vector spaces

gl(∞,C) = gl(VC,WC) := VC ⊗WC consists of all finite
linear combinations of the v ⊗ w : x 7→ 〈w, x〉v

sl(∞,C) = sl(VC,WC) is the traceless part of gl(∞,C)

Then so(∞,C) = Λgl(VC, VC) is the image of
Λ : v ⊗ w 7→ v ⊗ w − w ⊗ v

sp(VC, VC) = Sgl(VC, VC) is the image of
S : v ⊗ w 7→ v ⊗ w + w ⊗ v

– p. 8



Some Definitions

A Borel subalgebra of gC is a maximal locally solvable
subalgebra

A parabolic subalgebra of gC is a subalgebra that
contains a Borel

A (semiclosed) generalized flag F = {Fi}i∈I is an
increasing family of subspaces, Fi ⊂ Fj for i ≦ j, where

every F ∈ F belongs to an immediate
predecessor–successor pair (IPS) {F ′, F ′′} and
if F ∈ F with F 6= F⊥⊥ then {F, F⊥⊥} is an IPS pair

Generalized flags F in V and G in W form a taut couple
when

if F ∈ F then F⊥ is invariant by the gl–stabilizer of G and
if G ∈ G then G⊥ is invariant by the gl–stabilizer of F
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Complex Parabolic Subalgebras

In the so and sp cases one can take VC = WC and F = G,
and the subspaces should be isotropic or co-isotropic.

then we speak of a generalized flag F in VC as self–taut.

THEOREM The self–normalizing parabolics in sl(VC,WC)
and gl(VC,WC) are the normalizers of taut couples of
generalized flags in VC and WC. The self–normalizing
parabolics in so(VC) and sp(VC) are the normalizers of
self–taut generalized flags in VC.

THEOREM The parabolics pC in gC are obtained from self
normalizing parabolics p̃C by imposing linear comb-
inations of trace conditions on gl(∞;C)-quotients of p̃C.

CAVEAT: sl(∞;C) contains a Borel subalgebra of gl(∞;C),
so sl(∞;C) is parabolic in gl(∞;C). See next slide.
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Two examples

Here are two examples showing that complex parabolics
can be very different from the finite dimensional case

Enumerate a basis of C∞ by (Z+)n (or even (Z+)∞) in
lexicographic order. The corresponding flag has
subspaces with no immediate predecessor, and
constructions involve limit ordinals.

Enumerate a bases of VC = C∞ and WC = C∞ by rational
numbers with pairing

〈vq, wr〉 = 1 if q > r, = 0 if q ≦ r
Then Span{vq ⊗ wr | q ≦ r} is a Borel in gl(∞;C)
contained in sl(∞;C). This shows that sl(∞;C) is
parabolic in gl(∞;C).
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Real Parabolic Subalgebras

sl and gl cases: g has inequivalent defining real
representations V and W

so and sp cases: g has one defining representation V

D : algebra of all g-endomorphisms of V (or those of trace
0): then g specified by a zero or nondegenerate
D–bilinear or D–sesquilinear form ω on V .

A subalgebra p ⊂ g is parabolic if its complexification pC is
parabolic in gC.

Then p is defined by infinite trace conditions on the g

stabilizer of a
sl and gl cases: taut couple of D–generalized flags F in
V and G in W
so and sp cases: self–taut D–generalized flag F in V
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Levi Components (1)

Let p be a locally finite Lie algebra, r its locally solvable
radical. A subalgebra l ⊂ p is a Levi component if
[p, p] = (r ∩ [p, p]) D l semidirect sum.

Every finitary Lie algebra has a Levi component

Levi components are maximal locally semisimple
subalgebras, but the converse fails

If X ⊂ V and Y ⊂ W are nondegenerately paired,
isotropic in the so and sp cases, then gl(X, Y ) ⊂ gl(V,W ),
sl(X, Y ) ⊂ sl(V,W ), Λgl(X, Y ) ⊂ Λgl(V, V ) and
Sgl(X, Y ) ⊂ Sgl(V, V ) are called standard.

lC ⊂ gC is Levi in a parabolic pC ⊂ gC if and only if it is the
direct sum of standard special linear subalgebras and at
most one subalgebra Λgl(XC, YC) in the orthogonal case,
Sgl(XC, YC) in the symplectic case
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Levi Components (2)

X =
⊕

Xi and Y
⊕

Yi, sums of the corresponding
subspaces of V and W for li. Then
X and Y are nondegenerately paired,
V = X ⊕ Y ⊥ and W = Y ⊕X⊥ and
X⊥ and Y ⊥ are nondegenerately paired

When g is defined by a bilinear or hermitian form f ,
identifying V and W ,

these become V = (X ⊕ Y )⊕ (X ⊕ Y )⊥

f is nondegenerate on (X ⊕ Y )⊥.
Let X ′ and Y ′ be paired maximal isotropic subspaces of
(X ⊕ Y )⊥ and Z ′ := (X ′ ⊕ Y ′)⊥ ∩ (X ⊕ Y )⊥. Then
V = (X ⊕ Y )⊕ (X ′ ⊕ Y ′)⊕ Z ′.

– p. 14



Minimal Levi Components

If l1 $ l2 one constructs p1 $ p2

From now on, l is a Levi component of a minimal real
parabolic p ⊂ g. Then l =

⊕
i∈I li where each li is

su(p), so(p) or sp(p) for a compact group; or
su(∞), so(∞) or sp(∞) for a lim–compact group.

a: max R–split toral subalg
⊕

gl(X ′
j , Y

′
j ) annihilating

(X ⊕ Y ⊕ Z ′) where {x′j} basis of X ′, {y′j} dual basis of Y ′

m = l̃+ t′ where
l̃i = u(∗) if li = su(∗), else l̃i = li

t′: max imag toral in Centg((X ⊕ Y )⊕ (X ′ ⊕ Y ′))

p = m+ a+ n and P =MAN where
M = P ∩K, A = exp(a), and N = exp(n)
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Closed Flags

Semiclosed generalized flag F is closed if F ′′
α = (F ′′

α)
⊥⊥

for all IPS pairs (F ′
α, F

′′
α) in F . A parabolic defined by a

closed generalized flag is flag-closed

If P =MAN is a flag-closed minimal parabolic and K is a
maximal lim-compact subgroup of G then p = n⊥,
g = k+ p, and G = KP , i.e. K is transitive on G/P .
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Amenability

A topological group J (not necess. locally compact) is
amenable if there is a right-invariant mean
µ : LUCb(J) → C where
RUCb(J): right uniformly cont. bounded functions on J
µ is linear, µ(1) = 1, and f ≧ 0 ⇒ µ(f) ≧ 0

minimal parabolic subgroups and maximal lim-compact
subgroups of G are amenable

If P =MAN is a minimal parabolic subgroup then
M = M(G,P ): right P -invariant means on G

is non-empty. Similarly M(K,M) 6= ∅.
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Induction
fix P =MAN : flag-closed parabolic subgroup of G

fix τ : unitary representation of P that annihilates n

Eτ → G/P : associated homog. hermitian vector bundle

RUCb(G/P ;Eτ ) bounded, right uniformly cont. sections

µ ∈ M gives seminorm νµ(f) = µ(||f ||) on RUCb(G/P ;Eτ )

J(G/P ;Eτ ) = {f ∈ RUCb(G/P ;Eτ ) | everyνµ(f) = 0}

IndG
P (τ): representation of G on the completion of
RUCb(G/P ;Eτ )/J(G/P ;Eτ ) relative to {νµ | µ ∈ M}

Ind (G/P ;Eτ )|K = Ind (K/M ;Eτ |M )

Open questions: When is Ind (G/P ;Eτ ) factorial?
unitary? Fréchet? If τ if a finite factor rep of P does
Ind (G/P ;Eτ ) have a character? A K–character?
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Tensor Representations ofU(∞)

The easiest “appropriate class” of representations of M is
the one met for compact factors

U(p), Spin(p) or Sp(p): classical, highest weight.

In the case of U(p) look at action of the symmetric group
S(p) on ⊗n(Cp), action of U(p) on tensors picked out by
an irreducible summand of that action of S(p).

Kirillov and others: an analog of this for U(∞)

However this is a small class of the continuous unitary
representations of U(∞). Many such don’t even extend to
the class of unitary operators of the form 1 + (compact),
so one can consider more general factor representations.
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Type II1 Representations ofU(∞)

π: continuous unitary finite factor representation of U(∞)

character χπ(x) = trace π(x) (normalized trace)

Voiculescu: parameter space is all bilateral sequences
{cn}−∞<n<∞ such that
(i) det((cmi+j−i)1≦i,j≦N ≧ 0 for mi ∈ Z and N ≧ 0 and
(ii)

∑
cn = 1

then the character corresponding to {cn} and π is
χπ(x) =

∏
i p(zi)

where {zi} eigenvalues of x and p(z) =
∑
cnz

n

Here π extends to the group of all unitary operators on
the Hilbert completion of C∞, such that x with x− 1 of
trace class
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Other Factor Representations ofU(∞)

H = lim−→Hn Hilbert space, τ bounded operator, 0 ≦ τ ≦ 1

ψτ : U(∞) → C, ψτ (x) = det((1− τ) + τx), is a continuous
function of positive type on U(∞)

the associated cyclic representation πτ is

irreducible ⇔ τ is a projection,

type I ⇔ τ(1− τ) is trace class,

if τ(1− τ) not trace class then πτ is factorial of type
II1 ⇔ τ − p1 ∈ HS for some 0 < p < 1,
II∞ ⇔ (i)τ(1− τ)(τ − p1)2 /∈ HS for some 0 < p < 1 and
(ii) ess spec(τ) meets {0, 1},
III ⇔ τ(1− τ)(τ − p1)2 /∈ HS for all 0 < p < 1

(results of Stratila and Voiculescu)

– p. 21



Happy 22 · 3 · 5 MikE !!
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