Principal Series Representations for some Infinite Dimensional Lie Groups

The Interaction of Geometry and Representation Theory: Exploring New Frontiers and Michael Eastwood's 60th Birthday

Schrödinger Institute, Vienna, September 10-14

Joseph A. Wolf

University of California at Berkeley

Classical Plancherel Formula

- G: semisimple Lie group, e.g. $SL(n; \mathbb{R})$, SU(p,q), ...
- Car(G): conj. classes [H] of Cartan subgroups H of G
- $\chi \in \widehat{H}$: unitary character of $H \in [H] \in Car(G)$
- π_{χ} associated unitary representation of *G*, constructed using a "cuspidal" parabolic subgroup of *G* based on *H*
- $\Theta_{\pi_{\chi}}$: distribution character of π_{χ}
- Plancherel formula: if $f \in C(G)$ Harish-Chandra Schwartz space then

$$f(x) = \sum_{Car(G)} \int_{\widehat{H}} \Theta_{\pi_{\chi}}(r_x f) d\mu_{[H]}(\chi)$$

Easiest: Principal Series

- **9** θ : Cartan involution of G and $K = G^{\theta}$ maximal compact
- $A = \exp(\mathfrak{a})$ and $M = Z_K(A)$ centralizer of A in K
- n: sum of positive a-weight spaces on g and N = exp(n)
- G = KAN lwasawa and P = MAN minimal parabolic
- $T \subset M$ and $H = (T \times A) \subset G$ are Cartan subgroups
- Given $\eta_{\nu} \in \widehat{M}$ and $\sigma \in \mathfrak{a}^*$ define $\chi_{\nu,\sigma} = \eta_{\nu} \otimes e^{i\sigma+\rho} \otimes 1$ (representation of P = MAN)
- Then $\pi_{\nu,\sigma} = \operatorname{Ind}_{P}^{G}(\chi_{\nu,\sigma})$ is a unitary representation of G
- DEFINITION These $\pi_{\nu,\sigma}$ form the principal series for G

Complex Classical Algebras

- ✓ We start with the three classical simple locally finite countable-dimensional Lie algebras $g_{\mathbb{C}} = \lim_{n \to \infty} g_{n,\mathbb{C}}$
- Iater g will denote a real form of $g_{\mathbb{C}}$
- The Lie algebras $\mathfrak{g}_{\mathbb{C}}$ are the classical direct limits, $\mathfrak{sl}(\infty, \mathbb{C}) = \varinjlim \mathfrak{sl}(n; \mathbb{C}),$ $\mathfrak{so}(\infty, \mathbb{C}) = \varinjlim \mathfrak{so}(2n; \mathbb{C}) = \varinjlim \mathfrak{so}(2n+1; \mathbb{C}),$ and $\mathfrak{sp}(\infty, \mathbb{C}) = \varinjlim \mathfrak{sp}(n; \mathbb{C}),$
- Here the direct systems are given by the inclusions of the form $A \mapsto \begin{pmatrix} A & 0 \\ 0 & 0 \end{pmatrix}$.
- We often consider the locally reductive algebra $\mathfrak{gl}(\infty; \mathbb{C}) = \varinjlim \mathfrak{gl}(n; \mathbb{C})$ along with $\mathfrak{sl}(\infty; \mathbb{C})$.

Real Classical Algebras (1)

- \checkmark The real forms of the classical simple locally finite countable–dimensional complex Lie algebras $\mathfrak{g}_{\mathbb{C}}$ are
- ${\color{black}{{\rm J}}}{\rm If}\;\mathfrak{g}_{\mathbb C}=\mathfrak{sl}(\infty;\mathbb C),$ then \mathfrak{g} is one of
 - $\mathfrak{sl}(\infty;\mathbb{R}) = \varinjlim \mathfrak{sl}(n;\mathbb{R})$, the real special linear Lie algebra;
 - $\mathfrak{sl}(\infty; \mathbb{H}) = \varinjlim \mathfrak{sl}(n; \mathbb{H})$, the quaternionic special linear Lie algebra, given by $\mathfrak{sl}(n; \mathbb{H}) := \mathfrak{gl}(n; \mathbb{H}) \cap \mathfrak{sl}(2n; \mathbb{C})$;
 - $\mathfrak{su}(p,\infty) = \varinjlim \mathfrak{su}(p,n)$, the complex special unitary Lie algebra of real rank p; or
 - $\mathfrak{su}(\infty,\infty) = \varinjlim \mathfrak{su}(p,q)$, complex special unitary algebra of infinite real rank.

Real Classical Algebras (2)

 \checkmark If $\mathfrak{g}_{\mathbb{C}}=\mathfrak{so}(\infty;\mathbb{C}),$ then \mathfrak{g} is one of

- $\mathfrak{so}(p,\infty) = \varinjlim \mathfrak{so}(p,n)$, the real orthogonal Lie algebra of finite real rank p;
- $\mathfrak{so}(\infty,\infty) = \varinjlim \mathfrak{so}(p,q)$, the real orthogonal Lie algebra of infinite real rank; or

•
$$\mathfrak{so}^*(2\infty) = \varinjlim \mathfrak{so}^*(2n)$$

- ${\scriptstyle {\small \bullet}}$ If $\mathfrak{g}_{\mathbb{C}}=\mathfrak{sp}(\infty;\mathbb{C}),$ then \mathfrak{g} is one of
 - $\mathfrak{sp}(\infty; \mathbb{R}) = \varinjlim \mathfrak{sp}(n; \mathbb{R})$, the real symplectic Lie algebra;
 - $\mathfrak{sp}(p,\infty) = \varinjlim \mathfrak{sp}(p,n)$, the quaternionic unitary Lie algebra of real rank p; or
 - $\mathfrak{sp}(\infty,\infty) = \varinjlim \mathfrak{sp}(p,q)$, quaternionic unitary Lie algebra of infinite real rank.

Real Classical Algebras (3)

 \checkmark If $\mathfrak{g}_{\mathbb{C}}=\mathfrak{gl}(\infty;\mathbb{C}),$ then \mathfrak{g} is one of

- $\mathfrak{gl}(\infty;\mathbb{R}) = \varinjlim \mathfrak{gl}(n;\mathbb{R})$, the real general linear Lie algebra,
- $\mathfrak{gl}(\infty; \mathbb{H}) = \varinjlim \mathfrak{gl}(n; \mathbb{H})$, the quaternionic general linear Lie algebra;
- $\mathfrak{u}(p,\infty) = \varinjlim \mathfrak{u}(p,n)$, the complex unitary Lie algebra of finite real rank p; or
- $\mathfrak{u}(\infty,\infty) = \varinjlim \mathfrak{u}(p,q)$, the complex unitary Lie algebra of infinite real rank.

Some Linear Algebra

- Let $\mathfrak{g}_{\mathbb{C}}$ be one of $\mathfrak{gl}(\infty, \mathbb{C})$, $\mathfrak{sl}(\infty, \mathbb{C})$, $\mathfrak{so}(\infty, \mathbb{C})$, and $\mathfrak{sp}(\infty, \mathbb{C})$.
- For our purposes they should be described as follows
- $V_{\mathbb{C}}$ and $W_{\mathbb{C}}$ are nondegenerately paired countable dimensional complex vector spaces
- $\mathfrak{gl}(\infty, \mathbb{C}) = \mathfrak{gl}(V_{\mathbb{C}}, W_{\mathbb{C}}) := V_{\mathbb{C}} \otimes W_{\mathbb{C}}$ consists of all finite linear combinations of the $v \otimes w : x \mapsto \langle w, x \rangle v$
- Then $\mathfrak{so}(\infty, \mathbb{C}) = \Lambda \mathfrak{gl}(V_{\mathbb{C}}, V_{\mathbb{C}})$ is the image of $\Lambda : v \otimes w \mapsto v \otimes w w \otimes v$
- $\mathfrak{sp}(V_{\mathbb{C}}, V_{\mathbb{C}}) = S\mathfrak{gl}(V_{\mathbb{C}}, V_{\mathbb{C}})$ is the image of $S: v \otimes w \mapsto v \otimes w + w \otimes v$

Some Definitions

- A Borel subalgebra of $\mathfrak{g}_{\mathbb{C}}$ is a maximal locally solvable subalgebra
- A parabolic subalgebra of $\mathfrak{g}_{\mathbb{C}}$ is a subalgebra that contains a Borel
- ▲ (semiclosed) generalized flag $\mathcal{F} = \{F_i\}_{i \in I}$ is an increasing family of subspaces, $F_i \subset F_j$ for $i \leq j$, where
 - every $F \in \mathcal{F}$ belongs to an *immediate* predecessor-successor pair (IPS) $\{F', F''\}$ and
 - if $F \in \mathcal{F}$ with $F \neq F^{\perp \perp}$ then $\{F, F^{\perp \perp}\}$ is an IPS pair
- Generalized flags \mathcal{F} in V and \mathcal{G} in W form a *taut couple* when
 - if $F \in \mathcal{F}$ then F^{\perp} is invariant by the \mathfrak{gl} -stabilizer of \mathcal{G} and
 - ${\scriptstyle {\rm I}}$ if $G\in {\cal G}$ then G^{\perp} is invariant by the ${\frak g}{\frak l}-{\rm stabilizer}$ of ${\cal F}$

Complex Parabolic Subalgebras

- In the \mathfrak{so} and \mathfrak{sp} cases one can take $V_{\mathbb{C}} = W_{\mathbb{C}}$ and $\mathcal{F} = \mathcal{G}$, and the subspaces should be isotropic or co-isotropic.
- then we speak of a generalized flag \mathcal{F} in $V_{\mathbb{C}}$ as self-taut.
- THEOREM The self-normalizing parabolics in $\mathfrak{sl}(V_{\mathbb{C}}, W_{\mathbb{C}})$ and $\mathfrak{gl}(V_{\mathbb{C}}, W_{\mathbb{C}})$ are the normalizers of taut couples of generalized flags in $V_{\mathbb{C}}$ and $W_{\mathbb{C}}$. The self-normalizing parabolics in $\mathfrak{so}(V_{\mathbb{C}})$ and $\mathfrak{sp}(V_{\mathbb{C}})$ are the normalizers of self-taut generalized flags in $V_{\mathbb{C}}$.
- **●** THEOREM The parabolics $\mathfrak{p}_{\mathbb{C}}$ in $\mathfrak{g}_{\mathbb{C}}$ are obtained from self normalizing parabolics $\widetilde{\mathfrak{p}}_{\mathbb{C}}$ by imposing linear combinations of trace conditions on $\mathfrak{gl}(\infty; \mathbb{C})$ -quotients of $\widetilde{\mathfrak{p}}_{\mathbb{C}}$.
- CAVEAT: $\mathfrak{sl}(\infty; \mathbb{C})$ contains a Borel subalgebra of $\mathfrak{gl}(\infty; \mathbb{C})$, so $\mathfrak{sl}(\infty; \mathbb{C})$ is parabolic in $\mathfrak{gl}(\infty; \mathbb{C})$. See next slide.

Two examples

- Here are two examples showing that complex parabolics can be very different from the finite dimensional case
- Enumerate a basis of C[∞] by (Z⁺)ⁿ (or even (Z⁺)[∞]) in lexicographic order. The corresponding flag has subspaces with no immediate predecessor, and constructions involve limit ordinals.
- Enumerate a bases of $V_{\mathbb{C}} = \mathbb{C}^{\infty}$ and $W_{\mathbb{C}} = \mathbb{C}^{\infty}$ by rational numbers with pairing

 $\langle v_q, w_r \rangle = 1$ if q > r, = 0 if $q \leq r$ Then Span $\{v_q \otimes w_r \mid q \leq r\}$ is a Borel in $\mathfrak{gl}(\infty; \mathbb{C})$ contained in $\mathfrak{sl}(\infty; \mathbb{C})$. This shows that $\mathfrak{sl}(\infty; \mathbb{C})$ is parabolic in $\mathfrak{gl}(\infty; \mathbb{C})$.

Real Parabolic Subalgebras

- sl and gl cases: g has inequivalent defining real representations V and W
- \mathfrak{so} and \mathfrak{sp} cases: \mathfrak{g} has one defining representation V
- D : algebra of all g-endomorphisms of V (or those of trace
 0): then g specified by a zero or nondegenerate
 D−bilinear or D−sesquilinear form ω on V.
- A subalgebra p ⊂ g is *parabolic* if its complexification p_C is parabolic in g_C .
- Then p is defined by infinite trace conditions on the g stabilizer of a
 - \mathfrak{sl} and \mathfrak{gl} cases: taut couple of \mathbb{D} -generalized flags \mathcal{F} in V and \mathcal{G} in W
 - \mathfrak{so} and \mathfrak{sp} cases: self-taut \mathbb{D} -generalized flag \mathcal{F} in V

Levi Components (1)

- Let p be a locally finite Lie algebra, r its locally solvable radical. A subalgebra l ⊂ p is a Levi component if [p, p] = (r ∩ [p, p]) ∈ l semidirect sum.
- Every finitary Lie algebra has a Levi component
- Levi components are maximal locally semisimple subalgebras, but the converse fails
- If $X \subset V$ and $Y \subset W$ are nondegenerately paired, isotropic in the \mathfrak{so} and \mathfrak{sp} cases, then $\mathfrak{gl}(X,Y) \subset \mathfrak{gl}(V,W)$, $\mathfrak{sl}(X,Y) \subset \mathfrak{sl}(V,W)$, $\Lambda \mathfrak{gl}(X,Y) \subset \Lambda \mathfrak{gl}(V,V)$ and $S\mathfrak{gl}(X,Y) \subset S\mathfrak{gl}(V,V)$ are called *standard*.
- I_C ⊂ g_C is Levi in a parabolic p_C ⊂ g_C if and only if it is the direct sum of standard special linear subalgebras and at most one subalgebra Λgl(X_C, Y_C) in the orthogonal case,
 Sgl(X_C, Y_C) in the symplectic case

Levi Components (2)

- $X = \bigoplus X_i$ and $Y \bigoplus Y_i$, sums of the corresponding subspaces of V and W for l_i . Then
 - X and Y are nondegenerately paired,
 - $V = X \oplus Y^{\perp}$ and $W = Y \oplus X^{\perp}$ and
 - X^{\perp} and Y^{\perp} are nondegenerately paired
- When g is defined by a bilinear or hermitian form f, identifying V and W,
 - these become $V = (X \oplus Y) \oplus (X \oplus Y)^{\perp}$
 - f is nondegenerate on $(X \oplus Y)^{\perp}$.
 - Let X' and Y' be paired maximal isotropic subspaces of $(X \oplus Y)^{\perp}$ and $Z' := (X' \oplus Y')^{\perp} \cap (X \oplus Y)^{\perp}$. Then $V = (X \oplus Y) \oplus (X' \oplus Y') \oplus Z'$.

Minimal Levi Components

- $\bullet \ \, \text{If} \ \, \mathfrak{l}_1 \subsetneqq \mathfrak{l}_2 \ \text{one constructs} \ \, \mathfrak{p}_1 \subsetneqq \mathfrak{p}_2 \\$
- ✓ From now on, l is a Levi component of a minimal real parabolic p ⊂ g. Then $l = \bigoplus_{i ∈ I} l_i$ where each l_i is
 - $\checkmark \mathfrak{su}(p),\,\mathfrak{so}(p)$ or $\mathfrak{sp}(p)$ for a compact group; or
 - ${\scriptstyle {\color{red} {\mathfrak{s}}}} \mathfrak{su}(\infty), \, \mathfrak{so}(\infty) \text{ or } \mathfrak{sp}(\infty) \text{ for a lim-compact group.}$
- a: max \mathbb{R} -split toral subalg $\bigoplus \mathfrak{gl}(X'_j, Y'_j)$ annihilating $(X \oplus Y \oplus Z')$ where $\{x'_j\}$ basis of X', $\{y'_j\}$ dual basis of Y'
- ${\scriptstyle {\color{red} { \hspace{-.6mm} \hspace{-.6mm} \hspace{-.6mm} \hspace{-.6mm} \hspace{-.6mm} \hspace{-.6mm} \hspace{-.6mm} \hspace{-.6mm} \hspace{-.6mm} } \mathfrak{n} = \widetilde{\mathfrak{l}} + \mathfrak{t}' \text{ where } }$
 - $\widetilde{\mathfrak{l}_i} = \mathfrak{u}(*)$ if $\mathfrak{l}_i = \mathfrak{su}(*)$, else $\widetilde{\mathfrak{l}_i} = \mathfrak{l}_i$
 - \mathfrak{t}' : max imag toral in $\operatorname{Cent}_{\mathfrak{g}}((X \oplus Y) \oplus (X' \oplus Y'))$

● p = m + a + n and P = MAN where

$$M = P \cap K$$
, A = exp(a), and N = exp(n)

Closed Flags

- Semiclosed generalized flag *F* is *closed* if *F*["]_α = (*F*["]_α)^{⊥⊥} for all IPS pairs (*F*[']_α, *F*["]_α) in *F*. A parabolic defined by a closed generalized flag is *flag-closed*
- If P = MAN is a flag-closed minimal parabolic and K is a maximal lim-compact subgroup of G then $\mathfrak{p} = \mathfrak{n}^{\perp}$, $\mathfrak{g} = \mathfrak{k} + \mathfrak{p}$, and G = KP, i.e. K is transitive on G/P.

Amenability

- ▲ A topological group *J* (not necess. locally compact) is amenable if there is a right-invariant mean $\mu: LUC_b(J) \to \mathbb{C}$ where
 - $RUC_b(J)$: right uniformly cont. bounded functions on J
 - μ is linear, $\mu(\mathbf{1}) = 1$, and $f \ge 0 \Rightarrow \mu(f) \ge 0$
- minimal parabolic subgroups and maximal lim-compact subgroups of G are amenable
- If P = MAN is a minimal parabolic subgroup then $\mathcal{M} = \mathcal{M}(G, P)$: right *P*-invariant means on *G*is non-empty. Similarly $\mathcal{M}(K, M) \neq \emptyset$.

Induction

- If P = MAN: flag-closed parabolic subgroup of G
- **•** fix τ : unitary representation of P that annihilates \mathfrak{n}
- $\mathbb{E}_{\tau} \to G/P$: associated homog. hermitian vector bundle
- $RUC_b(G/P; \mathbb{E}_{\tau})$ bounded, right uniformly cont. sections
- $\mu \in \mathcal{M}$ gives seminorm $\nu_{\mu}(f) = \mu(||f||)$ on $RUC_b(G/P; \mathbb{E}_{\tau})$
- $J(G/P; \mathbb{E}_{\tau}) = \{ f \in RUC_b(G/P; \mathbb{E}_{\tau}) \mid every\nu_{\mu}(f) = 0 \}$
- Ind ^G_P(τ): representation of G on the completion of RUC_b(G/P; 𝔼_τ)/J(G/P; 𝔼_τ) relative to {ν_μ | μ ∈ M}
- $Ind (G/P; \mathbb{E}_{\tau})|_{K} = Ind (K/M; \mathbb{E}_{\tau|_{M}})$
- Open questions: When is $Ind(G/P; \mathbb{E}_{\tau})$ factorial? unitary? Fréchet? If τ if a finite factor rep of P does $Ind(G/P; \mathbb{E}_{\tau})$ have a character? A *K*-character?

Tensor Representations of $U(\infty)$

- The easiest "appropriate class" of representations of M is the one met for compact factors
- U(p), Spin(p) or Sp(p): classical, highest weight.
- In the case of U(p) look at action of the symmetric group S(p) on ⊗ⁿ(ℂ^p), action of U(p) on tensors picked out by an irreducible summand of that action of S(p).
- Kirillov and others: an analog of this for $U(\infty)$
- However this is a small class of the continuous unitary representations of $U(\infty)$. Many such don't even extend to the class of unitary operators of the form 1 + (compact), so one can consider more general factor representations.

Type II_1 **Representations of** $U(\infty)$

- π : continuous unitary finite factor representation of $U(\infty)$
- character $\chi_{\pi}(x) = \text{trace } \pi(x)$ (normalized trace)
- Voiculescu: parameter space is all bilateral sequences $\{c_n\}_{-\infty < n < \infty}$ such that (i) $\det((c_{m_i+j-i})_{1 \le i,j \le N} \ge 0$ for $m_i \in \mathbb{Z}$ and $N \ge 0$ and (ii) $\sum c_n = 1$
- then the character corresponding to $\{c_n\}$ and π is $\chi_{\pi}(x) = \prod_i p(z_i)$ where $\{z_i\}$ eigenvalues of x and $p(z) = \sum c_n z^n$
- Here π extends to the group of all unitary operators on the Hilbert completion of \mathbb{C}^{∞} , such that x with x - 1 of trace class

Other Factor Representations of $U(\infty)$

 $\mathcal{H} = \varinjlim \mathcal{H}_n \text{ Hilbert space, } \tau \text{ bounded operator, } 0 \leq \tau \leq 1$

- **•** the associated cyclic representation π_{τ} is
- irreducible $\Leftrightarrow \tau$ is a projection,
- type I $\Leftrightarrow \tau(1-\tau)$ is trace class,
- If $\tau(1 \tau)$ not trace class then π_{τ} is factorial of type
 - $II_1 \Leftrightarrow \tau p1 \in HS$ for some 0 ,
 - $II_{\infty} \Leftrightarrow (i)\tau(1-\tau)(\tau-p1)^2 \notin HS$ for some $0 and (ii) ess spec<math>(\tau)$ meets $\{0,1\}$,
 - $III \Leftrightarrow \tau (1-\tau)(\tau-p1)^2 \notin HS$ for all 0

(results of Stratila and Voiculescu)

Happy $2^2 \cdot 3 \cdot 5$ MikE !!