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(1) Recall the definitions of second countability and of separability for topological spaces.
Prove that any second countable space is separable and that a subspace of a second
countable space is second countable, too. Is a subspace of a separable space automat-
ically separable?

(2) Prove that a second countable topological space X is a Lindelöff space, i.e. that for
any open covering of X, there is a countable subcovering.

(3) For a continuous function f : X → R on a topological space X define the support
supp(f) of f to be the closure of the subset {x ∈ X : f(x) ̸= 0}. Suppose that
{fi : i ∈ I} is a collection of continuous functions fi : X → R such that for each
x ∈ X, there is a neighborhood U of x in X such that U intersects only finitely many
of the sets supp(fi). Show that f(x) :=

∑
i∈I fi(x) defines a continuous function

f : X → R such that supp(f) ⊂ ∪i∈I supp(fi).

Hint: Argue why it suffices to show that each point x has an open neighborhood
U such that f |U is continuous to conclude continuity of f . For the claim about the
support, show that ∪i∈I supp(fi) is closed in X.

(4) Let X be a second countable Hausdorff space which is locally Euclidean in the sense
that any point x ∈ X has an open neighborhood that is homeomorphic to an open
subset of Rn. Show that X is locally compact and use this and exercise (2) to prove
that there is a family {Kn : n ∈ N} of compact subsets of X such that X = ∪n∈NKn.
(“X is σ-compact and admits a compact exhaustion”).

(5) Let U ⊂ Rn be an open subset and let f : U → Rm be a continuously differentiable
function. Suppose that for some point x ∈ U , the derivative Df(x) : Rn → Rm has
rank k (as a linear map). Prove that there is an open neighborhood V of x in U such
that for all y ∈ V , the rank of Df(y) is at least k.

(6) Let M ⊂ Rn be a smooth submanifold of dimension k and let W ⊂ Rn be an open set
with M ⊂ W . Show that for a diffeomorphism F from W onto another open subset
W̃ ⊂ Rn, also F (M) is a smooth submanifold of Rn.

(7) (“Stereographic projection”) Take the unit sphere Sn ⊂ Rn+1 and letN := (0, . . . , 0, 1)
be the “north pole”. Identify Rn with the affine hyperplane orthogonal to N through
the point −N (so this is tangent to Sn). Define a map f : Rn → Sn by sending each
point x in that hyperplane to the intersection of the line segment connecting x to N
with Sn. Prove that f defines a diffeomorphism from Rn to Sn \ {N}.

(8) Let M ⊂ Rn be a smooth submanifold of dimension k. Suppose that there is a local
trivialization Φ : U → V for M and consider the open subset U ∩M ⊂ M . Prove that
there are smooth functions ξ1, . . . , ξk : U ∩M → Rn such that for each x ∈ U ∩M the
vectors ξ1(x), . . . , ξk(x) form a basis for the tangent space TxM .
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(9) Let M ⊂ Rn and N ⊂ Rm be submanifolds of dimensions k and ℓ, respectively. Show
that M × N ⊂ Rn × Rm ∼= Rn+m is a submanifold of dimension k + ℓ and that the
projections πM : M × N → M and πN : M × N → N are smooth. Also show that
T(x,y)(M ×N) = {(X, Y ) : X ∈ TxM,Y ∈ TyN}.

(10) Find a description of a torus as a submanifold of R3 and prove that it is diffeomorphic
to S1 × S1 ⊂ R4.

(11) Find a description of an (open) Möbius strip as a submanifold of R3. Explain why
this cannot be globally realized as a regular zero set of a smooth function.

(12) View the space Mn(R) of real n× n-matrices as Rn2
. Show that M := {A ∈ Mn(R) :

det(A) = 1} is a smooth submanifold of Rn2
and determined the tangent space TIM

at the identity matrix I.

(13) (“The line with two origins”, see [Lee, Problem 1-1.]) On X := {(x, y) ∈ R2 : y = ±1}
consider the equivalence relation generated by (x, 1) ∼ (x,−1) for x ̸= 0. LetM be the
set of equivalence classes endowed with the quotient topology. Show that M satisfies
all defining properties of a topological manifold except for the Hausdorff property.

(14) Use local charts for hemispheres in Sn to make the space RP n−1 discussed in the end
of Section 1.5 of the course into a smooth manifold.

(15) On Cn \ {0} consider the equivalence relation defined by x ∼ y if there is z ∈ C such
that y = zx and let CP n−1 be the space of equivalence classes (endowed with the
qoutient topology). Denote the equivalence class of a point x = (x1, . . . , xn) by [x1 :
· · · : xn]. Show that one obtains a finite atlas by putting Ui := {[x1 : · · · : xn] : xi ̸= 0}
and defining ui : Ui → Cn−1 by

ui([x
1 : · · · : xn]) := (x

1

xi , . . . ,
xi−1

xi , x
i+1

xi , . . . , x
n

xi ).

Observe that this even makes CP n−1 into a complex manifold.

(16) Prove that CP 1 is diffeomorphic to the sphere S2, e.g. by using example (7).

(17) In the setting of example (15) consider the map q : Cn \ {0} → CP n−1 which sends
each point to its equivalence class. Consider the sphere S2n−1 as the unit sphere in
Cn and define q := q|S2n−1 (“Hopf fibration”). Show that q and q are smooth and

surjective, and that for each y ∈ CP n−1 the preimage q−1(y) is a smooth submanifold

of Cn ∼= R2n diffeomorphic to S1.

(18) In the case n = 2, describe the Hopf fibration q from Example (17) explicitly as a map

from S3 = {(z, w) ∈ C2 : zz̄+ww̄ = 1} to R3. (This needs making the diffeomorphism
from Example (16) explicit as a map to R3.)

(19) Show that the map q : V(k, n) → Gr(k, n) introduced in Example 1.7. (6) of the course
is smooth. Prove that in the picture of n × k-matrices two elements A,B ∈ V(k, n)
satisfy q(A) = q(B) if and only if there is an invertible k × k-matrix C such that
A = BC.



(20) For k < n, let O(k, n) be the space of k-tuples of orthonormal vectors in Rn with the
structure of a submanifold as introduced in Section 1.3 of the lecture course. Show
that sending a tuple to the subspace it spans defines a surjective, smooth map q from
O(k, n) to the Grassmann manifold Gr(k, n). Show that in the picture of matrices,
one has q(A) = q(B) if and only if there is an orthogonal k × k-matrix C such that
A = BC.

(21) Prove the smooth version of Urysohn’s lemma for smooth manifolds: Let A,B ⊂ M
be closed subsets with A ∩ B = ∅. Then there is a smooth function f : M → R with
values in [0, 1] which is identically one on A and identically zero on B.

Hint: This is similar to the proof of Corollary 1.9, starting from the open covering of
M formed by U := M \ A and V := M \B.

(22) Prove that the tangent bundle TS1 is diffeomorphic to the the manifold S1 × R in
such a way that p : TS1 → S1 corresponds to the first projection in the product.

(23) Let M be a smooth manifold N ⊂ M a submanifold, and let (U, u) be a chart for M
(not a submanifold chart for N in general) such that U ∩N ̸= ∅. Show that u(U ∩N)
is a smooth submanifold of Rn.

Hint: Keep in mind that this can be verified locally and look for a simple solution,
e.g. via regular zero sets.

(24) Prove part (1) of Proposition 1.19 of the course.

(25) For this exercise, please take the real analog of exercise (15) as granted: We have
q : Rn \ {0} → RP n−1, use homogeneous coordinates [x1 : · · · : xn] and get a finite
atlas (Ui, ui) by exactly the same constructions as in exercise (15).

Put E := {(q(x), λx) : x ∈ Rn \ {0}, λ ∈ R} and let p : E → RP n−1 be the
projection to the first component. Show that

• E is a smooth submanifold of RP n−1 × Rn and p : E → RP n−1 is smooth.
• For each i, there is a diffeomorphism p−1(Ui) → Ui × R whose first component
coincides with p.

Hint: Construct a diffeomorphism Ui × Rn → ui(Ui) × Rn whose components on

(q(x), y) are ui(q(x)), y
i and yj−yi x

j

xi for j ̸= i. This provides both a submanifold chart
for E and (via leaving out the last n− 1 components) the required diffeomorphism.

(26) In the setting of the last exercise, consider E0 := E ∩ (RP n−1 × {0}) and the open
subset E \E0. Show that x 7→ (q(x), x) defines a diffeomorphism Rn \ {0} → E \E0.
Remark: This essentially shows that E cannot be isomorphic to a product RP n−1×R
in an appropriate sense (since then E \E0 would be isomorphic to RP n−1× (R \ {0}),
which is not connected). Indeed, for n = 2, E is diffeomorphic to a Möbius band.

(27) Let Mn(R) be the vector space of real n × n-matrices and let G be the open subset
of invertible matrices. For fixed X ∈ Mn(R), show that the map LX : G → Mn(R),
LX(A) := AX defines a vector field on G. Show that (A,X) 7→ (A,LX(A)) defines a
diffeomorphism G × Mn(R) → TG and explain why/how this differs from the iden-
tification of TG with G × Mn(R) coming from the fact that G is an open subset in

Rn2
.



(28) Recall from Section 1.3 of the course that the group O(n) of orthogonal n×n-matrices
is a smooth submanifold of Mn(R) contained in G. Use the results there to determine
the tangent space o(n) := TIO(n) to this submanifold at the unit matrix I. Show that
for X ∈ o(n) and A ∈ O(n), LX(A) := AX lies in TAO(n) and conclude that one
obtains a vector field LX on O(n) as well as a diffeomorphism O(n)× o(n) → TO(n).

(29) For a smooth submanifoldM of Rn take two vector fields ξ, η ∈ X(M). View them also
as Rn-valued functions to form the directional derivatives ξ · η, η · ξ : M → Rn. Show
that for each x ∈ M , one has (ξ · η)(x)− (η · ξ)(x) ∈ TxM and that ξ · η− η · ξ = [ξ, η].

(30) Use the last exercise to show that in the setting of exercises (27) and (28) one has
[LX , LY ] = LZ , where Z = XY − Y X ∈ Mn(R). Observe that for X, Y ∈ o(n), one
always gets Z ∈ o(n).

(31) In the setting of exercises (27) and (28), let G be the set of invertible matrices re-
spectively G = O(n). Show that for any A ∈ G, the map λA(B) := AB defines a
diffeomorphism λA : G → G. Then show that a vector field ξ ∈ X(G) is of the form
LX for some X ∈ TIG if and only if it satisfies (λA)

∗ξ = ξ for all A ∈ G. Use this as an
alternative argument for the fact that for X, Y ∈ TIG, we must have [LX , LY ] = LZ

for some Z ∈ TIG.

(32) Explain how the Lie bracket can be obtained as a well defined operation on vector
fields based on the coordinate formula (2.3) from Theorem 2.4 (i.e. without using
the action on smooth functions). Carry out the necessary verifications and give an
alternative direct proof or part (3) of Theorem 2.4 in this setting.

(33) In the coordinate based approach to the Lie bracket from the last exercise (i.e. again
without using the action on functions), verify compatibility of the Lie bracket with
the pullback along local diffeomorphisms.

Hint: Given a local diffeomorphism F : M → N and x ∈ M , use a chart (V, v) for N
around F (x) and F to construct a chart (U.u) for M around x. Describe the relation
between the components of η ∈ X(N) with respect to (V, v) to the components of F ∗η
with respect to (U, u) and use this to establish the result.

(34) Let U ⊂ R2 be an open subset and f : U → R a smooth function. On U × R ⊂ R3

consider the vector fields ξ := ∂
∂x1 +

∂f
∂x1

∂
∂x3 and η := ∂

∂x2 +
∂f
∂x2

∂
∂x3 . Call a smooth curve

c : I → U×R admissible if for each t ∈ I, c′(t) can be written as a linear combination
of ξ(c(t)) and η(c(t)).

Prove that a smooth curve c = (c1, c2, c3) is admissible if and only if c3(t) −
f(c1(t), c2(t)) is constant and give a geometric explanation for this fact.

(35) Consider the vector fields ξ := ∂
∂x1 + x2 ∂

∂x3 and η = ∂
∂x2 − x1 ∂

∂x3 on R3. Show that for
any a ∈ R, there is an admissible curve c in the sense of the last example that starts
in 0 and ends in (0, 0, a). If you are ambitious, you can try to deduce from this fact
that any point in R3 can be reached from the origin by piecing together finitely many
(in fact, three or even two are easily seen to be enough) admissible curves.

Hint: Make an ansatz c(t) = (r(cos t − 1), r sin t, x3(t)) and prove that for each r,
there is a unique choice of a function x3(t) for which c is admissible. Then compute
x3(2π).



(36) Compute the flow of the vector field ξ := −x2 ∂
∂x1 + x1 ∂

∂x2 on R2.

(37) Let M be a smooth manifold and let ξ ∈ X(M) be a vector field. Suppose that there
is a point x0 in M and for each y ∈ M there is a diffeomorphism Fy : M → M such
that Fy(x0) = y and such that (Fy)

∗ξ = ξ. Prove that the vector field ξ is complete
and apply this and exercise (31) to deduce completeness of the vector fields LX from
exercises (27) and (28).

(38) Recall the definition of exponential function for matrices and show that e(t+s)X =
etXesX and d

dt
|t=0e

tX = X. (If you need analytical results on the exponential series
just state them, there is not need to prove those.) Use these properties to prove that
the flow of the vector field LX from exercise (27) is given by FlLX

t (A) = AetX .

(39) For two finite dimensional vector spaces V andW over R, prove that the space B(V,W )
of bilinear maps V ×W → R is a vector space of dimension dim(V ) dim(W ). Using
only the universal property of the tensor product, show that V ⊗W is isomorphic to
the dual space B(V,W )∗ and thus has dimension dim(V ) dim(W ), too. Describe the
map (v, w) 7→ v ⊗ w in this picture.

(40) In the setting of exercise (39) show that V ∗⊗W is naturally isomorphic to L(V,W ) and
to L(W ∗, V ∗), and describe the resulting natural isomorphism L(V,W ) → L(W ∗, V ∗)
explicitly. Show that an element of V ∗ ⊗ W can be written in the form λ ⊗ w for
λ ∈ V ∗ and w ∈ W if and only if the corresponding linear map V → W has rank one.

(41) In the setting of exercise (34) (with the correct + signs in the definitions of the
vector fields), let p : U × R → U be the first projection. Compute the one-form
ω := dx3 − p∗df ∈ Ω1(U × R) and show that a smooth curve c : I → U × R is
admissible in the sense of exercise (34) if and only if c∗ω = 0.

(42) Let M ⊂ Rn+1 be a smooth submanifold of dimension n. Show that there are local
unit normals for M , i.e. that for each x ∈ M , there is an open subset U ⊂ M with
x ∈ U and smooth function n : U → Sn ⊂ Rn+1 such that n(y) ⊥ TyM for each
y ∈ U . Then show that Tn(y)S

n = TyM and hence Tyn can be interpreted as a linear

map Ly : TyM → TyM . Finally, show that y 7→ Ly defines a smooth
(
1
1

)
-tensor field

L on U .

Hint: To construct n, realize M ∩ U a regular zero set F−1({0}) and then form the
normed gradient of F .

(43) In the setting of the last exercise, show that restricting the inner product on Rn+1

to the tangent spaces of M defines a Riemannian metric g on M . Prove that on an
open subset U as in the last exercise IIy(X, Y ) := gy(X,Ly(Y )) defines a symmetric
bilinear form on TyM for each y ∈ U . Finally, show that y 7→ IIy defines a

(
0
2

)
-tensor

field on U and interpret this as a contraction of (g|U)⊗ L. Is it possible to obtain L
as a contraction of g|U ⊗ II?



(44) Let A ∈ T 1
k (M) be a smooth

(
1
k

)
-tensor field on a smooth manifold M . Show that for

each x ∈ M the value Ax can be interpreted as a k-linear map (TxM)k → TxM . Use
this to associate to vector fields ξ1, . . . , ξk ∈ X(M) a vector field A(ξ1, . . . , ξk). Using
Lemma 3.3, show that T 1

k (M) can be identified with the space of k-linear operators
(X(M))k → X(M) which are linear over smooth functions in each argument.

Hint: Try to keep things simple. It is easier to reduce the claim you want to prove
to the statement of Lemma 3.3 than to redo the proof of that Lemma. (If you prefer
to redo the proof, just outline it.)

(45) An affine connection on a smooth manifold M is a bilinear operator X(M)×X(M) →
X(M) written as (ξ, η) 7→ ∇ξη such that for any ξ, η ∈ X(M) and any f ∈ C∞(M,R),
one has ∇fξη = f∇ξη and ∇ξ(fη) = ξ(f)η + f∇ξη. (Don’t worry about existence
here, there are many important examples.)

Use exercise (44) to prove the following:
(i) For an affine connection ∇ on M and A ∈ T 1

2 (M) also (ξ, η) 7→ ∇ξη + A(ξ, η) is
a linear connection on M .

(ii) For affine connections ∇ and ∇̃ on M , the expression (ξ, η) 7→ ∇̃ξη−∇ξη defines
a
(
1
2

)
-tensor field on M .

(46) Suppose that ∇ is an affine connection on a smooth manifold M as in the last exercise.
Using exercise (44) prove that
(i) For fixed η ∈ X(M) one can interpret ξ 7→ ∇ξη as a

(
1
1

)
-tensor field ∇η on M .

(ii) There is a unique
(
1
2

)
-tensor field T on M such that T (ξ, η) = ∇ξη−∇ηξ− [ξ, η].

(iii) (only if you are ambitious) There is a unique
(
1
3

)
-tensor field R on M such that

R(ξ, η, ζ) = ∇ξ∇ηζ −∇η∇ξζ −∇[ξ,η]ζ.

(47) Use Lemma 3.3 to verify that for a vector field η ∈ X(M) and a one-form ω ∈ Ω1(M)
formula (3.9) of the course defines a one-form Lηω. Use that formula to compute
Lη(fω) and Lfηω for f ∈ C∞(M,R).

(48) Use formula (3.9) to compute the local coordinate expression of Lηω with respect to
a chart (U, u) on M from the local coordinate expressions of η and ω.

(49) In the spirit of exercise (44), view Φ ∈ T 1
1 (M) also as an operator X(M) → X(M),

which is linear over smooth functions. Use formula (3.10) of the course to prove that in
this picture, the Lie derivative LηΦ of Φ along a vector field η ∈ X(M) is characterized
by (LηΦ)(ξ) = [η,Φ(ξ)]−Φ([η, ξ]). Use this to compute to local coordinate expression
of LηΦ for a local chart (U, u) from the local coordinate expressions of η and Φ.

Hint: Use different notations for the operators X(M) → X(M) and X(M)×Ω1(M) →
C∞(M,R) induced by Φ and LηΦ in order to avoid confusion.

(50) Verify explicitly that for φ ∈ Ω1(M), ω ∈ Ωk(M) and vector fields ξ0, . . . , ξk ∈ X(M),
one has

(φ ∧ ω)(ξ0, . . . , ξk) =
∑k

i=0(−1)iφ(ξi)ω(ξ0, . . . , ξ̂i, . . . , ξk).

Similarly, show that for ω ∈ Ω2(M) and ξ1, ξ2, ξ3, ξ4 ∈ X(M), (ω ∧ ω)(ξ1, ξ2, ξ3, ξ4) is
a non-zero constant multiple of

ω(ξ1, ξ2)ω(ξ3, ξ4)− ω(ξ1, ξ3)ω(ξ2, ξ4) + ω(ξ1, ξ4)ω(ξ2, ξ3).



(51) For an open subset U ⊂ Rn, view a k-form ω ∈ Ωk(U) as a smooth function ω : U → Lk
a

as discussed in Section 3.6 of the course. For smooth functions ξi : U → Rn with
i = 0, . . . , k, compute the derivative of ω(ξ1, . . . , ξk) in direction of ξ0 in terms of the
derivatives of ω and of the ξi. Use this and the fact that D(ξj)(ξi)−D(ξi)(ξj) = [ξi, ξj]
to show that formula (3.17) is obtained from evaluating the function dω : U → Lk+1

a

(constructing via alternating Dω as described in Section 3.6) on the ξi.

(52) Using formulae (3.17), (3.18) and (3.19) as the definitions of the operators verify
Cartan’s magic formula Lηω = d(iηω) + iηdω in the case of a two-form ω ∈ Ω2(M).
If you are ambitious, you can try to prove the statement for k-forms along the same
lines.

(53) As in exercise (42) consider a smooth submanifold M ⊂ Rn+1 of dimension n and the
notion of local unit normals defined there. Show that there exists a globally defined
smooth unit normal n : M → Sn if and only if there exists a form ω ∈ Ωn(M) such
that ω(x) ̸= 0 for all x ∈ M .

Hint: Given a local unit normal n : U → Rn+1, insert n(x) into the determinant to
obtain a non-zero n-linear, alternating map (TxM)n → R and show that this defines a
nowhere-vanishing n-form on U . For U = M , this implies one direction of the claim.
Conversely, if ω ∈ Ωn(M) is nowhere vanishing, select one of the two possible unit

normals on a connected subset U ⊂ M by the fact that the form constructed above
is a positive multiple of ω|U . Show that these fit together to define a global smooth
unit normal.

(54) For an open subset U ⊂ R3 show that Ω3(U) can be identified with C∞(M,R) = Ω0(U)
via sending f ∈ C∞(M,R) to f det. Further show that sending ξ to Xx 7→ ⟨ξ(x), X⟩
and to (Xx, Yx) 7→ det(ξ(x), Xx, Yx) defines isomorphisms of X(U) with Ω1(U) and
Ω2(U), respectively.

Show that via these identifications, the exterior derivative in different degrees gives
gives rise to the operations of gradient, rotation, and divergence from vector analysis.

Hint: Express the identifications in terms of coordinate one forms to simplify the
computations of exterior derivatives.


