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Preface

The first version of these lecture notes was complied when I was teaching the course
“Analysis on Manifolds” in spring term 2020. After about 2 weeks of the semester,
Austria went into the first lock-down caused by the COVID19-crisis and Universities
switched to distance teaching without much preparation. In those circumstances, self
learning from the lecture notes supported by additional texts on the material that
were called “informal remarks” seemed like the best way to continue the course. Thus
the written notes that were prepared during the semester became the main source of
information for the students, and it seemed to me that this worked out very well. I
want to thank the participants of the course for several very helpful suggestions and
questions on the material which went into the notes right away.

Unexpectedly, I had to teach the same course in spring term 2021, still with quite
a lot of online teaching involved. The current version is for the course in spring term
2024, where things are back to normal (?). The lecture notes are the essential material
for the course.

The material covered in the notes constitutes the fundamentals of what is often called
“differential geometry”: The general theory of abstract smooth manifolds and smooth
mappings, vector fields, tensor fields, differential forms, and integration theory. The
point of view is mainly analytic, truly geometric aspects (i.e. situations in which there
are local invariants like curvature) only occur in examples. I decided to start with a
short discussion of submanifolds of Rn, which, on the one hand, provides a large number
of examples. On the other hand, I consider including submanifolds as important from
the point of view of motivation. For submanifolds the notion of tangent spaces is much
simpler and more intuitive, which is very helpful as a preparation for the definition of
tangent spaces used for abstract manifolds. Submanifolds are also used to outline the
fundamental principle I have follows throughout the text of using definitions that do
not depend on choices (e.g. of local coordinates) and use such choices only to explicitly
compute quantities that are known in advance to be well defined.

The material covered in the course is more or less standard. I have decided to
include a relatively careful discussion of Lie derivatives which emphasized the relation
to compatibility of tensor fields with the flow of a vector field. Moreover, there is a rather
careful discussion of integration of densities (which avoids the need of orientability) with
an emphasis on the volume density of a Riemann metric.

Apart from my own experience with the material and earlier lecture notes of mine
I have mainly used two books for preparing the notes, namely Peter Michor’s book
[Michor] and Jack Lee’s book [Lee]. I want to thank students form various semesters
who provided me with feedback on the course and the notes and with small corrections.
Particular thanks go to my colleague Michael Kunzinger who informed me that the
orignal version of Section 2.11 was not correct. This error has been corrected for the
2024 version of the course.

v





CHAPTER 1

Manifolds

The aim of this first chapter is to develop the fundamentals of the theory of abstract
smooth manifolds. The development will follow the books [Michor] (which does things
very quickly and condensed) and [Lee] (which contains more detailed information and
covers more material than the course). In contrast to both books, we will start with a
discussion of submanifolds of Rn. This provides lots of examples of smooth manifolds as
well as motivation, which is important for understanding the abstract concepts. Many
of the fundamental concepts, in particular the construction of tangent spaces and the
tangent bundle, are much simpler in the setting of submanifolds. At the same time,
this introduction will exhibit the shortcomings of the concept of submanifolds and the
motivation for the abstract concepts to be introduced afterwards.

Motivation: Submanifolds of Rn

In classical analysis, differentiation theory is developed on open subsets of Rn. The
fundamental purpose of any notion of a manifold is to extend differential calculus to a
broader class of “spaces”. In the theory of submanifolds, these “spaces” are taken to be
more general subsets of Rn. Throughout these lecture notes, “smooth” will mean C∞,
i.e. infinitely differentiable.

1.1. Submanifolds and smooth maps. The basic idea for the definition of a
smooth submanifold is rather easy. First, one observes that Rk ⊂ Rn is a (in general
non-open) subset on which differential calculus can be introduced without problems.
Second, one observes that differentiation is a local operation, so the definition should
focus on local properties of a subset. Finally, there is the concept of a diffeomorphism
between open subsets of Rn as a bijective smooth map, whose inverse is smooth, too, and
the image of subset under a diffeomorphism should be as nice as the original subset.
This readily leads to the definition of a smooth submanifold of Rn. One can then
introduce a concept of smooth maps between submanifolds via the classical notion for
maps between open subsets.

Definition 1.1. (1) A subsetM ⊂ Rn is called a smooth submanifold of dimension
k if for any x ∈ M , there are open subsets U, V ⊂ Rn with x ∈ U and there is a
diffeomorphism Φ : U → V such that Φ(U ∩ M) = V ∩ Rk. Here we view Rk as
the subset of Rn consisting of all points whose last n − k coordinates are zero. The
diffeomorphism Φ is called a local trivialization for M .

(2) For a smooth submanifold M ⊂ Rn and m ∈ N, a map f : M → Rm is called
smooth if for any x ∈M , there is an open subset U ⊂ Rn with x ∈ U and a smooth (in

the usual sense of analysis) map f̃ : U → Rm such that f̃ |U∩M = f |M∩U .
(3) Let M ⊂ Rn and N ⊂ Rm be submanifolds. Then a map f : M → N is called

smooth, if f is smooth as a map M → Rm.

There are several immediate consequences of these definitions. Of course, Rk ⊂ Rn

is a k-dimensional smooth submanifold (take U = V = Rn, Φ = id) and (2) and (3) lead
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2 1. MANIFOLDS

to the usual smooth maps. On the other hand, open subsets of Rn obviously are smooth
submanifolds of dimension n, and (2) and (3) recover the usual concept of smoothness
in this case, too.

As a subset of Rn, any submanifold M inherits a topology (open subsets are the
intersections of open subsets of Rn withM). From the definitions it follows readily that
any open subset of a k-dimensional submanifold is itself a k-dimensional submanifold.
Finally, it is also a direct consequence of the definitions that for a smooth submanifold
M ⊂ Rn of dimension k, an open subset W ⊂ Rn with M ⊂ W and a diffeomorphism
F : W → W̃ onto another open subset W̃ ⊂ Rn, also F (M) is a smooth submanifold of
dimension k (see exercises).

Example 1.1. Verifying the defining properties of a submanifold usually is a rather
annoying task, and we will soon meet much more efficient ways to verify that a subset
M ⊂ Rn is a smooth submanifold. Thus we only present one basic example here,
namely the unit sphere Sn−1 = {x ∈ Rn : |x| = 1}. Let us first construct a local
trivialization around e1 = (1, 0, . . . , 0) ∈ Sn−1 and for this purpose write points in Rn

as (t, y) with t ∈ R and y ∈ Rn−1. Then U := {(t, y) : t > |y|} ⊂ Rn is open and
contains e1. Likewise, V := {(z, s) : z ∈ Rn−1, |z| < 1, s ∈ R, s > −1} is an open subset
of Rn. Then we define Φ : U → Rn by Φ(t, y) := (1

t
y, |(t, y)| − 1) and Ψ : V → Rn

by Ψ(z, s) := (λ, λz), where λ = λ(z, s) := s+1√
1+|z|2

. These are evidently smooth and

a short computation shows that Φ has values in V , Ψ has values in U and the maps
are inverse to each other. Since the second component of Φ(t, y) evidently vanishes if
and only (t, y) ∈ Sn−1 ⊂ Rn, we have indeed constructed a local trivialization for Sn−1

around e1.
Now for a general point x ∈ Sn−1, there is an orthogonal linear map A on Rn such

that Ae1 = x. Then one defines Ux := A(U) and clearly Φx := Φ◦A−1 : Ux → V defines
a local trivialization of Sn−1 around x (with inverse A ◦Ψ).

Remark 1.1. For getting the right perspective it is important to realize that we do
not intend to study the geometry of submanifolds in this course, but only do analysis
on them. So in our example of the sphere Sn−1 ⊂ Rn it is not important that we have
used the round sphere. Any ellipsoid or (much more generally) the image of Sn−1 under
any diffeomorphism of Rn would be as good from our current point of view.

1.2. Tangent spaces and tangent maps. The basic idea of differentiation is to
find a linear approximation of a map in the neighborhood of a point (and then see further
how this depends on the point). For the case of maps between open subsets of Rn and
Rm, these approximations are just linear maps between these vector spaces. (Although
already in classical analysis it is better to consider these as copies of the ambient vector
spaces attached to the points in the open subsets.) In the case of submanifolds, one
first has to define appropriate vector spaces on which such linear approximations can
be defined, and usually one will obtain different spaces for different points. Still the
situation is relatively easy, since all these spaces can be realized as linear subspaces of
the ambient Rn.

Now it would be easy to obtain such a space using (the derivative of) a local trivi-
alization. However, taking a trivialization represents a choice and using a definition of
this type would require a verification that the result is independent of this choice. To
avoid this, it is an important principle in the theory of manifolds to use objects that
have an existence independent of choices as much as possible and use ingredients that
involve choices only to establish properties and/or to explicitly compute things. We
follow this principle here. Observe that Definition 1.1 in particular gives us a notion
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of smooth curves in a submanifold M ⊂ Rn. One simply takes smooth maps from an
open interval I ⊂ R to Rn that have values in M ⊂ Rn.

Definition 1.2. Let M ⊂ Rn be a smooth submanifold and x ∈M a point. Then
we define the tangent space TxM to M at x to be the subset of Rn formed by the
derivatives c′(0) of all smooth curves c : I → M , where I ⊂ R is an open interval with
0 ∈ I and c satisfies c(0) = x.

This definition of course makes sense for any subset of Rn, but in general it does not
lead to a linear subspace of Rn. On the other hand, if we can prove that the definition
leads to a linear subspace, then there is only one reasonable definition for the derivative
of a smooth map f :M → N between submanifolds: If one wants the chain rule to hold
and to recover the usual derivative for maps defined on open subsets, then the derivative
of f in x = c(0) has to send c′(0) to (f ◦c)′(0). Initially, it is unclear whether this is well
defined and leads to a linear map, but we can easily prove that all that really works.

Theorem 1.2. (1) For any k-dimensional submanifold M ⊂ Rn and any point
x ∈M , the tangent space TxM is a linear subspace of Rn of dimension k.

(2) Suppose that f :M → N is a smooth map between submanifolds. Then for each
point x ∈ M , there is a unique linear map Txf : TxM → Tf(x)N such that for any
smooth curve c : I →M as in Definition 1.2, we get Txf(c

′(0)) = (f ◦ c)′(0).
(3) If f : M → N and g : N → P are smooth maps between submanifolds, then

g ◦ f : M → P is smooth and for each x ∈ M , we have the chain rule Tx(g ◦ f) =
Tf(x)g ◦ Txf : TxM → T(g◦f)(x)P .

Proof. (1) We take a local trivialization Φ : U → V for M with x ∈ U and claim
that the derivative DΦ(x) : Rn → Rn restricts to a linear isomorphism TxM → Rk. If
c : I → M is a smooth curve as in Definition 1.2, we may assume c(I) ⊂ U (shrink
I if necessary). Then Φ ◦ c : I → Rn has the property that its last n − k coordinates
are identically zero, so the same holds for (Φ ◦ c)′(0) = DΦ(c(0))(c′(0)). This shows
that DΦ(x) maps TxM into Rk. Conversely for v ∈ Rk we can choose an open interval
I ⊂ R with 0 ∈ I such that Φ(x) + tv ∈ V (and thus in V ∩ Rk) for all t ∈ I.
Then c(t) := Φ−1(Φ(x) + tv) is a smooth curve c : I → M as in Definition 1.2 and
(Φ ◦ c)′(0) = DΦ(c(0))(c′(0)) = v, which completes the proof.

(2) By definition, there is an open subset U of Rn with x ∈ U and a smooth function

f̃ : U → Rm such that f̃ |U∩M = f |M∩U . The point about the proof is that Txf can be

obtained as a restriction of Df̃(x). Taking a smooth curve c : I → M as in Definition

1.2, we may again assume that c(I) ⊂ U ∩M . Then f̃ ◦ c is a smooth curve in Rm

and since c has values in U ∩M , f̃ ◦ c = f ◦ c. In particular, this has values in N , so
(f̃ ◦c)′(0) = (f ◦c)′(0) is a well defined vector in Tf(x)N . But the usual chain rule shows

that (f ◦ c)′(0) = (f̃ ◦ c)′(0) = Df̃(c(0))(c′(0)). This shows that (f ◦ c)′(0) depends only
on c′(0), so Txf : TxM → Tf(x)N is well defined and it is linear since it coincides with

the restriction of Df̃(x).

(3) This is also proved via the smooth extensions. By definition, we have open

subsets U ⊂ Rn and V ⊂ Rm with x ∈ U and f(x) ∈ V and smooth maps f̃ : U → Rm

and g̃ : V → Rp. Replacing U by U ∩ f̃−1(V ), we may assume that f̃(U) ⊂ V , and thus

g̃◦f̃ : U → Rp is a smooth function. For y ∈ U∩M , we get g̃(f̃(y)) = g̃(f(y)) = g(f(y)),
since f(y) ∈ V ∩N . Since this works in any point x, we conclude that g ◦ f is smooth.

Moreover, locally around x, g̃ ◦ f̃ is a smooth extension, so from the proof of part (2)

we know that Tx(g ◦ f) coincides with D(g̃ ◦ f̃)(x)|TxM . By the classical chain rule, the
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derivative equals Dg̃(f̃(x)) ◦Df̃(x). On TxM , the second map restricts to Txf and has
values in Tf(x)N , on which the first map equals Tf(x)g, and the result follows. □

In particular, in the case of smooth maps defined on open subsets, one recovers the
usual derivative.

Now we can also extend the concept of diffeomorphisms to submanifolds. A diffeo-
morphism between M and N is a smooth bijective map f : M → N such that also
the inverse f−1 : N → M is smooth. More generally, we say that f : M → N is a
diffeomorphism locally around x ∈ M if there is an open subset U ⊂ M with x ∈ U
such that f(U) ⊂ N is open and f : U → f(U) is a diffeomorphism (which makes
sense since U and f(U) are submanifolds). Finally, we call f a local diffeomorphism
if it is a diffeomorphism locally around each point x ∈ M . From the chain rule it
follows readily that if f : M → N is a diffeomorphism locally around x ∈ M then
Txf ◦ Tf(x)f−1 = idTf(x)N and Tf(x)f

−1 ◦ Txf = idTxM , so Txf is a linear isomorphism.
In particular, we see that this is only possible if M and N have the same dimension.
Moreover, for a local diffeomorphism, all tangent maps are linear isomorphisms.

1.3. Simpler descriptions. As mentioned already, it is often rather tedious to
verify the defining property of a submanifold directly. There actually are simpler char-
acterizations that we discuss next. Motivating these simpler conditions is rather easy.
In the definition of a local trivialization Φ : U → V for a submanifold M ⊂ Rn, it is
natural to split the target space Rn (that contains V ) as a product Rk×Rn−k. Accord-
ingly, we get Φ = (Φ1,Φ2), where Φ1 : U → Rk and Φ2 : U → Rn−k are smooth maps.
The defining property of Φ just says thatM ∩U = (Φ2)

−1({0}), so we have a realization
of M ∩ U as the zero locus of a smooth function with values in Rn−k. In addition, we
know that for each y ∈ M ∩ U the derivative DΦ(y) is a linear isomorphism, which of
course implies that DΦ2(y) is surjective. This is often phrased as the fact that M ∩ U
is a regular zero locus.

Similarly, we can restrict the inverse Φ−1 to the open subset W := V ∩ Rk of Rk.
This defines a smooth map ψ := Φ−1|W : W → Rn which is a bijection ontoM ∩U . The
fact that the derivative of Φ−1 in each point is a linear isomorphism of course implies
that Dψ(w) : Rk → Rn is injective for each w ∈ W . Moreover, ψ is continuous as a map
W →M ∩ U and the map Φ1 from above is a continuous inverse to ψ, so ψ is actually
a homeomorphism W →M ∩U . Such a map ψ is called a regular local parametrization
for M .

Now we can prove that either of these two parts of a local trivialization is sufficient
to make a subset M ⊂ Rn into a smooth submanifold. In addition, each of the two
descriptions comes with a corresponding description of the tangent spaces of M .

Theorem 1.3. Let M ⊂ Rn be a subset endowed with the induced topology. Then
the following conditions are equivalent:

(1) M is a k-dimensional submanifold of Rn.
(2) (“M admits local realizations as a regular zero locus”) For each x ∈M , there is

an open subset U ⊂ Rn with x ∈ U and a smooth function F : U → Rn−k such that

• M ∩ U = F−1({0})
• For each y ∈M ∩ U , DF (y) : Rn → Rn−k is surjective.

In this case, for each y ∈ U ∩M , we get TyM = ker(DF (y)).
(3) (“M admits local regular parametrizations”) For each x ∈ M , there are open

subsets V ⊂M with x ∈ V and W ⊂ Rk and a smooth function ψ : W → Rn such that

• ψ defines a homeomorphism W → V .
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• For each z ∈ W , Dψ(z) : Rk → Rn is injective.

In this case, for each z ∈ W , we get Tψ(z)M = im(Dψ(z)).

Proof. Our above considerations show that (1)⇒(2) and (1)⇒(3) hold.

(2)⇒(1): For a point x ∈ M with U and F as in (2), we construct a local trivi-
alization for M around x. As we have noted in 1.1, the image of a submanifold un-
der a diffeomorphism is again a submanifold. Thus we may first apply a translation
to assume without loss of generality that x = 0 ∈ Rn. Second, ker(DF (0)) is a k-
dimensional subspace of Rn and by applying an appropriate orthogonal linear map, we
may assume without loss of generality that ker(DF (0)) = Rk ⊂ Rn. Let us denote by
π : Rn → Rk the obvious linear projection π(a1, . . . , an) := (a1, . . . , ak). Now we con-
sider the map Φ := (π|U , F ) : U → Rk × Rn−k ∼= Rn. Its derivative in 0 is clearly given
by DΦ(0)(v) = (π(v), DF (0)(v)). But if DF (0)(v) = 0, then v ∈ ker(DF (0)) = Rk

and hence π(v) = v. This shows that DΦ(0) has trivial kernel and thus is a linear
isomorphism.

By the inverse function theorem, there is an open neighborhood Ũ of 0 in U such
that Φ restricts to a diffeomorphism from Ũ onto an open neighborhood V of (0, 0).
But for y ∈ Ũ , we by construction have y ∈ Ũ ∩M if and only if F (y) = 0 which in
turn is equivalent to Φ(y) ∈ V ∩ Rk.

In addition, if c : I → Rn is a smooth curve through y as in Definition 1.2, then we
may assume c(I) ⊂ U , so F ◦ c : I → Rn−k is defined. But since c has values in M , this
is identically zero and differentiating we conclude that 0 = DF (y)(c′(0)). This shows
that TyM ⊂ ker(DF (y)) and since these both are k-dimensional subspaces of Rn, they
have to agree.

(3)⇒(1): Again we take x ∈M and V ,W and ψ as in (3), as well as the point z0 ∈ W
such that x = ψ(z0). As in the above step we can translate M in such a way that x = 0
and then apply a rotation to assume without loss of generality that the k-dimensional
subspace im(Dψ(z0)) coincides with Rk ⊂ Rn. Now we view Rn−k as the subspace
of Rn for which the first k-coordinates are zero, and define Ψ : W × Rn−k → Rn by
Ψ(z, y) := ψ(z)+y. Differentiating at (z0, 0), we getDΨ(z0, 0)(v1, v2) = Dψ(z0)(v1)+v2,
so by construction DΨ(z0, 0) is surjective and hence a linear isomorphism. Thus there is
a neighborhood W̃ ⊂ W×Rn−k of (z0, 0) in Rn such that Ψ restricts to a diffeomorphism
from W̃ onto an open subset Ũ ⊂ Rn.

This is not enough to ensure that the inverse of Ψ defines a local trivialization
and we have to use the condition that ψ is a homeomorphism. Since W̃ ∩ Rk is open
in W , ψ(W̃ ∩ Rk) is open in M . Hence there is an open subset Ṽ ⊂ Rn such that
Ṽ ∩M = ψ(W̃ ∩Rk). Then U := Ṽ ∩ Ũ is an open subset of Rn that contains x, Ψ−1(U)
is open in Rn and Ψ−1|U : U → Ψ−1(U) is a diffeomorphism. If for y ∈ U , we have
Ψ−1(y) = (z, 0), then y = Ψ(z, 0) = ψ(z) ∈ M . Conversely, for y ∈ U ∩M ⊂ Ṽ ∩M ,
there is a unique element z ∈ W̃ ∩Rk such that ψ(z) = Ψ(z, 0) = y, so Ψ−1 indeed is a
local trivialization around x.

Finally, for z ∈ W and v ∈ Rk there is an open interval I ⊂ R containing 0 such that
z+ tv ∈ W for all t ∈ I. But then c : I →M , c(t) = ψ(z+ tv) is a curve as in Definition
1.2 with c(0) = ψ(z). Since c′(0) = Dψ(z)(v), we conclude that im(Dψ(z)) ⊂ Tψ(z)M ,
and since both are k-dimensional subspaces of Rn, they have to agree. □

Example 1.3. (1) We can now get a much easier argument why Sn−1 ⊂ Rn is a
smooth submanifold. Define F : Rn → R as F (x) := ⟨x, x⟩−1, so Sn−1 = F−1({0}). To
prove regularity, we use the chain rule to obtain DF (x)(v) = d

dt
|t=0F (x+ tv) = 2⟨x, v⟩.
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In particular, for x ̸= 0, we get DF (x)(x) ̸= 0 so Sn−1 can be globally realized as a
regular zero locus. This works in the same way for ellipsoids and similar subsets.

(2) Take an open subset U ⊂ Rk and a smooth function f : U → Rn−k and let
M ⊂ Rk × Rn−k be the graph of f . Thus M = {(x, f(x)) : x ∈ U} and we consider
ψ : U → Rk × Rn−k, ψ(x) := (x, f(x)). Of course, this is smooth and bijective onto
M . Moreover, the first projection onto Rk restricts to a continuous map M → U which
is evidently inverse to ψ. Thus we have found a global regular parametrization for M ,
which thus is a k-dimensional submanifold of Rn. Since the first projection is smooth,
we also see that ψ : U →M is a diffeomorphism, which illustrates the fact that we are
on the level of analysis rather than geometry here.

(3) For k ≤ n consider the space (Rn)k of k-tuples of vectors in Rn. It is most
convenient to view this as the space of n × k matrices by interpreting a matrix as a
collection of column vectors. Identify this with Rkn and let M ⊂ Rkn be the subspace
of k-tuples (a1, . . . , ak) of vectors that are orthonormal, i.e. satisfy ⟨ai, aj⟩ = δij. We
claim that this is a submanifold of dimension k(2n− k− 1)/2. To prove this, we denote
by V the vector space of symmetric k × k-matrices, which has dimension k(k + 1)/2.
Denoting by I the k × k-unit matrix, we define F : Rkn → V by F (A) := AtA − I.
If A = (a1, . . . , ak) then the matrix AtA has entries ⟨ai, aj⟩, so M = F−1({0}). To
compute the derivative of F we again use the chain rule to write

DF (A)(B) = d
ds
|s=0F (A+ sB) = d

ds
|s=0(A

t + sBt)(A+ sB)− I = AtB +BtA.

Now for C ∈ V put B := 1
2
AC. Since C is symmetric, we get Bt = 1

2
CAt and since

AtA = I, we see that DF (A)(B) = C. Hence F is regular, which proves the claim.
Observe that the global realization of M as a zero locus implies that M is a closed

subset of Rnk. Moreover, for A ∈ M , any coefficient of A has norm ≤ 1. Thus M is
bounded and hence compact by the Heine-Borel theorem. So we have found an example
of a compact submanifold. Note that for k = n, we obtain the subspace O(n) of all
orthogonal n × n-matrices in the space of all n × n-matrices. This is a group under
matrix multiplication, which obviously is a smooth map, so it is a fundamental example
of a compact Lie group.

1.4. Tangent bundle and tangent map. As a first application of the simpler
description of submanifolds, we show how to collect the derivatives of a smooth map in
individual points together to define a smooth map. To do this, one first has to collect
the tangent spaces of a submanifold in different points together in such a way that one
again obtains a submanifold.

Definition 1.4. (1) For a smooth submanifold M ⊂ Rn we define the tangent
bundle TM ⊂ Rn × Rn of M as the subset {(x, v) : x ∈M, v ∈ TxM}.

(2) LetM ⊂ Rn and N ⊂ Rm be submanifolds and let f :M → N be a smooth map.
Then we define the tangent map Tf : TM → TN of f by Tf(x, v) := (f(x), Txf(v)).

Proposition 1.4. (1) For a smooth submanifold M ⊂ Rn of dimension k, the
tangent bundle TM is a smooth submanifold of R2n of dimension 2k. The first projection
Rn × Rn → Rn induces a smooth map p = pM : TM →M .

(2) For a smooth map f : M → N between submanifolds, the tangent map Tf :
TM → TN is smooth, too, and it satisfies pN ◦ Tf = f ◦ pM .

(3) For smooth maps f : M → N and g : N → P between submanifolds, we have
the chain rule T (g ◦ f) = Tg ◦ Tf .

Proof. (1) Take a point (x, v) ∈ TM . Then we know that there is an open subset
U ⊂ Rn with x ∈ U and a smooth function F : U → Rn−k such thatM ∩U = F−1({0}).
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Now we define Ũ := U ×Rn ⊂ R2n and consider the smooth map F̃ : Ũ → Rn−k×Rn−k

by F̃ (y, w) := (F (y), DF (y)(w)). Now F̃ (y, w) = (0, 0) is equivalent to y ∈ F−1({0}) =
U ∩M and w ∈ ker(DF (y)) = TyM and thus to (y, w) ∈ Ũ ∩ TM . Assuming this, we
compute

DF̃ (y, w)(v1, v2) = (DF (y)(v1), D
2F (y)(w, v1) +DF (y)(v2)).

This readily implies that DF̃ (y, w) is surjective, which completes the proof of the first
part. The second part is clear, since the first projection is a global smooth extension of
p.

(2) Let us again take (x, v) ∈ TM . Then by assumption, there is an open subset

U ⊂ Rn and a smooth map f̃ : U → Rm such that f̃ |U∩M = f |M∩U . Similarly as above,

we define a smooth map φ : U × Rn → Rm × Rm by φ(y, w) := (f̃(y), Df̃(y)(w)). For
(y, w) ∈ (U×Rn)∩TM , we then get φ(y, w) = (f(y), Tyf(w)) = Tf(y, w), compare with
the proof of Theorem 1.2. Thus φ is a smooth extension of Tf on an open neighborhood
of (x, v) and smoothness follows. The last claim is obvious from the definition of Tf .

(3) This is an obvious consequence of the chain rule from Theorem 1.2. □

1.5. Local parametrizations and smooth maps. At this stage, we have defined
an analog of the derivative for smooth functions between submanifolds. Having this
at hand, we move towards the passage to abstract manifolds. In the description of
submanifolds via local parametrizations, the ambient space Rn already plays only a
relatively small role. We shall see next that local parametrizations can also be used
to characterize smoothness of maps between submanifolds in a way that eliminates the
need to use smooth extensions to open subsets in the ambient space. To derive this, we
first prove a lemma, which is of independent interest.

Lemma 1.5. Let ψ : U → V ⊂M be a local parametrization for a smooth submani-
fold M ⊂ Rn. Then ψ is a diffeomorphism from U onto V . Conversely, any diffeomor-
phism from an open subset of Rk onto an open subset of M is a local parametrization
for M .

Proof. By definition, ψ is smooth as a map to Rn and hence also as a map to M
and to V . So it remains to show that ψ−1 : V → U is smooth, too. For a point x ∈ V
take z = ψ−1(x). In the proof of Theorem 1.3, we have seen that there exists an open
neighborhood W̃ of (z, 0) in U × Rn−k and a diffeomorphism Ψ from W̃ onto an open
neighborhood of x in Rn that restricts to ψ on W̃ ∩ (U × {0}). The inverse Φ := Ψ−1

can be decomposed as (Φ1,Φ2) and then Φ1 : Ψ(W̃ ) → Rk is a smooth extension of ψ−1

to an open neighborhood of x in Rn, thus showing that ψ−1 is smooth.
For the converse assume that U ⊂ Rk and V ⊂M are open and that ψ : U → V is a

diffeomorphism. Then ψ is smooth as a map to V and hence as a map to Rn. Moreover,
the inverse of ψ is smooth and thus continuous, so ψ is a homeomorphism U → V .
Finally, we know that the tangent maps of a diffeomorphism are linear isomorphisms,
which shows that for any z ∈ U , Dψ(z) is injective as a map to Rn. Thus ψ satisfies all
properties of a local parametrization. □

Using this, the characterization of smooth maps follows rather easily.

Proposition 1.5. Let M ⊂ Rn and N ⊂ Rm be smooth submanifolds, which we
consider as topological spaces with the induced topologies. Then for a continuous map
f :M → N , the following conditions are equivalent.

(1) f is smooth
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(2) For any x ∈ M , there are local parametrizations φ : U → M and ψ : V → N
with x ∈ φ(U) and f(x) ∈ ψ(V ) such that ψ−1 ◦ f ◦φ is smooth as a map from the open
subset φ−1(f−1(ψ(V ))) ⊂ Rk to Rℓ.

(3) For any local parametrizations φ : U →M and ψ : V → N such that f−1(ψ(V ))∩
φ(U) ̸= ∅ the map ψ−1 ◦ f ◦ φ is smooth as in (2).

Proof. If we assume that f is smooth then for any local parametrization φ : U →
M , f ◦ φ : U → N is smooth as a composition of smooth functions. Thus also its
restriction to any open subset of U is smooth. On the other hand, Lemma 1.5 shows
that ψ−1 : ψ(V ) → V is smooth, so also ψ−1◦f ◦φ is smooth on its domain of definition,
so (1) implies (3). Evidently, (3) implies (2), so it remains to show that (2) implies (1).

In the setting of (2), we know from Lemma 1.5 that φ−1 : φ(U) → U is smooth and
thus the same holds for its restriction to any open subset of φ(U). But now we can
write the restriction of f to f−1(ψ(V )) as ψ ◦ (ψ−1 ◦f ◦φ)◦φ−1|f−1(ψ(V )), so we conclude
that f |f−1(ψ(V )) is smooth. By definition, this means that there is a smooth extension
of this restriction to an open neighborhood of x in Rn. Since x is arbitrary, this implies
that f is smooth. □

So for verifying smoothness of maps, the ambient space also is not really necessary.
But then it becomes visible, that there are natural examples of spaces that admit nice
local parametrizations, but for which it is unclear how to realize them as subsets of Rn.
As a simple example, let us consider the sphere Sn−1 ⊂ Rn, and define an equivalence
relation on Sn−1 by declaring each x ∈ Sn−1 to be equivalent to itself and to its antipodal
point −x. Then let RP n−1 be the set of equivalence classes endowed with the quotient
topology and let π : Sn−1 → RP n−1 be the obvious projection. The nice fact about this
is that any 1-dimensional linear subspace of Rn intersects Sn−1 in two antipodal points,
so one can also view RP n−1 as the space of all these linear subspaces.

By definition of the quotient topology, a subset U ⊂ RP n−1 is open if and only if
π−1(U) ⊂ Sn−1 is open. In particular, if we take an open hemisphere in Sn−1, then its
image under π will be an open subset of RP n−1. Hence we see that from appropriate local
parametrizations of Sn−1, we can easily construct the analogs of local parametrizations
of RP n−1. Indeed, it is clear that RP n−1 locally “looks like” Sn−1 so it should be possible
to extend differential calculus from Sn−1 to RP n−1. Now it turns out that RP n−1 can
be realized as a submanifold of RN for large enough N , but all the relation to Sn−1 and
to linear subspaces of Rn is lost in such a picture. Consequently, there is also not too
much intuitive meaning to the tangent spaces as subspaces in RN and similar concepts.
Finally, it is not obvious whether such a realization is unique and so on. Consequently,
it is preferable to completely dispense with the concept of an ambient space, which is
realized by the concept of an abstract manifold.

Abstract manifolds and smooth maps

1.6. Topological manifolds and smooth structures. The basic idea for the
definition of an abstract manifold is now rather easy to guess. One takes a sufficiently
nice topological space and looks for the analogs of local parametrizations. As we have
seen in 1.5, such a parametrization is just a diffeomorphism from an open subset of a
Euclidean space, so we may as well use the inverses of local parametrizations (“local
charts”) as basic ingredients. Since initially there is no notion of smoothness, these are
just defined to be homeomorphisms. However, there is a simple compatibility condition,
which makes sure that conditions analogous to Proposition 1.5 have the same meaning
in different charts. For the definition, we only need enough charts to cover the space,
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but we don’t want to give these charts a specific role, which leads to a more involved
definition.

Definition 1.6. (1) An n-dimensional topological manifold M is a second count-
able, Hausdorff topological space, which is locally Euclidean in the sense that each point
x ∈M has an open neighborhood which is homeomorphic to an open subset of Rn.

(2) A chart on a topological manifold M is a pair (U, u), where U ⊂ M is an open
subset and u is a homeomorphism from U onto an open subset u(U) ⊂ Rn.

(3) For k ∈ N ∪ {∞}, two charts (Uα, uα) and (Uβ, uβ) are called Ck-compatible if
Uαβ := Uα ∩Uβ is either empty or uαβ := uα ◦ uβ−1 is a Ck-diffeomorphism between the
open subsets uβ(Uαβ) and uα(Uαβ) of Rn.

(4) A Ck-atlas A on a topological manifold M is a collection {(Uα, uα) : α ∈ I} of
mutually Ck-compatible charts on M such that M = ∪α∈IUα.

(5) Two Ck-atlases A and B on a topological manifold M are called equivalent if
and only if each chart of A is Ck-compatible with each chart of B.

(6) A Ck-structure on a topological manifoldM is an equivalence class of Ck-atlases
on M . A Ck-manifold is a topological manifold M together with a Ck-structure on M .

Observe that by definition, the union of any family of equivalent atlases is an atlas
that is equivalent to any member of the family. In particular, a Ck-structure on M is
equivalent to a maximal atlas defined by the union of all the atlases in the equivalence
class. Here maximality of an atlasAmeans that any chart that is compatible with all the
charts of A is already contained in A. In what follows a chart on a Ck-manifold M will
mean one of the charts of the maximal atlas corresponding to the chosen Ck-structure
on M . Assume that (U, u) is such a chart and V ⊂ U is open. Then u(V ) ⊂ Rn is open
and u|V : V → u(V ) is a homeomorphism, and from the definitions it follows readily,
that (V, u|V ) is a chart, too.

Remark 1.6. (1) There are various ways to phrase the restrictions on the un-
derlying topology of a topological manifold. Notice in particular (see exercises) that
the Hausdorff property does not follow from the property of being locally Euclidean.
Another usual formulation is to require the topology to be metrizable and separable
(which implies that it is Hausdorff and second countable by standard results of topol-
ogy). On the other hand, the conditions in part (1) of Definition 1.6 imply that the
topology is metrizable and it is also well known that second countability implies sepa-
rability. Observe that both separability and second countability imply that M has at
most countably many connected components. Finally, since Rn is locally compact the
same holds for any topological manifold.

(2) Initially, it is not clear that a topological manifold has a well defined dimension.
This follows from algebraic topology, which implies that if U ⊂ Rn and V ⊂ Rm are
non-empty open subsets which are homeomorphic, then n = m. This would still allow
different connected components of M to have different dimensions, but one usually
excludes this possibility by definition. Once one is in a differentiable setting, things
become much easier, since for a diffeomorphism between open subsets the derivative in
each point has to be a linear isomorphism.

(3) We have allowed differentiability of class Ck in the definition only for complete-
ness. We will actually only work with class C∞ and use “smooth” as an equivalent
wording for C∞. Thus we speak about smooth atlases and smooth structures, etc. This
is no real restriction, since one can prove in general that any topological manifold that
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admits a C1-structure also admits a C1-equivalent smooth structure (and even an ana-
lytic structure, see below). Moreover, if two smooth structures onM are C1-equivalent,
then they are C∞-equivalent.

(4) Actually, the concepts in parts (3) to (6) of Definition 1.6 also make sense for the
class Cω of real analytic functions (i.e. those that can be locally written as convergent
power series). Finally, it is also possible to replace Rn by Cn in the definition and then
consider holomorphic analogs of the conditions in (3)–(6). This leads to the concept of
complex manifolds on which there is a notion of holomorphic functions. We will not
work with real analytic and complex manifolds in this course.

(5) It can be proved in general that a topological manifold of dimension n ≤ 3 always
does admit a smooth structure. This is not true in higher dimensions, there are (many)
topological manifolds that do not admit any C1-structure.

In Definition 1.6 we have chosen to start with a topology on M . This is because in
many applications one knows the “right” topology on a space that one wants to identify
as a smooth manifold in advance. However, it is also possible to start with just a set
and an atlas and to also construct a topology on M from that atlas. Since we will need
this for some constructions, we formulate it explicitly.

Lemma 1.6. Let M be a set and suppose we have given a family {(Uα, uα) : α ∈ I}
of subsets Uα ⊂ M and bijections uα : Uα → uα(Uα) onto open subsets of Rn such that
M = ∪α∈IUα and

• The index set I is finite or countable.
• For any two points x, y ∈ M with x ̸= y, there either is an index α such that
x, y ∈ Uα or there are indices α, β such that Uα ∩ Uβ = ∅ and x ∈ Uα and
y ∈ Uβ.

• For any two indices α, β ∈ I with Uαβ := Uα ∩ Uβ ̸= ∅, the sets uα(Uαβ) and
uβ(Uαβ) are open in Rn and the compositions uβα := uβ ◦uα−1 : uα(Uαβ) → Rn

and uαβ : uβ(Uαβ) → Rn are smooth.

Then there is a unique topology on M making it into a topological manifold and such
that {(Uα, uα) : α ∈ I} is a smooth atlas for M .

Proof. This mainly is a sequence of elementary verifications, more details will be
done in the exercises if needed. We first observe that uαβ and uβα are inverse smooth
bijections between the subsets uα(Uαβ) and uβ(Uαβ) so in particular, they are inverse
homeomorphisms. Now we define T to be the set of those subsets U ⊂M such that for
each α ∈ I, uα(U ∩Uα) is open in Rn. One directly verifies that this defines a topology
on M for which each of the sets Uα is open in M . The second condition then easily
implies that this topology is Hausdorff.

For V ⊂ uα(Uα), one obtains uβ(uα
−1(V ) ∩ Uβ) = uβα(V ∩ uα(Uαβ)) and if V is

open, this is open, too. Conversely, for an open subset V ⊂ Uα the image under uα is
open by definition, so uα : Uα → uα(Uα) is a homeomorphism. Finally, denoting open
balls in Rn by Br(x), the set

{(α, y, k) : α ∈ I, y ∈ Qn : B1/k(y) ⊂ uα(Uα)}

is countable by the first condition. Defining V(α,y,k) := uα
−1(B1/k(y)) we thus obtain

a countable family of open subsets of M , which are easily seen to be a basis for the
topology onM . HenceM is a topological manifold and then by construction {(Uα, uα) :
α ∈ I} is a smooth atlas on M . □
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1.7. Examples. (1) The single chart (U, idU) defines a smooth atlas on any open
subset U ⊂ Rn, thus making it into a smooth manifold of dimension n.

(2) LetM ⊂ Rn be a k-dimensional submanifold as defined in 1.1. Then for a family
of local parametrizations whose images cover M , the inverses define a smooth atlas for
M . Moreover, any two atlases obtained in this way are visibly equivalent. Hence M
canonically inherits the structure of a smooth manifold.

(3) Suppose that M is a smooth manifold and U ⊂ M is an open subset. Then
we claim that U is canonically a smooth manifold. To see this, take any smooth atlas
{(Uα, uα) : α ∈ I} for M . For any α, U ∩Uα is open in Uα, so uα(U ∩Uα) is open in Rn

and uα restricts to a homeomorphism on this subset. This shows that, with the induced
subspace topology, U is a topological manifold and that the restrictions of the charts
define a smooth atlas for U . From the definitions, it follows readily that starting from
an equivalent atlas for M , one arrives at an equivalent atlas for U .

(4) Consider smooth manifolds M and N and the product space M ×N . For charts
(U, u) forM and (V, v) for N , the product U×V is open inM×N and u×v : U×V →
u(U) × v(V ) is a homeomorphism. This shows that M × N is a topological manifold,
whose dimension is the sum of the dimensions of the two factors. Moreover, starting
with smooth atlases for the factors, one easily constructs a smooth atlas for the product,
and equivalent atlases on the factors lead to equivalent atlases for the product.

(5) It is easy to make the space RP n−1 from Section 1.5 into a smooth manifold (see
exercises). Alternatively, this is a special case of the following example.

(6) To discuss a substantial example, we consider the so-called Grassmann manifold
Gr(k, n), which is defined to be the space of all k-dimensional linear subspaces of Rn.
To endow this space with a topology, we start with the space V(k, n) of k-tuples of
linearly independent vectors in Rn. This can be viewed as a subset of the space of
(n × k)-matrices with real entries. For a matrix A with linearly independent columns,
we can choose k rows in A such that the corresponding (k×k)-submatrix of A has non-
zero determinant. Then all matrices for which that submatrix has non-zero determinant
form an open neighborhood of A contained in V(k, n), so V(k, n) is an open subset of
Rnk. Now we define an equivalence relation ∼ on V(k, n) by defining A ∼ B if and
only if the columns of A and B span the same linear subspace of Rn. Clearly the set of
equivalence classes is Gr(k, n), so there is a natural surjection q : V(k, n) → Gr(k, n)
which induces a topology on Gr(k, n).

Now fix a linear subspace E ∈ Gr(k, n) and a complementary subspace F ⊂ Rn.
Then Rn = E ⊕ F and we denote by πE and πF the corresponding projections, so in
particular ker(πE) = F . Then we consider the subset

U := {Z ∈ Gr(k, n) : Z ∩ F = {0}}.

Now we can find a linear map Rn → Rk whose kernel is F . (Choose bases for E and F ,
which together form a basis of Rn, send the basis vectors of E to the standard basis of Rk

and those of F to 0.) This is represented by a (k×n)-matrix C and we get A ∈ q−1(U)
if and only if det(CA) ̸= 0. Thus q−1(U) is open, so U is open by definition of the
quotient topology. For Z ∈ U , the restriction πE|Z has trivial kernel by construction,
so πE restricts to a linear isomorphism Z → E. Now we define u(Z) ∈ L(E,F ), the
space of linear maps from E to F , by u(Z) := πF ◦ (πE|Z)−1. Conversely, for a linear
map g : E → F , we define a linear subspace Z ⊂ Rn as Z := {v + g(v) : v ∈ E}.
One immediately verifies that this has dimension k, lies in U and that the construction
defines an inverse to u, so u : U → L(E,F ) is bijective.
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Now fix bases {vi} for E and {wj} for F as above and take (z1, . . . , zk) ∈ q−1(U).
Then the (n × n)-matrices A with columns vi and wj and B with columns zi and wj

are both invertible. The product A−1B then has a block form

(
C 0
D I

)
with blocks of

sizes k and n − k and with I denoting a unit matrix. The first k columns contain the
coefficients of the zi in the expansion as linear combinations of the vi and the wj. But
this says that C and D are the matrix representations of πE|Z and πF |Z in the given
bases, respectively. So for Z = q(z1, . . . , zk) the matrix expansion of u(Z) is DC−1.
This shows that u ◦ q : q−1(U) → L(E,F ) is continuous (and indeed smooth and even
real analytic), so u is continuous. Conversely, for g ∈ L(E,F ), we can realize u−1(g) as
q(v1+ g(v1), . . . , vk+ g(vk)), so this is continuous, too, and thus u is a homeomorphism.

We have actually seen now that u ◦ q is smooth, while u−1 can be written as q ◦ φ,
where φ is evidently smooth. But this implies that for a second chart (V, v), we can
write the chart-change v ◦u−1 as the restriction of v ◦q ◦φ to an open subset of u(U), so
this is smooth. So it only remains to verify that the topology on Gr(k, n) is Hausdorff
and second countable. But for two subspaces E1, E2 ∈ Gr(k, n), we can clearly find a
linear subspace F ⊂ Rn that is complementary to both E1 and E2. This implies that
E1 and E2 both are contained in the domain U of the chart defined by (E1, F ). Since U
is homeomorphic to L(E1, F ), we find disjoint open neighborhoods of these two points.
On the other hand, Gr(k, n) can be covered by finitely many charts. For example for
any k-element subset X of the standard basis of Rn, we can take the subspaces EX
spanned by these vectors and FX spanned by the remaining elements of the standard
basis. Taking the preimages of balls with rational center and radius under the chart
maps clearly gives rise to a countable basis for the topology on Gr(k, n).

1.8. Smooth maps. The main reason for using charts rather than local parametri-
zations is that charts immediately give rise to local coordinates on a manifold. Indeed,
if (U, u) is a chart for M , then we can write the map u : U → Rn in components as
u = (u1, . . . , un) and each ui : U → R is continuous. Given a function f : M → R, we
can then consider f ◦u−1 : u(U) → R and this is called the coordinate representation of
f with respect to the chart U . This clearly generalizes without problems to functions
with values in Rm.

A similar idea applies to maps between smooth manifolds, but one has to be a bit
careful with domains of definition in this case. So assume that F :M → N is a function
between smooth manifolds. Then we can proceed as above, using charts (U, u) for M
and (V, v) for N provided that F (U) ⊂ V . Under this assumption, we can simply
consider v ◦ F ◦ u−1 : u(U) → Rm, where m is the dimension of N . As above, this is
called the (local) coordinate representation of F with respect to the two charts. The
condition that F (U) ⊂ V is not a big deal if F is continuous. In this case, F−1(V ) is
open in M and hence for any open subset U ⊂ M , U ∩ F−1(V ) is open in U and as
observed in 1.6, we can restrict charts to open subsets.

In analogy to Proposition 1.5 we can now define smoothness of maps between man-
ifolds via smoothness of coordinate representations.

Definition 1.8. LetM and N be smooth manifolds and let F :M → N be a map.
(1) F is called smooth if and only if for any point x ∈M , there are charts (U, u) for

M and (V, v) for N such that x ∈ U , F (U) ⊂ V and such that v ◦F ◦ u−1 : u(U) → Rm

is smooth as a map on the open subset u(U) ⊂ Rn.
(2) F is called a diffeomorphism if and only if F is smooth and bijective and the

inverse map F−1 : N →M is smooth, too.
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(3) One says that F is a diffeomorphism locally around a point x ∈M if F is smooth
and there is an open subset U ⊂ M with x ∈ U such that F (U) is open in N and
F |U : U → F (U) is a diffeomorphism. The map F is called a local diffeomorphism if it
is a diffeomorphism locally around each point of M .

The following are simple consequences of the definitions:

• A composition of two smooth maps is smooth.
• A composition of two diffeomorphisms is a diffeomorphism.
• Restrictions of smooth maps to open subsets are smooth.
• If for a map F : M → N , there is an open covering {Uα : α ∈ I} of M such
that F |Uα : Uα → N is smooth for each α, then F is smooth.

• For any chart (U, u), the map u : U → u(U) is a diffeomorphism.

Next, we claim that a smooth map F : M → N is continuous. Indeed, for x ∈ M
we find charts (U, u) for M with x ∈ U and (V, v) for N with F (U) ⊂ V such that
v ◦ F ◦ u−1 : u(U) → v(V ) is smooth and thus continuous. Thus we can write F |U as
v−1 ◦ (v ◦ F ◦ u−1) ◦ u and since u and v−1 are continuous, we conclude that F |U is
continuous. Thus we can cover M by open sets Ui such that F |Ui

is continuous for all
i, so F :M → N is continuous.

Given a smooth map F : M → N and any chart (V, v) for N , we conclude that
F−1(V ) is open and the restriction of v ◦ F to any open subset of F−1(V ) is smooth.
This in turn implies that for any chart (U, u) for M , v ◦ F ◦ u−1 is smooth on the open
subset u(U ∩ F−1(V )) ⊂ Rn.

Finally, suppose that W ⊂M is open and that w is a diffeomorphism onto an open
subset w(W ) ⊂ Rn. Then w is a homeomorphism and our last observation says that for
each chart (U, u) for M , w ◦ u−1 : u(U ∩W ) → w(W ) is smooth, while smoothness of
w−1 implies that u ◦ w−1 : w(U ∩W ) → u(U) is smooth. But this says that (W,w) is
compatible to any chart onM and hence itself is a chart onM . Thus charts are exactly
the diffeomorphisms from open subsets of M onto open subsets of Rn.

Example 1.8. (1) From Proposition 1.5 we conclude that in the case of submani-
folds (and hence in particular of open subsets in Rn), we recover the concept of smooth-
ness from Definition 1.2.

(2) From the charts in Example (4) of 1.7 it is evident that on a product M ×N of
smooth manifolds the projections πM :M ×N →M and πN :M ×N → N are smooth
maps.

(3) The construction of charts in Example (6) of 1.7 shows that the map q : V(k, n) →
Gr(k, n) used there is smooth.

Remark 1.8. Having the notion of diffeomorphism at hand, we can now also discuss
the question of uniqueness of smooth structures on topological manifolds. There are
simple (and rather misleading) examples that show that there are smooth structures
on simple topological manifolds like R, which are different from the standard structure,
say the one induced by the single chart u : R → R, u(x) = x3. However, from our above
considerations we see that u actually is a diffeomorphism to the standard structure, so
these are not really different.

Still it may happen that a topological manifold admits several non-diffeomorphic
smooth structures (“exotic smooth structures”). For example, by results of J. Milnor,
there are 28 different smooth structures on S7, and from dimension 7 on, many spheres
carry (finitely many) exotic smooth structures. More drastically, on the topological
manifold R4, there are uncountably many different smooth structures, while in all other
dimensions Rn has just one smooth structure up to diffeomorphism. Fascinating as
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they are, these results do not really imply that one will run into choices of smooth
structures on well known spaces. The proofs of existence of exotic smooth structures
usually consist of constructing a smooth manifold in some way and then it is hard work
to show that this manifold is homeomorphic to some well known space and that the
structure is not diffeomorphic to the standard one.

1.9. Smooth functions and partitions of unity. We next study real valued
smooth functions on smooth manifolds. Our first main aim here is the proof of a result
that is technically very important for many constructions with smooth functions. The
space of smooth functions M → R will be denoted by C∞(M,R). From Definition
1.8, we see that f : M → R is smooth if and only if for each x ∈ M there is a chart
(U, u) for M with x ∈ U such that f ◦ u−1 : u(U) → R is smooth. This immediately
implies that C∞(M,R) is a vector space and an associative algebra under point-wise
operations. Likewise, if f : M → R is smooth such that f(x) ̸= 0 for all x ∈ M ,
then 1

f
is smooth, too. Recall that for a real valued function f defined on a topological

space X, the support supp(f) of f is defined as the closure {x : f(x) ̸= 0}. Otherwise
put, the complement of supp(f) is the maximal open subset of X on which f vanishes
identically.

We also need a few notions from topology. On the one hand, there are several
weakenings of the concept of compactness. In particular, a topological space X is called
a Lindelöff space if any open covering {Ui : i ∈ I} of X admits a countable subcovering,
i.e. there is a sequence (in)n∈N in I such that ∪n∈NUin = X. It is a simple result of
general topology (see exercises) that any second countable space is a Lindelöff space.

On the other hand, for a topological space X, a family {Ai : i ∈ I} of subsets
Ai ⊂ X is called locally finite if each point x ∈ X has an open neighborhood U in X,
which intersects only finitely many of the sets Ai.

Now suppose that M is a smooth manifold and we have given a family {φi : i ∈ I}
of smooth functions φi : M → R such that the family {supp(φi) : i ∈ I} of supports
is locally finite. Then for each x ∈ M , only finitely many of the numbers φi(x) are
non-zero, so

∑
i∈I φi(x) is well defined. In this way, we get a function M → R, which

we write as
∑

i∈I φi. Now given x ∈M , there is an open neighborhood U of x in M on
which only finitely many of the φi are not identically zero. This shows that (

∑
i∈I φi)|U

equals a finite sum of smooth functions and thus is smooth, too. In this way, we obtain
an open covering of M by sets on which

∑
i∈I φi is smooth, so we see from Section 1.8

that it is a smooth function M → R.
Finally, we recall from analysis that given r1, r2 ∈ R with 0 < r1 < r2, there is a

smooth function h : R → R with values in [0, 1] such that h(t) = 1 for t ≤ r1 and
h(t) = 0 for t ≥ r2 (“cutoff function”). To construct such a function, one mainly needs
a smooth function f : R → R such that f(t) = 0 for all t ≤ 0 and f(t) > 0 for all

t > 0, for example f(t) = e−1/t for t > 0. Then one just defines h(t) := f(r2−t)
f(r2−t)+f(t−r1)

and checks that this has the required properties. Using these observations, we can now
formulate the result:

Theorem 1.9. Let M be a smooth manifold and let {Ui : i ∈ I} be an open covering
of M . Then there is a family {φn : n ∈ N} of smooth functions on M such that

(i) For all x ∈M and n ∈ N, φn(x) ≥ 0.
(ii) For each n ∈ N there is in ∈ I such that supp(φn) ⊂ Uin.
(iii) The family {supp(φn) : n ∈ N} of supports is locally finite.
(iv) The sum

∑
n∈N φn is the constant function 1.
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Proof. Step 1. For i ∈ I and x ∈ Ui there is a function fx,i : M → R with
non-negative values such that fx,i(x) > 0 and supp(fx,i) ⊂ Ui:

Choose a chart (U, u) for M with x ∈ U and (without loss of generality) u(x) = 0 ∈
Rn. Since u(U ∩Ui) is open, there is ϵ > 0 such that Bϵ(0) ⊂ u(U ∩Ui). Using a cutoff
function for r1 = ϵ/2 and r2 = 2ϵ/3 we get a smooth function h : Rn → R with values
in [0, 1] which is identically one on Bϵ/2(0) and has support contained in Bϵ(0). Now
we define fx,i :M → R as h ◦u on U and as 0 on M \U . Since u−1(supp(h)) is a closed
set contained in U , its complement in M is open and, together with U , defines an open
covering of M . But fx,i is clearly smooth on U and on M \ u−1(supp(h)) (since it is
identically zero there), so fx,i :M → R is smooth.

Step 2. Pass to a countable and locally finite family:
By construction, {y : fx,i(y) ̸= 0} ⊂ Ui and these sets form an open covering of M .

SinceM is a Lindelöff space, countably many of these open sets coverM , and we denote
the corresponding functions by fn for n ∈ N and the indices by in, so supp(fn) ⊂ Uin .
For n ∈ N, we next define Wn := {x ∈M : fn(x) > 0, fk(x) < 1/n ∀k < n}. Taking a
smooth function f : R → [0,∞) such that f(t) > 0 iff t > 0 as above, we then define

gn(x) := fn(x)f(1/n− f1(x)) · · · f(1/n− fn−1(x)).

As a product of finitely many smooth functions with non-negative values, this is smooth
and has non-negative values. Moreover, gn(x) > 0 if and only if x ∈ Wn, so supp(gn) =
Wn ⊂ Uin . For x ∈ M , there by construction is an index n ∈ N such that fn(x) > 0.
Denoting by n0 the minimal index with this property, we get x ∈ Wn0 and hence
M = ∪n∈NWn. But for α := fn0(x) > 0, the set U := {y ∈ M : fn0(y) > α/2} is
an open neighborhood of x in M . Taking N ∈ N with 1/N < α/2 we see that for
y ∈ U and n ≥ N , we get fn0(y) > 1/n. If n > n0, this implies gn(y) = 0 and hence
U ∩ supp(gn) = ∅. Thus the family Wn is locally finite.

Step 3. Construct the functions φn.
Since the family supp(gn) is locally finite, we know that g(x) :=

∑
n∈N gn(x) defines

a smooth function. By constructions all summands are non-negative and at least one
of them is positive, so g(x) > 0 for all x. Hence 1/g is a smooth function on M , and

for n ∈ N, we define φn(x) :=
gn(x)
g(x)

. Since supp(φn) = supp(gn) = Wn by construction,

we see that this family satisfies all claimed properties. □

A family of functions (without restrictions on the index set) which satisfies conditions
(i), (iii), and (iv) is called a partition of unity. Condition (ii) is phrased as the fact
that the partition of unity is subordinate to the open covering {Ui : i ∈ I} of M . A
typical application of partitions of unity is the following result.

Corollary 1.9. Let M be a smooth manifold, U ⊂ M open and A ⊂ M closed,
such that A ⊂ U . Then for any smooth function f : U → R, there is a smooth function
f̃ :M → R such that f̃ |A = f |A.

Proof. Putting U1 := U and U2 := M \ A, {U1, U2} is an open covering of M ,
so Theorem 1.9 gives us a family {φn : n ∈ N} of smooth functions. Define K ⊂
N to be the set of those n for which supp(φn) ⊂ U2, and define φ : M → R by
φ :=

∑
n/∈K φn. Then this is a smooth function with values in [0, 1] and we claim that

supp(φ) ⊂ ∪n/∈K supp(φn) ⊂ U1. The second inclusion is clear, since n /∈ K implies
supp(φn) ⊂ U1. To see the first inclusion, it suffices to show that ∪n/∈K supp(φn) is
closed, since it evidently contains the set {y : φ(y) > 0}. But for x /∈ supp(φn) for all
n /∈ K, we find an open neighborhood V of x that intersects only finitely many of the
sets supp(φn). Since the latter are closed, the complement of their union in V is open
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and thus an open neighborhood of x contained in the complement of ∪n/∈K supp(φn).
Finally, φ can also be written as 1−

∑
n∈K φn. But for n ∈ K, φn vanishes identically

on A, so φ is identically one on A.
Now given f , we can define f̃ as fφ on U and as zero on M \ supp(φ). Since these

are two open subsets that together cover M and on which f̃ is evidently smooth, the
claim follows. □

Tangent spaces and the tangent bundle

The definition of the tangent spaces for an abstract manifold is significantly more
complicated than in the case of submanifolds. It would be rather easy to define tangent
spaces via local charts, but this would lead to a notion in which one has to make a choice
in order to express a tangent vector. Consequently, in the further development there
is the constant need to check independence of that choice, which makes the approach
unsatisfactory. So we will rather put a bit of effort into a definition of tangent vectors
that does not need choices, and for which it is evident that the tangent space is a vector
space. These tangent vectors can then be described in local charts.

1.10. Tangent spaces in Rn. The basis for the general definition is an alterna-
tive description of the tangent spaces of Rn (or of submanifolds). The definition for
submanifolds in 1.2 does not carry over to abstract manifolds, since there is no evident
notion of the derivative of a smooth curve in a point. One could use a definition via an
equivalence relation on curves (see Section 1.13 below) but this again comes with the
need of choosing representatives. The idea that works for abstract manifolds is to view
a tangent vector at a point as a “direction into which smooth real valued functions can
be differentiated”. It turns out the the operators of directional derivatives in a point
can be easily characterized algebraically, and one can then define a tangent vector as
an operator of that type.

For a point a ∈ Rn, a vector v ∈ Rn and f ∈ C∞(Rn,R) put va(f) := Df(a)(v).
This clearly defines a linear map va : C

∞(Rn,R) → R and the product rule shows that
va(fg) = va(f)g(a) + f(a)va(g). We call a linear map with this property a a derivation
at a. From the definition it follows readily that the derivations at a form a linear
subspace of the space L(C∞(Rn,R),R) of linear maps. The following result provides
crucial motivation.

Lemma 1.10. For any point a ∈ Rn the map v 7→ va defines a linear isomorphism
from Rn onto the space of all derivations at a.

Proof. Since Df(a) : Rn → R is linear, we see that v 7→ va is linear. For the ith
coordinate function xi, we obtain va(x

i) = vi, the ith component of v. Thus va = wa
implies v = w and we can complete the proof by showing that any derivation at a is of
the form va for some v ∈ Rn.

So let D : C∞(Rn,R) → R be a derivation at a. For the constant function 1,
we get 1 = 1 · 1 and thus D(1) = D(1 · 1) = 2D(1), so D vanishes on 1 and hence
on all constant functions. Now the result follows from a simple instance of Taylor’s
theorem. We can write f(x) = f(a)+

∫ 1

0
d
dt
f(a+t(x−a))dt. Computing the derivative as∑

i
∂f
∂xi

(a+t(x−a))(xi−ai), we can take the sum and the factors xi−ai out of the integral.
Defining hi(x) :=

∫ 1

0
∂f
∂xi

(a+t(x−a))dt, we thus obtain f(x) = f(a)+
∑n

i=1 hi(x)(x
i−ai).

Inserting this, we get

D(f) = 0 +
∑

iD(hi · (xi − ai)) =
∑

i(D(hi)(a
i − ai) + hi(a)D(xi − ai)).
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In the last term, we can drop ai and form the vector v with components vi = D(xi).
Observing that hi(a) =

∂f
∂xi

(a), we conclude that D(f) =
∑

i
∂f
∂xi

(a)D(xi) = va(f). □

Guided by this result, one could try to define tangent spaces on manifolds via deriva-
tions at points on C∞(M,R). This works out, but it would make some of the subsequent
proofs rather clumsy. Hence it is better to do yet another technical step to localize
things.

1.11. Germs. This is a notion of “functions defined locally around a point” which
is important in many areas of mathematics. The concept makes sense for many classes
of functions, but we will only consider smooth ones. Given a smooth manifold M and a
point x ∈M , we consider the set of all pairs (U, f), where U ⊂M is an open subset with
x ∈ U and f : U → R is a smooth function. So these are just smooth functions defined
on some open neighborhood of x. On this set, we define a relation by (U, f) ∼ (V, g) if
and only if there is an open subset W ⊂ U ∩ V with x ∈ W such that f |W = g|W . One
immediately verifies that this is an equivalence relation. The set of equivalence classes
is denoted by C∞

x (M,R) and called the space of all germs at x of smooth functions.
Observe that all representatives of a germ have the same value at x. Thus any germ
has a well defined value in x, but there are no well defined values in other points.

Proposition 1.11. (1) Point-wise addition and multiplication of functions induce
well defined operations on C∞

x (M,R) making it into a commutative associative algebra
over R.

(2) Let F :M → N be a smooth map between manifolds. Then for each point x ∈M ,
composition with F induces an algebra homomorphism F ∗

x : C∞
F (x)(N,R) → C∞

x (M,R).
If F is a diffeomorphism or the inclusion of an open subset, then F ∗

x is an isomorphism
of algebras for all x ∈M .

Proof. (1) Given representatives (U, f) and (V, g) for two germs, one adds respec-
tively multiplies the restrictions of the functions to U ∩ V and takes the class of the
result to define the operations. A simple direct check shows that this is well defined.
Having that, given finitely many germs, one can always choose representatives defined
on the same open subset of M , and doing this all claimed properties of the operations
are obviously satisfied.

(2) Given a germ at F (x), choose a representative (U, f). Since F is continuous,
F−1(U) is an open subset inM that contains x, so we can form the class of (F−1(U), f ◦
F ) in C∞

x (M,R). Clearly, this is independent of the choice of representative, so we
obtain a well defined map F ∗ as claimed. On the level of representatives, composition
with F is obviously compatible with point-wise operations, so we conclude that F ∗ is
an algebra homomorphism.

If F is a diffeomorphism, one puts G := F−1. On the level of representatives,
composition with G is inverse to composition with F and thus G∗

F (x) is inverse to F ∗
x .

Finally, consider the inclusion i : V ↪→ M of an open subset. Then i∗ is induced by
sending a representative (U, f) for a germ at x to (U ∩V, f |U∩V ), so this clearly induces
an isomorphism. □

A smooth function f ∈ C∞(M,R) determines a germ at any point x ∈ M , namely
the class of (M, f). This leads to an algebra homomorphism C∞(M,R) → C∞

x (M,R).
For smooth functions, this homomorphism is always surjective (which is the reason why
we could work with derivations on C∞(M,R)). Given a representative (U, f) for a germ
at x, we can use balls in a chart around x to construct an open subset V ⊂ M such
that x ∈ V and V ⊂ U . By Corollary 1.9, there is a smooth function f̃ :M → R, which
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agrees with f on V and thus on V and hence determines the same germ at x as f . This
result becomes wrong already for real analytic functions.

1.12. Tangent spaces and tangent maps in a point for abstract manifolds.
Motivated by Lemma 1.10, we now define tangent spaces on abstract manifolds. For
simplicity, in what follows we ignore the domain of definition for representatives of germs
and simply denote them in the same way as functions.

Definition 1.12. Let M be a smooth manifold, let x ∈ M be a point and let
C∞
x (M,R) be the algebra of germs of smooth functions at x. Then we define the

tangent space TxM to M at x to be the space of linear maps Xx : C∞
x (M,R) → R,

which are a derivation at x in the sense that Xx(fg) = Xx(f)g(x) + f(x)Xx(g).

We have defined TxM as a subset of the space L(C∞
x (M,R),R) which is a vector

space under point-wise operations. But it is obvious that a linear combination of deriva-
tions at x is again a derivation at x, so TxM actually is a linear subspace and hence
canonically a vector space. To see that this has the properties one would expect, we
have to study tangent maps. Keeping in mind that derivations at x represent direc-
tional derivatives, the definition of tangent maps is again forced by the chain rule (read
backward this time), which says that D(f ◦ F )(x)(v) = Df(F (x))(DF (x)(v)).

Theorem 1.12. LetM and N be smooth manifolds and let F :M → N be a smooth
map. For a point x ∈M let F ∗ = F ∗

x : C∞
F (x)(N,R) → C∞

x (M,R) be the homomorphism
from Proposition 1.11.

(1) For Xx ∈ TxM , Xx ◦ F ∗
x : C∞

F (x)(N,R) → R is a derivation at F (x). Denoting

this by TxF (Xx), we obtain a linear map TxF : TxM → TF (x)N .
(2) If F is a diffeomorphism or the embedding of an open subset, then TxF is a

linear isomorphism for each x ∈M . In particular, if M has dimension n, then for each
x ∈M , the vector space TxM has dimension n.

(3) If G : N → P is another smooth map, then we get the chain rule

Tx(G ◦ F ) = TF (x)G ◦ TxF : TxM → TG(F (x))P.

In particular, if F is a diffeomorphism with inverse G then TF (x)G is inverse to TxF .

Proof. (1) From Proposition 1.11, we know that F ∗(fg) = F ∗(f)F ∗(g) and clearly
F ∗(f)(x) = f(F (x)), and thus Xx ◦ F ∗ is a derivation at F (x). Linearity of TxF then
is obvious.

(2) Again from Proposition 1.11, we know that F ∗ is an isomorphism of algebras,
which implies that also its inverse is an isomorphism of algebras. The proof of (1) shows
that composition with this inverse maps derivations at F (x) to derivations at x, and
hence defines an inverse to TxF . For the last statement, let (U, u) be a chart for M
containing x. Since U is open inM , we see that TxM ∼= TxU and since u : U → U(U) is
a diffeomorphism, this is in turn isomorphic to Tu(x)u(U). But from Lemma 1.10 (whose
proof applies to germs without problems), we know that this coincides with the usual
tangent space which has dimension n.

(3) On representatives, the map (G ◦ F )∗ is induced by f 7→ f ◦ G ◦ F , which
immediately implies that (G ◦ F )∗ = F ∗ ◦G∗. But then

Tx(G ◦ F )(Xx) = (Xx ◦ F ∗) ◦G∗ = TxF (Xx) ◦G∗ = TF (x)G(TxF (Xx)),

and the chain rule follows. For the second statement, one only has to observe that
for the identity map, also id∗ is the identity and so all tangent maps are the identity
map. □
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As we have observed already, any f ∈ C∞(M,R) determines a germ at x, so a
tangent vector Xx ∈ TxM also defines a linear map C∞(M,R) → R. By construction,
this is again a derivation at x in the sense that Xx(fg) = Xx(f)g(x) + f(x)Xx(g).
As announced already, one can also view the tangent space as the space of all those
derivations.

Proposition 1.12. Let M be a smooth manifold and x ∈ M a point. Let D :
C∞(M,R) → R be a linear map such that D(fg) = D(f)g(x) + f(x)D(g). Then there
is a unique Xx ∈ TxM such that D(f) = Xx(f).

Proof. To see this, we have to show that D(f) = D(g) if f and g have the same
germ at x. By definition, this means that there is an open neighborhood U of x ∈ M
such that f |U = g|U , so f−g vanishes identically on U . From 1.9, we know that there is
a smooth function φ :M → R with values in [0, 1] such that φ(x) = 1 and supp(φ) ⊂ U .
But then φ(f − g) vanishes identically, so linearity of D implies that

0 = D(φ(f − g)) = D(φ)(f − g)(x) + φ(x)D(f − g) = 0 +D(f)−D(g),

so D(f) = D(g). □

1.13. Description via curves. A description of tangent vectors via curves is also
available for abstract manifolds. This also shows that in the case of submanifolds of Rn

we recover the notions of tangent spaces and tangent maps from 1.2. Let I ⊂ R be an
open interval with 0 ∈ I and c : I → M a smooth map to a smooth manifold M and
put c(0) = x ∈ M . If f : U → R represents a germ at x, f ◦ c is a smooth real valued
function defined locally around 0 on R, so we can form (f ◦ c)′(0) ∈ R. Evidently, this
defines an element of TxM , which we denote by c′(0). Similarly, one gets c′(t) ∈ Tc(t)M
for all t ∈ I, but this will not be needed at the moment. Observe that by the chain rule
and Lemma 1.10 this recovers the usual derivative of curves if M is an open subset of
Rn.

Next assume that F : M → N is a smooth map. Then for a representative f of a
germ at F (x) we by definition get

TxF (c
′(0))(f) = c′(0)(f ◦ F ) = (f ◦ F ◦ c)′(0) = (F ◦ c)′(0)(f).

Thus TxF (c
′(0)) = (F ◦ c)′(0), which is the expected behavior of the tangent map. Now

we can apply this to a local chart (U, u) forM with x ∈ U . We get Txu(c
′(0)) = (u◦c)′(0)

and in the proof of Theorem 1.12 we have observed that Txu is a linear isomorphism.
This shows that any element of TxM can be written as c′(0) for an appropriate curve c.
Indeed, for v ∈ Rn the curve cv(t) := u−1(u(x)+ tv) is defined on an open neighborhood
of zero and satisfies Txu(c

′
v(0)) = v.

On the other hand, we see that for two curves c1, c2 with c1(0) = c2(0) = x as above,
we have c′1(0) = c′2(0) if and only if for one or equivalently any chart (U, u) for M with
x ∈ U , we obtain (u ◦ c1)′(0) = (u ◦ c2)′(0). This clearly defines an equivalence relation
on such curves and the set of equivalence classes is isomorphic to TxM . Moreover, if
M is a submanifold of Rm, then of course (u ◦ c1)′(0) = (u ◦ c2)′(0) holds if and only if,
viewed as curves to Rm, c1 and c2 have the same derivative at 0. Thus, for submanifolds
of Rm we recover the tangent spaces and tangent maps from 1.2. In the case of abstract
manifolds, dealing with equivalence classes cannot be avoided by forming a derivative
as a curve in some ambient space, however.
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1.14. Tangent vectors in local charts. It is now easy to interpret tangent vectors
in local charts. For a local chart (U, u) forM and x ∈ U , Txu : TxM → Tu(x)Rn ∼= Rn is a
linear isomorphism. In the picture of derivations, the elements of the standard basis for
Rn correspond to the partial derivatives of a function in a point. Mapping them to TxM
with Tu(x)u

−1, the results act on a smooth function f :M → R as the partial derivatives
of f ◦ u−1 in the point u(x). Now f ◦ u−1 is exactly the local coordinate representation
of f with respect to the chart (U, u) from 1.8. Therefore, these elements are usually
denoted by ∂

∂ui
|x, where, as before, we write u in components as u = (u1, . . . , un).

It is also easy to relate these pictures for different charts. Take two charts (Uα, uα)
and (Uβ, uβ) with x ∈ Uαβ := Uα ∩ Uβ. Recall that uα(Uαβ) and uβ(Uαβ) are open sub-
sets in Rn, and we have the chart change uαβ := uα ◦ uβ−1 : uβ(Uαβ) → uα(Uαβ)
which is a diffeomorphism. On Uαβ, we by construction have uα = uαβ ◦ uβ and
hence Txuα = Tuβ(x)uαβ ◦ Txuβ. Moreover, we know that Tuβ(x)uαβ is just the ordi-
nary derivative Duαβ(uβ(x)). Alternatively, we can write the relation as (Txuβ)

−1 =
(Txuα)

−1 ◦ Duαβ(uβ(x)). Denoting the vector in Rn that Xx ∈ TxM corresponds to
under uα by vα = (v1α, . . . , v

n
α) and similarly for uβ, we get

(1.1) viα =
∑

j ∂ju
i
αβ(uβ(x))v

j
β,

where ∂j denotes the jth partial derivative. Thus we see that we can interpret elements
in the tangent space TxM as equivalence classes of pairs ((U, u), v), where (U, u) is a
chart with x ∈ U and v is vector in Rn. Then formula (1.1) describes an equivalence
relation on the set of these pairs and TxM is the set of equivalence classes.

Alternatively, we may compute

Txuα

(
∂

∂uβi |x
)
= Duαβ(uβ(x))(ei) = ∂iuαβ(uβ(x)),

which leads to

(1.2) ∂
∂uβi |x =

∑
j ∂iu

j
αβ(uβ(x))

∂
∂uαj |x.

The difference between these two rules just expresses the familiar fact from linear algebra
that the transformation between two bases of a vector space and the transformation
between coordinate vectors between these two bases are represented by inverse matrices.

1.15. Tangent bundle and tangent maps. We can also rephrase the compu-
tations above as saying that Txuα ◦ (Txuβ)−1 = Duαβ(uβ(x)) and this visibly depends
smoothly on x. Thus we are led to a natural idea for obtaining a tangent bundle for
abstract manifolds. Given a smooth manifold M , we define TM as a set to be the
disjoint union of the tangent spaces TxM for all points inM . This comes with a natural
map p : TM → M that sends TxM to x for each point x ∈ M . Using Lemma 1.6 and
the above considerations, we can make this into a manifold.

Theorem 1.15. For any smooth manifold M , the space TM can be naturally made
into a smooth manifold such that p : TM →M is a smooth map.

Proof. Start with a countable atlas {(Uα, uα) : α ∈ I} forM . For each α, consider
the set p−1(Uα) of tangent spaces at points in Uα. Define Tuα : p−1(Uα) → uα(Uα)×Rn

by Tuα(Xx) := (uα(x), Txuα(Xx)) for x ∈ Uα and Xx ∈ TxM . We claim that the family
{(p−1(Uα), Tuα) : α ∈ I} satisfies the conditions of Lemma 1.6. Clearly, uα(Uα)×Rn is
open in R2n and since Txuα is a bijection TxM → Rn, we see that Tuα is bijective. It
is also clear that the sets p−1(Uα) cover TM .

Next, p−1(Uα)∩p−1(Uβ) = p−1(Uαβ), which is mapped to the open set uα(Uαβ)×Rn

by Tuα. Finally, Tuα ◦ (Tuβ)
−1 by construction sends (z, v) to (uαβ(z), Duαβ(z)(v))
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which is evidently smooth. The condition ensuring the Hausdorff property in Lemma
1.6 is not satisfied in general, but we can easily see that the topology on TM induced
as in the proof of Lemma 1.6 is Hausdorff: If two points of TM do not lie in a common
chart, then they are in different tangent spaces, and so their base points can be separated
by open subsets inM , whose preimages under p are disjoint open subsets of TM . Hence
Lemma 1.6 provides a smooth manifold structure on TM for which {(p−1(Uα), Tuα) :
α ∈ I} is an atlas. In the charts (p−1(Uα), Tuα) for TM and (Uα, uα) for M , p is just
given as the first projection, so p : TM →M is smooth.

Finally, one has to check that this is independent of the choice of the countable atlas
we started with. But for any chart (U, u) on M , the above considerations show that
(p−1(U), Tu) is compatible with each of the charts (p−1(Uα), Tuα). This shows that
starting from an equivalent countable atlas for M , one arrives at an equivalent atlas for
TM , so the smooth structure on TM is canonical. □

Now we can go ahead and define tangent maps in general. Suppose that F :M → N
is a smooth map between manifolds. Then by definition, TM and TN are just the union
of the tangent spaces and we define TF : TM → TN by the fact that on TxM , TF is
given by TxF . In particular, this means that TF (TxM) ⊂ TF (x)N or, otherwise put,
that p ◦ TF = F ◦ p, where we denote the projections on both tangent bundles by p.
This also implies that TF−1(p−1(V )) = p−1(F−1(V )) for any open subset V ⊂ N .

Proposition 1.15. (1) For a smooth map F : M → N , also the tangent map
TF : TM → TN is smooth. More precisely, local coordinate representations of TF with
respect to charts on TM and TN induced by charts of M and N are given by the local
coordinate representation of F and its derivative.

(2) For smooth maps F : M → N and G : N → P , we have the chain rule
T (G ◦ F ) = TG ◦ TF .

Proof. (1) For a point x ∈ M we know that there are charts (U, u) for M with
x ∈ U and (V, v) for N such that U ⊂ F−1(V ). Then p−1(U) ⊂ TF−1(p−1(V )), and we
have the smooth local coordinate representation v ◦ F ◦ u−1 : u(U) → v(V ) of F . For
z ∈ u(U) and x = u−1(z), we already know that Tz(v ◦ F ◦ u−1) = TF (x)v ◦ TxF ◦ Tzu−1

and that Tzu
−1 = (Txu)

−1. Finally, since v ◦F ◦u−1 maps between open subsets of Rn’s,
the tangent map coincides with the ordinary derivative. But this exactly says that for
(z, w) ∈ u(U)× Rn we get

Tv ◦ TF ◦ (Tu)−1(z, w) = (v ◦ F ◦ u−1(z), D(v ◦ F ◦ u−1)(z)(w)).

This proves both that TF is smooth and the claim about local coordinate represen-
tations. The statement in (2) is then a direct consequence of part (3) of Theorem
1.12. □

Example 1.15. Consider the product M ×N of two smooth manifolds M and N ,
which is a smooth manifold by part (4) of 1.7. Moreover, we know that the projections
πM : M × N → M and πN : M × N → N are smooth, so we have their tangent maps
TπM : T (M × N) → TM and TπN : T (M × N) → TN . Using these as components,
we obtain a map (TπM , TπN) : T (M × N) → TM × TN . But now for charts (U, u)
for M and (V, v) for N , we have obtained a chart (U × V, u × v) for M × N , and this
in turn defines a chart (p−1(U × V ), T (u× v)) for T (M ×N). On the other hand, the
induced charts (p−1(U), Tu) for TM and (p−1(V ), T v) for TN together give rise to a
chart (p−1(U)× p−1(V ), Tu× Tv) for TM × TN . But from the definitions it is obvious
that (TπM×TπN)(p−1(U×V )) ⊂ p−1(U)×p−1(V ) and that (Tu×Tv)◦(TπM×TπN)◦
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T (u × v)−1 simply sends ((x, y), (w1, w2)) to ((x,w1), (y, w2)). This easily implies that
TπM × TπN is bijective and admits local smooth inverses, so it is a diffeomorphism.

Special smooth maps

To conclude this chapter we study the general concept of submanifolds and a few
special types of smooth maps.

1.16. Submanifolds. The following definition generalizes Definition 1.1 in an ob-
vious way.

Definition 1.16. Let M be a smooth manifold of dimension n. A subset N ⊂ M
is called a k-dimensional submanifold of M if for each x ∈ N , there is a chart (U, u) for
M with x ∈ U such that u(U ∩ N) = u(U) ∩ Rk. As before, we view Rk ⊂ Rn as the
subspace of points for which the last n− k coordinates are zero.

Charts as in the definition are referred to as submanifold charts for N . Loosely
speaking, a submanifold looks like a linear subspace in appropriate charts. (One only
requires existence of submanifold charts, nothing is required about what the intersection
with N looks like in other charts. It is a nice exercise to observe that this image will
always be a k-dimensional submanifold of Rn.) As one might expect at this point, a
submanifold N ⊂M is itself a manifold.

Proposition 1.16. Let M be a smooth manifold and N ⊂M a submanifold. Then
N itself is a manifold.

Proof. We endow N with the subspace topology, which makes it into a second
countable Hausdorff space. By definition, we find a family of submanifold charts
{(Uα, uα) : α ∈ I} such that N ⊂ ∪α∈IUα. For each α ∈ I, Uα ∩ N is open in
N and the restriction uα|Uα∩N defines a homeomorphism onto to subset uα(Uα) ∩ Rk,
which by definition is an open subset of Rk. To prove that {(Uα ∩N, uα|Uα∩N) : α ∈ I}
is an atlas for N , it suffices to see that the chart changes are smooth. Observe first
that (Uα ∩N) ∩ (Uβ ∩N) = Uαβ ∩N . Now the smooth map uαβ : uβ(Uαβ) → uα(Uαβ)
restricts to a smooth map from the open subset uβ(Uαβ) ∩ Rk to Rn. But by construc-
tion, this has values in the open subset uα(Uαβ) ∩ Rk of Rk, and hence is smooth as a
map uβ(Uαβ)∩Rk → uβ(Uαβ)∩Rk, and this is the chart change between the restricted
charts.

The same argument shows that for any submanifold chart (U, u) for N , the chart
(U ∩N, u|U∩N) is compatible with each chart of our atlas. Hence the smooth structure
on N does not depend on the choice of the initial family of submanifold charts and thus
is canonical. □

If one considers a submanifold N ⊂ M as an abstract manifold, then the inclusion
i : N → M is smooth and a topological embedding (since i : N → i(N) ⊂ M is
a homeomorphism by definition). Therefore, one often calls such objects embedded
submanifolds in particular to distinguish from weaker notions that we will discuss below.

1.17. Inverse function theorem and constant rank. We have already noted
in Theorem 1.12 that for a diffeomorphism F : M → N , any tangent map TxF is a
linear isomorphism. Of course, this also holds if F is a diffeomorphism locally around
x. Now we first observe that the inverse function theorem also holds for maps between
manifolds. Indeed, let F : M → N be a smooth map and x ∈ M a point such that
TxF : TxM → TF (x)N is a linear isomorphism. Then we can find charts (U, u) for M
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and (V, v) for N such that x ∈ U ⊂ F−1(V ) and such that v ◦F ◦ u−1 : u(U) → v(V ) is
smooth. We know already that D(v◦F ◦u−1)(u(x)) = TF (x)v◦TxF ◦(Txu)−1, so this is a
linear isomorphism. Hence we can apply the classical inverse function theorem to obtain
an open subset W ⊂ u(U) such that v ◦ F ◦ u−1 restricts to a diffeomorphism from W
onto an open subset of v(V ). Composing with v−1 and u on appropriate subsets, which
are diffeomorphisms onto their images, we conclude that F restricts to a diffeomorphism
from the open subset u(W ) ⊂ M onto its image. In particular, this shows that local
diffeomorphisms from Definition 1.8 are exactly those smooth maps, for which each
tangent map is a linear isomorphism.

For a smooth map F :M → N between general manifolds (of different dimensions)
and a point x ∈ M , the only invariant of the linear map TxF : TxM → TF (x)N is
its rank, i.e. the dimension of its image. The unifying feature of the special types of
smooth maps we will discuss here is that they have constant rank, i.e. the ranks of the
tangent maps TxF are the same for all points x ∈ M . Of course, this also applies to
local diffeomorphisms, where the rank of TxF equals dim(M) = dim(N) in each point.
Now it turns out that one can nicely adapt charts to maps of constant rank.

Theorem 1.17. Let M and N be smooth manifolds of dimension n and m and let
F :M → N be a smooth map such that for each x ∈M , the tangent map TxF has rank
k (so k ≤ min{m,n}). Then for each x ∈ M there are local charts (U, u) for M and
(V, v) for N with x ∈ U and F (x) ∈ V for which the local coordinate representation of
F has the form (z1, . . . , zn) 7→ (z1, . . . , zk, 0, . . . , 0).

Proof. For x ∈ M we start with a chart (U1, u1) for M with x ∈ U1 and u1(x) =
0. The kernel of T0(F ◦ u1−1) by definition is a subspace of Rn of dimension n − k,
and composing u1 with an appropriate linear map if necessary, we may assume that
ker(T0(F ◦u1−1))∩Rk = {0}. Similarly, we choose a chart (V1, v1) for N with F (x) ∈ V1,
v1(F (x)) = 0 and such that the image of Tx(v1 ◦ F ) is the k-dimensional subspace
Rk ⊂ Rm. By construction, D(v1 ◦ F ◦ u1−1)(0) : Rn → Rm restricts to a linear
isomorphism Rk → Rk. Writing coordinates in Rn as zi and writing v1 ◦ F ◦ u1−1

in components as (f 1, . . . , fm), we conclude that the matrix A :=
(
∂f i

∂zj
(0)

)
i,j=1,...,k

is

invertible.
Now consider φ : u1(U1) → Rn with components φi = f i for i ≤ k and φj = zj for

j > k. Hence φ(0) = 0 and in blocks with sizes k and n−k, the derivative Dφ(0) has the
form ( A ∗

0 I ). Since A is invertible, this is invertible, too, so φ restricts to a diffeomorphism
between open neighborhoods of zero. Let U2 ⊂ M be the preimage of such an open
neighborhood under u1 and define u2 := φ◦u1|U2 . Then (U2, u2) is a chart forM and by
construction, writing v1 ◦ F ◦ u2−1 in components, we obtain (z1, . . . , zk, gk+1, . . . , gm)
for certain functions gj. This implies that in any point z ∈ u2(U2) the first k rows of
the derivative D(v1 ◦ F ◦ u2−1)(z) are the first k unit vectors. However, by assumption
the tangent maps of F all have rank k, while the tangent maps of v1 and u2

−1 are all
invertible, so we conclude thatD(v1◦F ◦u2−1)(z) has to have rank k for each z. Since the
first k rows are linearly independent, the other m− k rows must be linear combinations

of these, so we conclude that ∂gi

∂zj
(z) = 0 for i, j > k. But this implies that the functions

gi do not depend on the last n−k coordinates, so gj(z1, . . . , zn) = gj(z1, . . . , zk, 0, . . . , 0)
on u2(U2). Now we consider

W := {y = (y1, . . . , ym) ∈ v1(V1) : (y
1, . . . , yk, 0, . . . , 0) ∈ u2(U2)}

which evidently is an open subset of Rm. Now define ψ : W → Rm by putting ψi := yi

for i ≤ k and ψj(y) := yj − gj(y1, . . . , yk, 0, . . . , 0) for j > k. The derivative Dψ(0)
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evidently is lower triangular with all entries on the main diagonal equal to 1, so this is
invertible. Thus ψ restricts to a diffeomorphism between open neighborhoods of zero in
Rm. Now we define V the be the preimage of such a neighborhood under v1 and define
v := ψ ◦ v1 : V → Rm, so (V, v) is a chart for N with F (x) ∈ V . Finally, we define
U := U2 ∩ F−1(V ) and u := u2|U , so (U, u) is a chart for M with x ∈ U . But then

v ◦ F ◦ u−1(z) = ψ(z1, . . . , zk, gk+1(z), . . . , gm(z)),

so the first k components are just (z1, . . . , zk). For j > k, the jth component is gj(z)−
gj(z1, . . . , zk, 0, . . . , 0) and we have observed already that these vanish. □

In particular, we see that this gives a generalized version of the result on local regular
zero sets in Theorem 1.3.

Corollary 1.17. Let F :M → N be a smooth map between manifolds of dimension
n and m such that TxF has rank k for all x ∈ M . Then for each y ∈ F (M) ⊂ N , the
preimage F−1({y}) ⊂M is a submanifold of dimension n− k.

Proof. Suppose that x ∈ M is such that F (x) = y, and take charts (U, u) for M
and (V, v) for N as in Theorem 1.17 with x ∈ U , u(x) = 0 and y ∈ V . Then we see
that for x1 ∈ U , we have F (x1) = F (x) if and only if the first k coordinates of u(x1)
are zero, so renumbering coordinates, this provides a submanifold chart around x. □

1.18. Submersions. A smooth map F : M → N between smooth manifolds is
called a submersion if all its tangent maps are surjective. Of course, a submersion
F : M → N can only exist if dim(M) ≥ dim(N) and in the case of equal dimension
submersions are exactly local diffeomorphisms. Of course, if F is a submersion then
TxF has rank dim(N) for each x, so F has constant rank. There are some additional
features compared to general constant rank maps. In particular, surjective submersions
should be viewed as the right concept of “quotient maps” for smooth manifolds.

Proposition 1.18. Let F : M → N be a smooth submersion between smooth
manifolds of dimensions n and m ≤ n. Then we have

(1) For x ∈ M and each chart (V, v) for N with F (x) ∈ V , there is a local chart
(U, u) for M with x ∈ U such that the local coordinate representation of F is given by
(z1, . . . , zn) 7→ (z1, . . . , zm).

(2) For each y ∈ F (M) ⊂ N , F−1({y}) ⊂M is a submanifold of dimension n−m.
(3) For each y ∈ F (M) there is an open neighborhood W of y in N and a smooth

map σ : W →M such that F ◦ σ = idW . (“F admits local smooth sections.”)
(4) If F is surjective, then for any manifold P a map G : N → P is smooth if and

only if G ◦ F :M → P is smooth. (“Universal property of surjective submersions”)

Proof. (1) follows directly from the proof of Theorem 1.17, noting that there is
no need to modify the chart on N in the case of a submersion. Likewise, (2) is just a
specialization of Corollary 1.17.

To prove (3) choose a chart (V, v) for N with y ∈ V and a point x ∈ M such that
F (x) = y. Then take a chart (U, u) as in (1) with x ∈ U and U ⊂ F−1(V ). Writing

u(x) = (z1, . . . , zn), there is an open neighborhood W̃ of (z1, . . . , zm) ∈ Rm such that

for w ∈ W̃ we have (w, zm+1, . . . , zn) ∈ u(U). Since the latter point is mapped to w by

v ◦F ◦ u−1, we see that v(y) ∈ W̃ ⊂ v(V ), so W := v−1(W̃ ) is an open neighborhood of
y in N . Now define σ : W → M by σ(ỹ) := u−1(v(ỹ), zm+1, . . . , zn). This is evidently
smooth and has the required property.
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(4): If G is smooth, then G ◦ F is smooth as a composition of smooth maps. Con-
versely, assume that G ◦ F is smooth and take a point y ∈ N . Then by (3), there is an
open neighborhood W of y in N and a smooth map σ : W →M such that F ◦σ = idW .
But then we can write G|W as (G ◦ F ) ◦ σ, and this is again smooth as a composition
of smooth maps. As observed in 1.8 this implies that G is smooth. □

1.19. Immersions. This is the concept dual to submersions. A smooth map F :
M → N is an immersion if for each x ∈M the tangent map TxF is injective. Of course,
an immersion can only exist if dim(N) ≥ dim(M) and for equal dimensions, immersions
are exactly local diffeomorphisms. It is also clear that for a submanifold N ⊂ M , the
inclusion i : N →M is an immersion. Now we can prove that locally any immersion is
of that form and characterize the immersions, for which this is true globally.

Proposition 1.19. Let F :M → N be an immersion between manifolds M and N
of dimensions n and m ≥ n. Then we have:

(1) For each x ∈ M and any chart (U, u) with x ∈ U , there is a chart (V, v) for N
with F (x) ∈ V such that the local coordinate representation v ◦ F ◦ u−1 has the form
(z1, . . . , zn) 7→ (z1, . . . , zn, 0, . . . , 0).

(2) For each x ∈ M , there is an open neighborhood U of x in M such that F (U) is
a submanifold in N and such that F |U : U → F (U) is a diffeomorphism.

(3) If F defines a homeomorphism from M onto F (M), then F (M) ⊂ N is a
submanifold and F :M → F (M) is a diffeomorphism.

Proof. (1) This easily follows from the inverse function theorem (see exercises).
(2) Take charts (U, u) and (Ṽ , ṽ) as in (1) such that F (U) ⊂ Ṽ . (Replace U by

U ∩ F−1(Ṽ ) if needed.) Then the image of ṽ ◦ F ◦ u−1 is just u(U) ⊂ Rn ⊂ Rm. Since
u(U) is open in Rn, there is an open set W ⊂ Rm such that W ∩ Rn = u(U). Define
V := ṽ−1(ṽ(Ṽ ) ∩ W ) ⊂ Ṽ and put v = ṽ|V . Then v(V ) ∩ Rn = u(U), so (V, v) is
a global submanifold chart for F (U). But with respect to the induced chart of F (U)
and the chart (U, u), the local coordinate representation of F is the identity map, so
F : U → F (U) is a diffeomorphism.

(3) Given x ∈ M , take a neighborhood U as in (2) and a submanifold chart (Ṽ , ṽ)
for F (U) ⊂ N with F (x) ∈ Ṽ . By assumption, F (U) is open in F (M), so we find an
open subset W ⊂ N such that W ∩ F (M) = F (U). Putting V := Ṽ ∩W and v := ṽ|V ,
we obtain F (M) ∩ V = F (U) ∩ V , so we see that (V, v) is a submanifold chart for
F (M) ⊂ N . By assumption F : M → F (M) is bijective and from (2) we know that it
is a diffeomorphism locally around each point x ∈ M . This shows that the inverse is
smooth, so F :M → F (M) is a diffeomorphism. □

In view of this result, the images of injective immersions are often called immersed
submanifolds. General injective immersions show rather subtle behavior, which can
already be seen from the case of immersions I → M , where I is an open interval in R.
By definition such an immersion is just a smooth curve c, which is regular in the sense
that c′(t) ̸= 0 for all t ∈ I. Taking I = (0, 1) is is easy to construct an example for which
c is not a topological embedding by arranging c in such a way that limt→1 c(t) = c(t0)
for some t0 ∈ (0, 1). Likewise, by parametrizing a figure eight by an open interval in
two different ways, one obtains immersions i1, i2 : I → R2 with i1(I) = i2(I) =: J but
such that for functions f : J → R smoothness of f ◦ i1 is not equivalent to smoothness
of f ◦ i2. This shows that the term “immersed submanifold” is rather problematic (since
there are two ways of making J into an immersed submanifold, which lead to different
“structures”), but it is quite common.
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An interesting generalization of submanifolds is provded by the concept of initial
submanifolds. A typical example of this situation is again provided by a regularly
parametrized curve which at the first sight looks very badly behaved. We consider S1

as the set {z ∈ C : |z| = 1} and for a positive real number α, we take the smooth curve
t 7→ (eit, eiαt) in S1 × S1, which is a torus. If α is rational, this defines a closed curve
and one easily shows that this is an embedded submanifold in S1×S1. If α is irrational,
however, one easily shows that this defines an injection c : R → S1 × S1. With a bit of
work, one shows that c(R) is a dense subset of S1 × S1. Indeed, whenever on takes a
local submanifold chart (V, v) for c(I) for a sufficiently small open interval I ⊂ R, the
curve c(R) “returns” to V infinitely many times, coming arbitrarily close to c(I). This
in particular shows that the topology on c(R) induced from S1 × S1 is very different
from the standard topology on R.

Similar things happen for initial submanifolds: Take a subset N ⊂ M . For a point
x ∈ N and an open subset U ⊂ M , define Cx(U ∩ N) to be the set of those points
y ∈ U ∩ N for which there is a smooth curve c : I → U with values in U ∩ N that
connects y to x. One then calls N an initial submanifold of dimension k inM if for each
x ∈ N there is a local chart (U, u) forM with x ∈ U such that u(Cx(U∩N)) = u(U)∩Rk.
One can then take the set N and endow it with a new topology, which has as a basis
the subsets of Cx(U ∩N) which are open under u for such charts. Calling the result Ñ ,
the resulting topology is finer than the subspace topology on N induced from M , so in
particular, it is Hausdorff. Further, one shows that each connected component of Ñ is
second countable, so if Ñ has at most countably many connected components, then its
topology satisfies the conditions required for a topological manifold. But then one can
use the restrictions of charts as above to the subsets Cx(U∩N) as an atlas on Ñ , making
it into a smooth manifold of dimension k. Then the obvious map i : Ñ → N which
“puts the set back into M” is continuous and smooth. As in part (3) of Proposition
1.19, one shows that N is a true submanifold of M if i : Ñ → N is a homeomorphism.

This “inclusion” then has a nice universal property: Let P be any manifold and let
F : P → M be a map which has values in N ⊂ M . Then by construction, there is a
map F̃ : P → Ñ such that F = i ◦ F̃ . Obviously, smoothness of F̃ implies that F is
smooth as a map to N , and the universal property says that the converse holds, too,
so if F is smooth as a map to M , then also F̃ is smooth. A proof of this fact and more
information on initial submanifolds can be found in Sections 2.10–2.15 of [Michor].

Remark 1.19. There are general results on existence of immersions and embeddings
into Euclidean spaces. The starting point for these are results on existence of finite
atlases. It is clear that any compact manifold admits a finite atlas. More generally,
one can observe that from two charts (U, u) and (V, v) with U ∩ V = ∅, one can easily
construct a chart defined on U ∪ V . Then one can use topological dimension theory
to prove that any manifold admits a finite atlas (consisting of disconnected charts in
general). Appropriately extending the local coordinates to functions defined globally on
M , and taking these as components, one obtains an embedding of M into Rmn, where
m is the number of charts in the atlas. It is then relatively easy to reduce the dimension
by projecting to appropriate hyperplanes, as long as it is at least 2n+ 1. With a some
more effort, one proves that any manifold of dimension n admits an embedding into R2n

(“Whitney embedding theorem”). Further, there is an immersion into R2n−1.
Having this in mind, one could actually only discuss submanifolds of RN , but in

many cases there is no natural embedding into some RN and then advantages like the
intuitive understanding of tangent spaces are lost.



CHAPTER 2

Vector fields

We now turn to the study of the first type of geometric (or analytic) objects on
smooth manifolds. These are rather easy to understand intuitively in different ways and
give rise to several fundamental operations on manifolds. They also have disadvantages,
however. In particular, a smooth map between two manifolds in general does not
induce a mapping between vector fields on the two manifolds. This will work better for
differential forms that will be discussed later.

2.1. Basic concepts. Given a manifoldM , we have the tangent bundle TM , which
is a smooth manifold, too. Thus we can study smooth maps M → TM which associate
to each point of M a tangent vector at some point of M . Composing with the natural
projection p : TM →M such a map gives rise to a smooth map onM . It is particularly
natural to consider functions which associate to each x ∈ M a tangent vector at the
point x, i.e. for which the induced map M → M is the identity. This leads to the
concept of vector fields. As we have noted above, a smooth map between manifolds
does not act on vector fields. However, there is an obvious notion of vector fields being
compatible with a smooth map.

Definition 2.1. Let M be a smooth manifold with tangent bundle p : TM →M .
(1) A vector field on M is a smooth map ξ :M → TM such that p◦ ξ = id, i.e. such

that ξ(x) ∈ TxM for all x ∈ M . The set of all vector fields on M is denoted by X(M).
A local vector field defined on an open subset U ⊂ M is a smooth map ξ : U → TM
such that p ◦ ξ = idU (which implies that ξ has values in p−1(U) = TU).

(2) Let F :M → N be a smooth map between smooth manifolds with tangent map
TF . Then we call two vector fields ξ ∈ X(M) and η ∈ X(N) F -related and write ξ ∼F η
iff TF ◦ξ = η◦F . More explicitly, for each x ∈M , we require that η(F (x)) = TxF (ξ(x)).

If ξ ∈ X(M) is a vector field, then ξ(x) lies in the vector space TxM for each x ∈M .
So we expect that one can define point-wise addition of vector fields. Similarly, it
should be possible to multiply vector fields by real numbers. There is no reason why
this shouldn’t work for numbers depending smoothly on the point, so there should be
point-wise multiplication of vector fields by smooth functions. To see that this really
works out, we have to understand the smoothness condition on vector fields.

Recall that any chart (U, u) for M gives rise to an induced chart (p−1(U), Tu) for
TM . Now for ξ ∈ X(M), we of course have ξ−1(p−1(U)) = U and so

Tu ◦ ξ ◦ u−1 : u(U) → Tu(p−1(U)) = u(U)× Rn

is a smooth map. But by definition, p corresponds to the first projection, so this maps
z ∈ u(U) to (z, φ(z)) for some smooth function φ : u(U) → Rn. Now take two vector
fields ξ1, ξ2 ∈ X(M) with corresponding functions φ1 and φ2. For x ∈M , Tu|TxM = Txu
and this is a linear map, so ξ1(x)+ξ2(x) is mapped to (u(x), φ1(u(x))+φ2(u(x))). Thus
we see the point-wise sum ξ1 + ξ2 corresponds to φ1 + φ2 and hence is smooth too.
Similarly, for f ∈ C∞(M,R), the point-wise product fξ corresponds to the point-wise
product (f ◦ u−1)φ, so this is also smooth. Otherwise put, the point-wise operations

27
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make X(M) into a vector space and into a module over the algebra C∞(M,R) of smooth
functions. Observe that it is also no problem to define the support of a vector field to
be the closure {x : ξ(x) ̸= 0}.

These observations also imply directly how vector fields are represented in local
charts:

Proposition 2.1. Let M be a smooth manifold of dimension n with tangent bundle
p : TM →M .

(1) For a chart (U, u) for M and each i = 1, . . . , n, associating to each x ∈ U the
tangent vector ∂

∂ui
|x from 1.14 defines a local smooth vector field ∂

∂ui
on U .

(2) For a vector field ξ ∈ X(M) and a chart (U, u) there are smooth functions
ξi : U → R for i = 1, . . . , n such that ξ|U =

∑
i ξ

i ∂
∂ui

.
(3) Consider two charts (Uα, uα) and (Uβ, uβ) with Uαβ ̸= ∅ with chart change

uαβ : uβ(Uαβ) → uα(Uαβ). Then the functions ξiα and ξjβ corresponding to the two
charts are related by

(2.1) ξiα(x) =
∑

j ∂ju
i
αβ(uβ(x))ξ

j
β(x).

(4) Let U ⊂M be open and A ⊂M be closed with A ⊂ U in M . Then for any local

vector field ξ defined on U , there is a vector field ξ̃ ∈ X(M) such that ξ̃|A = ξ|A.

Proof. By construction ∂
∂ui

(x) = Tu−1(u(x), ei), so this is evidently smooth and (1)
follows. From above, we know that (Tu ◦ ξ ◦ u−1)(z) = (z, φ(z)) for a smooth function
φ : u(U) → Rn. Denoting the components of φ by φi, we see that the functions
ξi := φi ◦ u have the property required in (2). Part (3) then immediately follows from
formula (1.1) in Section 1.14.

For part (4), we recall from the proof of Corollary 1.9 that there is a smooth function
φ : M → R with values in [0, 1] such that supp(φ) ⊂ U , which is identically one on A.

Now we define ξ̃(x) = φ(x)ξ(x) for x ∈ U and ξ̃(x) = 0 for x /∈ U . But then ξ̃ is clearly
smooth on U and on M \ supp(φ) (where it is identically zero). Since these two sets

form an open covering of M , this implies that ξ̃ is smooth. □

The vector fields ∂
∂ui

are called the coordinate vector fields for the chart U . Similarly
to part (3), their behavior under a change of charts can be immediately read off formula
(1.2) from Section 1.14. Generalizing part (4) we see immediately that partitions of
unity can be used to glue together locally defined vector fields to global vector fields.

The “transformation law” (2.1) for the components of a vector field is the basis for
a chart dependent definition of vector fields, which is often used, in particular in texts
oriented towards physics. Roughly, one says that in a chart a vector field is given by
an n-tuple of smooth functions, and these tuples have to obey the right transformation
law under a chart change. This is a legitimate approach, but it carries the danger of
misunderstandings, in particular, once one starts to construct operations on vector fields
in this way. It is no problem, to define a local vector field on the domain of a chart by
choosing n smooth functions and then forming the corresponding linear combination of
coordinate vector fields. But to talk about vector fields properly in such a language,
one would actually have to assign n-tuples of functions to any chart (or at least to all
charts in an atlas).

Example 2.1. Let us give an interesting example of a global vector field here.
Consider an odd-dimensional sphere, say S2n−1 ⊂ R2n. Identifying R2n with Cn, the
standard inner product on R2n gets identified with the real part of the standard Her-
mitian inner product on Cn. Thus for x ∈ S2n−1 the tangent space TxS

2n−1 can be
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identified with the space of those y ∈ Cn for which the Hermitian inner product with x
is purely imaginary. In particular ix ∈ Cn has this property, so the map x 7→ ix defines
a vector field ξ on S2n−1, which evidently satisfies ξ(x) ̸= 0 for all x ∈ S2n−1.

The interest in this examples comes from the so-called hairy ball theorem from
algebraic topology. This says that, for even n, any smooth (or even continuous) vector
field on Sn sends at least one point to zero.

2.2. Vector fields as derivations. By definition, the value of a vector field ξ in a
point x is a tangent vector. By definition, this acts on smooth functions as a derivation
at x, which is interpreted as a directional derivative in the point x in direction ξ(x).
Given f ∈ C∞(M,R), we thus get ξ(x)(f) ∈ R and it it is a natural idea to look at this
as a function of x. Otherwise put, for a vector field ξ ∈ X(M) and a smooth function
f : M → R, we define ξ(f) : M → R by ξ(f)(x) := ξ(x)(f) where, as in 1.12, we
view ξ(x) ∈ TxM as a linear map C∞(M,R) → R. This is called the derivative of f in
direction ξ and it is an analog of a directional derivative with the direction depending on
the point. (Without additional structures, there is no reasonable concept of directions
which do not depend on a point.)

Proposition 2.2. Let M be a smooth manifold and ξ ∈ X(M) a vector field on M .
Then we have

(1) Let (U, u) be a chart for M and expand ξ|U =
∑

i ξ
i ∂
∂ui

as in Proposition 2.1.
For f ∈ C∞(M,R), the local coordinate representation ξ(f) ◦ u−1 with respect to the
chart is given by

(2.2) ξ(f) ◦ u−1 =
∑

i(ξ
i ◦ u−1)∂i(f ◦ u−1).

(2) For any f ∈ C∞(M,R), the function ξ(f) is smooth, too. Moreover, ξ defines
a linear map C∞(M,R) → C∞(M,R), which is a derivation in the sense that ξ(fg) =
ξ(f)g + fξ(g) for all f, g ∈ C∞(M,R).

(3) Conversely, if D : C∞(M,R) → C∞(M,R) is a derivation, then there is a unique
vector field ξ ∈ X(M) such that D(f) = ξ(f) for all f ∈ C∞(M,R).

(4) If F : M → N is a smooth map and η ∈ X(N) is another vector field, then
ξ ∼F η if and only if ξ(f ◦ F ) = η(f) ◦ F holds for all f ∈ C∞(N,R).

Proof. (1) For x ∈ U , we have ξ(x) =
∑

i ξ
i(x) ∂

∂ui
|x and from 1.14 we know that

acting on f , this tangent vector produces
∑

i ξ
i(x)∂i(f ◦ u−1)(u(x)), which is exactly

the claimed result.
(2) From part (1), we see that ξ(f) ◦ u−1 is smooth and since this holds for any

chart, we conclude that ξ(f) ∈ C∞(M,R). Since we know that ξ(x) : C∞(M,R) → R
is linear and addition and scalar multiplication of smooth functions are point-wise, we
readily see that ξ is linear as a map C∞(M,R) → C∞(M,R). Finally, ξ(x)(fg) =
ξ(x)(f)g(x) + f(x)ξ(x)(g), which exactly gives the claimed derivation property.

(3) Let D be a derivation, take a point x ∈ M and consider the linear map
C∞(M,R) → R defined by f 7→ D(f)(x). The derivation property of D immediately
implies that this is a derivation at x. By Proposition 1.12, there is a unique tangent
vector Xx ∈ TxM such that D(f)(x) = Xx(f) holds for all f ∈ C∞(M,R). Hence we
can define a map ξ :M → TM by sending each x to the tangent vector Xx obtained in
this way. Since p ◦ ξ = idM is obvious, it remains to show that ξ is smooth.

But for a chart (U, u), it follows from 1.14 how to expand Xx in the basis ∂
∂ui

|x:
Since the coordinate functions uj satisfy ∂i(u

j ◦ u−1) = δji , we conclude that Xx =∑
iXx(u

i) ∂
∂ui

|x. Given x, take an open neighborhood V of x such that V̄ ⊂ U . Then
by Corollary 1.9, we know that for each i, there is a smooth function ũi :M → R which
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coincides with ui on V . Moreover, the proof of Proposition 1.12 shows that for y ∈ V ,
we get D(ũi)(y) = Xy(u

i). This shows that ξ|V =
∑

iD(ũi)|V ∂
∂ui

|V and since D(ũi)
is smooth for each i, we see that ξ|V is smooth. Since this works locally around each
point, ξ is smooth.

(4) This is a simple computation. By definition ξ ∼F η is equivalent to TxF · ξ(x) =
η(F (x)) for each x ∈ M . Letting the right hand side act on f ∈ C∞(N,R), we get
η(f)(F (x)) = (η(f) ◦F )(x). The action of the left hand side on f by definition is given
by ξ(x)(f ◦ F ) = ξ(f ◦ F )(x), and using uniqueness from (3), the claim follows. □

At this stage it will be helpful to eliminate the large number of summation signs,
whence we introduce the so-called Einstein summation convention. It says that if in a
formula there is an upper index and a lower index of the same name, then one has to
sum over all values 1, . . . , n of the indices. To make things more complicated, the upper
index in the denominator of ∂

∂ui
counts as a lower index. Using the convention, the

expansion of a vector field with respect to coordinate vector fields reads as ξ|U = ξi ∂
∂ui

.
This is a well chosen convention, but at least in the beginning one should carefully make
clear to oneself what is actually meant by formulae involving a sum convention.

It is useful to note at this point that the action of vector fields on real valued functions
extends without problems to functions with values in Rm or any finite dimensional vector
space V . Given a smooth function f : M → V , we can choose a basis {vi} of V , write
f(x) =

∑
i fi(x)vi for functions fi ∈ C∞(M,R). For a vector field ξ ∈ X(M) one

immediately concludes that ξ(f)(x) :=
∑

i ξ(fi)(x)vi does not depend on the choice of
the basis {vi}, so we obtain a well defined smooth function ξ(f) :M → V . In particular,
for V = Rm the action of vector fields is just component-wise.

2.3. Mapping vector fields. As mentioned already, a general smooth map F :
M → N between smooth manifolds cannot be used to move vector fields from M to N
or from N to M . One thing that can always be done is to take a vector field ξ ∈ X(M)
and consider TF ◦ ξ :M → TN . This is a smooth map for which the composition with
p reproduces F . Such maps are referred to as vector fields along F , but the tools for
vector fields that we are going to develop do not apply to these objects.

Given F : M → N , consider the natural condition defining ξ ∼F η, namely
η(F (x)) = TxF (ξ(x)). It is obvious that given η ∈ X(N) it is not possible in gen-
eral to find ξ ∈ X(M) such that ξ ∼F η. It may simply happen that η(y) does not lie
in the image of TxF for all points x with F (x) = y. Similarly, given ξ it may happen
that there are points x1, x2 with F (x1) = F (x2) but Tx1F (ξ(x1)) ̸= Tx2F (ξ(x2)), which
makes it impossible to find η ∈ X(N) such that ξ ∼F η. On the other hand, it is rather
evident that diffeomorphisms can be used to map vector fields. Indeed, there is a more
general concept, which automatically extends to local diffeomorphisms.

Proposition 2.3. Let F :M → N be a local diffeomorphism. Then for any vector
field η ∈ X(N), there is a unique vector field F ∗η ∈ X(M) such that F ∗η ∼F η.

Proof. By definition, TxF is invertible for each x ∈ M and we define F ∗η(x) :=
(TxF )

−1(η(F (x))). Moreover, for x ∈M , there are open neighborhoods U of x inM and
V of F (x) in N such that F |U : U → V is a diffeomorphism. Denoting by G : V → U
the inverse we have TF (y)G = (TyF )

−1 for all y ∈ U . This shows that F ∗η|U = TG◦η◦F
which is obviously smooth, so F ∗η ∈ X(M). Knowing this, F ∗η ∼F η and uniqueness
are obvious. □

The vector field F ∗η is called the pullback of η by F . We can also phrase this as the
fact that a local diffeomorphism F : M → N induces an operator F ∗ : X(N) → X(M).
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Note that this in particular applies to open embeddings, where we simply get an obvious
“restriction map” for vector fields.

Consider smooth maps F : M → N and G : N → P and vector fields ξ ∈ X(M),
η ∈ X(N) and ζ ∈ X(P ). Then ξ ∼F η and η ∼G ζ together immediately imply
ξ ∼G◦F ζ. In particular, if F and G are both local diffeomorphisms, this shows that
(G ◦ F )∗ζ = F ∗(G∗ζ) for all ζ ∈ X(P ).

Generalizing the case of local diffeomorphisms, we briefly discuss the concept of F -
relatedness for immersions and submersions, where it is particularly interesting. Let us
first consider an immersion i : M → N , see 1.19. Then for each x ∈ M , Txi : TxM →
Ti(x)N is injective, so we can view TxM as a linear subspace of Ti(x)N . The natural setup
here is to start with η ∈ X(N). To have a chance to find ξ ∈ X(M) such that ξ ∼i η, we
of course have to require that η(i(x)) lies in that subspace Txi(TxM) for each x ∈ M .
In particular in the setting of immersed submanifolds, this is usually phrased as the fact
that η is tangent to M along M . If this is satisfied, then there is a unique ξ(x) ∈ TxM
such that Txi(ξ(x)) = η(i(x)). Thus we get a function ξ : M → TM and we only have
to show that this is smooth to see that it defines a vector field such that ξ ∼i η. But
this is a local question, so we can prove this in charts in which the local coordinate
representation of i is given by (z1, . . . , zk) 7→ (z1, . . . , zk, 0, . . . , 0), see Proposition 1.19.
But in such a chart, we simply get ξi = ηi for i = 1, . . . , k, so smoothness follows. In
particular, for an immersed submanifold i :M → N and a vector field η ∈ X(M), there
is ξ ∈ X(M) such that ξ ∼i η if and only if η is tangent to M along M .

Dually, suppose that F : M → N is a surjective submersion, so F and all tangent
maps TxF : TxM → TF (x)N are surjective. This immediately implies that for given
ξ ∈ X(M) there is at most one η ∈ X(N) such that ξ ∼F η, so the natural question is to
characterize those ξ for which such an η exists. From Proposition 1.18, we know that for
each y ∈ N , the subset F−1({y}) ⊂M is a smooth submanifold. The condition we are
looking for of course is that the vectors TxF (ξ(x)) ∈ TyN agree for all x ∈ F−1({y}).
Such vector fields are called projectable and given such a vector field ξ ∈ X(M), there
is a unique function η : N → TN such that η ◦ F = TF ◦ ξ. But by Proposition 1.18,
smoothness of TF ◦ ξ = η ◦F implies smoothness of η, so this is a vector field such that
ξ ∼F η. This is called the projection of the projectable vector field ξ.

The Lie bracket

The interpretation of vector fields as derivations on the algebra of smooth functions
now leads to one of the fundamental operations of analysis on manifolds, the so-called
Lie bracket of vector fields. The actual way how this comes up as well as the basic
properties of this operation may be rather unexpected, though.

2.4. Definition and basic properties. The operation (η, f) 7→ η(f) of directional
derivatives can be iterated, so for another vector field ξ, we ca form ξ(η(f)). But clearly,
this will involve second derivatives of f , which is confirmed by the local formula (2.2)
from Proposition 2.2. But it will also involve first derivatives of η in some sense. The
terms depending on second derivatives of f can be removed by forming a commutator,
which then leads to a bilinear differential operator on vector fields.

Theorem 2.4. Let M be a smooth manifold.
(1) For vector fields ξ, η ∈ X(M), there is a unique vector field [ξ, η] ∈ X(M) such

that for all f ∈ C∞(M,R), we have [ξ, η](f) = ξ(η(f))− η(ξ(f)).
(2) This defines a bilinear operator [ , ] : X(M) × X(M) → X(M), called the Lie

bracket, which is skew symmetric in the sense that [η, ξ] = −[ξ, η] and satisfies the
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Jacobi identity

[ξ, [η, ζ]] = [[ξ, η], ζ] + [η, [ξ, ζ]]

for all ξ, η, ζ ∈ X(M).
(3) For ξ, η ∈ X(M) and f ∈ C∞(M,R), we obtain [ξ, fη] = ξ(f)η + f [ξ, η].
(4) The Lie bracket is a local operator: If ξ, η, η̃ ∈ X(M) are vector fields and U ⊂M

is an open subset such that η|U = η̃|U , then [ξ, η]|U = [ξ, η̃]|U .
(5) For a chart (U, u) for M and the associated coordinate vector fields ∂

∂ui
, we get

[ ∂
∂ui
, ∂
∂uj

] = 0 for all i, j. Moreover, in terms of the corresponding expansions ξ|U = ξi ∂
∂ui

and η|U = ηj ∂
∂uj

the local expression for [ξ, η] is given by

(2.3) [ξ, η]|U =
(
ξi ∂
∂ui

(ηj)− ηi ∂
∂ui

(ξj)
)

∂
∂uj
.

Proof. (1) In view of Proposition 2.2, we only have to prove that f 7→ ξ(η(f)) −
η(ξ(f)) is a derivation on the algebra C∞(M,R), which is a simple direct computation:
Using that ξ is a derivation, we compute

ξ(η(fg)) = ξ(η(f)g + fη(g)) = ξ(η(f))g + η(f)ξ(g) + ξ(f)η(g) + fξ(η(g)).

But the two middle summands are symmetric in ξ and η, so they will cancel with the
corresponding summands in −η(ξ(fg)).

(2) From the definition it is obvious that [η, ξ] = −[ξ, η]. Since the operation (ξ, f) 7→
ξ(f) is bilinear over R, it follows readily that also (ξ, η) 7→ [ξ, η] is bilinear over R. To
prove the Jacobi identity, it suffices to show that both sides act in the same way on
a smooth function f , which again is a simple direct computation: Applying the right
hand side to f , we obtain

[ξ, η](ζ(f))− ζ([ξ, η](f)) + η([ξ, ζ](f))− [ξ, ζ](η(f)) = ξ(η(ζ(f)))− η(ξ(ζ(f)))

− ζ(ξ(η(f))) + ζ(η(ξ(f))) + η(ξ(ζ(f)))− η(ζ(ξ(f)))− ξ(ζ(η(f))) + ζ(ξ(η(f))).

Now the second and fifth and the third and last terms in the right hand side cancel,
and the remaining four terms add up to [ξ, [η, ζ]](f).

(3) Again, we just evaluate on g ∈ C∞(M,R) as follows:

[ξ, fη](g) = ξ(fη(g))− fη(ξ(g)) = ξ(f)η(g) + fξ(η(g))− fη(ξ(g)).

But the first summand in the right hand side is just (ξ(f)η)(g), while the other two
summands clearly add up to (f [ξ, η])(g).

(4) Since the Lie bracket is bilinear, the claimed statement is evidently equivalent
to the fact that if η|U is identically zero, then also [ξ, η]|U is identically zero. Assuming
that η|U = 0, then for a point x ∈ U , the proof of Corollary 1.9 shows that there is a
smooth function φ : M → R such that φ(x) = 1 and supp(φ) ⊂ U . But then φη is
identically zero, so bilinearity implies that 0 = [ξ, φη]. Expanding this according to (3)
and evaluating in x, we conclude that 0 = ξ(φ)(x)η(x)+φ(x)[ξ, η](x) = 0+ 1 · [ξ, η](x).

(5) By definition, for a smooth function f : M → R, ∂
∂ui

(f) ◦ u−1 is the ith par-

tial derivative of the local coordinate representation f ◦ u−1. Expressing [ ∂
∂ui
, ∂
∂uj

](f)

accordingly, symmetry of the second partial derivatives implies [ ∂
∂ui
, ∂
∂uj

] = 0.

Taking the local coordinate representation η|U = ηj ∂
∂uj

, we can extend the functions
ηj and the coordinate vector fields to globally defined objects that we denote by the same
symbols. Given a point x ∈ U we can do this without changing them in a neighborhood
of x. Thus part (4) implies that locally around x, [ξ, η] equals [ξ, ηj ∂

∂uj
]. Since x is



THE LIE BRACKET 33

arbitrary, we get [ξ, η]|U = [ξ, ηj ∂
∂uj

]|U (again using part (4)). In the same way, we can

replace ξ by ξi ∂
∂ui

. But then parts (2) and (3) imply

[ξi ∂
∂ui
, ηj ∂

∂uj
] =

(
ξi ∂
∂ui

(ηj)
)

∂
∂uj

+ ηj[ξi ∂
∂ui
, ∂
∂uj

].

In the last summand, we can apply skew symmetry and (3) to rewrite it as

−
(
ηj ∂

∂uj
(ξi)

)
∂
∂ui

+ ηjξi[ ∂
∂ui
, ∂
∂uj

],

and we have just observed that the last term vanishes. □

On submanifolds of Rn, there is an alternative description of the Lie bracket. Observe
that for a smooth, k-dimensional submanifold M ⊂ Rn, one may view a vector field
η ∈ X(M) as a smooth mapM → Rn (which has the property that η(x) ∈ TxM for each
x ∈ M). Hence given another vector field ξ ∈ X(M) we can differentiate η : M → Rn

in direction ξ, compare with Section 2.2, to obtain ξ(η) : M → Rn. The result is not a
vector field, however, there is no reason why ξ(η)(x) should lie in TxM . But it turns out
that the ξ(η)(x)−η(ξ)(x) always lies in TxM and coincides with [ξ, η](x) (see exercises).

Example 2.4. (1) Consider the open subset {(x1, x2, x3) : x3 > 0} on R3 and the
coordinate vector fields ∂

∂xi
for the standard coordinates. Put ξ := x3 ∂

∂x1
− x1 ∂

∂x3
and

η := x3 ∂
∂x2

− x2 ∂
∂x3

. Then the coordinate formula in part (5) of Theorem 2.4 readily
shows that

[ξ, η] = −x1 ∂
∂x2

+ x2 ∂
∂x1

= x2

x3
ξ − x1

x3
η.

Hence in this case, [ξ, η](x) lies in the span of ξ(x) and η(x) for each point x.

(2) On R3, consider the vector fields ξ = ∂
∂x1

− x2 ∂
∂x3

and η := ∂
∂x2

+ x1 ∂
∂x3

. As

above, one computes that [ξ, η] = 2 ∂
∂x3

, so in this case, the values of ξ, η and [ξ, η] are
linearly independent in each point. We will interpret the difference to example (1) more
geometrically in Example 2.5 below.

2.5. Naturality of the Lie bracket. In an approach which defines vector fields
via local charts, one would use the formula in part (5) of Theorem 2.4 to define the Lie
bracket of vector fields. Of course, this requires a verification that working in different
charts leads to the same result on the intersection of the domains of the charts. This can
be done via a direct computation using the transformation law (2.1) from Proposition
2.1. While in our approach, such a verification is not needed, it is a nice exercise to
carry out this computation.

The fact that the local formula leads to the same result in all charts is closely related
to naturality of the Lie bracket under local diffeomorphisms. While this may not look as
exciting at the first glance it is an extremely strong property. In fact we will only meet
very few operations with similar properties, which makes each of them a cornerstone for
analysis on manifolds. In fact, the Lie bracket has an even stronger naturality property,
since it is compatible with the notion of F -relatedness of vector fields:

Theorem 2.5. Let F :M → N be a smooth map between manifolds and let ξ1, ξ2 ∈
X(M) and η1, η2 ∈ X(N) be vector fields. If ξ1 ∼F η1 and ξ2 ∼F η2, then [ξ1, ξ2] ∼F

[η1, η2]. In particular, if F is a local diffeomorphism, then [F ∗η1, F
∗η2] = F ∗([η1, η2]).

Proof. Take a smooth function f ∈ C∞(N,R). Then by part (4) of Proposition
2.2, ξ2 ∼F η2 implies ξ2(f ◦ F ) = η2(f) ◦ F . Applying ξ1 and using F -relatedness to η1,
we get

ξ1(ξ2(f ◦ F )) = ξ1(η2(f) ◦ F ) = η1(η2(f)) ◦ F.
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In the same way ξ2(ξ1(f ◦ F )) = η2(η1(f)) ◦ F and then part (4) of Proposition 2.2
implies the first claim. The second claim then immediately follows in view of Proposition
2.3. □

Example 2.5. We can now give a more geometric explanation for the different
behaviors of the Lie bracket in the examples from 2.4. In the setting of Example (1)
from 2.4 we can take a point x with x3 > 0, and look at the sphere of radius |x| around
zero. So this is an embedded submanifoldM and of course TxM is the orthocomplement
of x. Now we had ξ(x) = x3 ∂

∂x1
− x1 ∂

∂x3
∈ TxM and similarly η(x) ∈ TxM . In the

terminology from 2.3, wee see that both ξ and η are tangent to M along M . Denoting
by i the inclusion ofM , we have seen in 2.3 that there are vector fields ξ̃, η̃ ∈ X(M) such

that ξ̃ ∼i ξ and η̃ ∼i η. So by Theorem 2.5, we get [ξ̃, η̃] ∼i [ξ, η], which in particular
implies [ξ, η](x) ∈ TxM for each x ∈M . Since ξ and η are linearly independent in each
point, their values span the tangent spaces to M , so we see without any computation
that [ξ, η](x) must be a linear combination of ξ(x) and η(x).

In contrast to this, we have defined in Example (2) of 2.4 two vector fields ξ, η ∈
X(R3) such that ξ(x), η(x) and [ξ, η](x) are linearly independent in each point x ∈ R3.
Hence our considerations show that there does not exists any (local) two-dimensional
submanifold M ⊂ R3 such that for each x ∈ M , the tangent space TxM is spanned by
ξ(x) and η(x).

Integral curves and flows

We now move to a second natural interpretation of vector fields, namely as describing
first order ODEs on manifolds.

2.6. Integral curves. For a smooth curve c : I → M defined on an open interval
I ⊂ R and each t ∈ I, we have c′(t) ∈ Tc(t)M . Given a vector field ξ ∈ X(M), it thus
makes sense to look for integral curves for ξ, i.e. smooth curves c : I → M such that
c′(t) = ξ(c(t)) for each t ∈ I.

Lemma 2.6. Let ξ ∈ X(M) be a vector field on a smooth manifold M .
(1) For x ∈M there is an unique maximal open interval Jx ⊂ R containing 0 and a

unique integral curve cx : Jx →M for ξ with cx(0) = x.
(2) For s ∈ Jx we obtain Jcx(s) = {t− s : t ∈ Jx} and ccx(s)(t) = cx(t+ s) for all t.

Proof. (1) Let (U, u) be a local chart for M and let ξ|U = ξi ∂
∂ui

be the correspond-
ing local coordinate representation of ξ. By definition, this means that Tyu(ξ(y)) =
(ξ1(y), . . . , ξn(y)). For a smooth curve c̃ : I → u(U) with components c̃i, the curve
u−1 ◦ c̃ thus is an integral curve of ξ if and only if (c̃i)′(t) = (ξi ◦ u−1)(c̃(t)). This is a
system of first order ODEs with smooth coefficients, so it has unique local solutions for
any choice of initial condition in u(U) by the Picard-Lindelöff theorem.

Thus we conclude that integral curves exist through each point. Moreover, suppose
that we have two integral curves c1 : I1 → M and c2 : I2 → M defined on open
intervals I1, I2 such that I1 ∩ I2 ̸= ∅. Then if c1(t0) = c2(t0) for some t0 ∈ I1 ∩ I2, then
c1|I1∩I2 = c2|I1∩I2 and hence they can be pieced together to an integral curve defined on
I1 ∪ I2. This easily implies that local integral curves can be pieced together to maximal
integral curves and hence part (1).

(2) Of course, for s ∈ Jx, t 7→ cx(t + s) is an integral curve for ξ which maps 0
to cx(s) and is defined on {t ∈ R : t + s ∈ Jx}. Thus, the latter interval has to be
contained in Jcx(s) and on this sub-interval ccx(s)(t) = cx(t + s). But this in particular
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shows that −s ∈ Jcx(s) and that ccx(s)(−s) = x. So we conclude in the same way that
{t ∈ R : t− s ∈ Jcx(s)} ⊂ Jx which implies the claim. □

Example 2.6. (1) For v ∈ Rn the constant map v defines a vector field on Rn. Of
course, the affine line t 7→ x+tv is an integral curve through x. Thus in the case Jx = R
for each x ∈ Rn.

But of course, we can also view the constant map v as a vector field on any open
subset U ⊂ Rn. Then for each x ∈ U , {t ∈ R : x + tv ∈ U} is open in R and Jx in
this case is the connected component of this subset that contains zero. So it may easily
happen that maximal integral curves are defined on finite intervals only.

(2) For any linear map A : Rn → Rn, one may view x 7→ Ax as a vector field on
Rn. It is a standard result from the theory of ordinary differential equations that that
an integral curve through x is given via the matrix exponential as c(t) = etAx. Here

etA =
∑∞

k=0
tk

k!
Ak and this sum is absolutely convergent for all t ∈ R and defines a linear

map Rn → Rn. So again integral curves are defined on all of R.
One can analyze the behavior of the integral curves by using that the matrix ex-

ponential is compatible with conjugation, i.e. that etBAB
−1

= BetAB−1. This means
that after an appropriate change of basis, one may assume that the matrix A is in (the
real version of) Jordan normal form. In low dimensions, this reduces things to a small
number of basic cases that can be studied explicitly.

(3) Up to now, the examples in which integral curves are defined for finite time only
were rather artificial, but this occurs naturally in many cases. Consider for example
the map x 7→ x2 ∂

∂x
as a vector field on R. Then c : (−∞, 1) → R, c(t) := 1

1−t visibly

satisfies c′(t) = c(t)2 and thus is an integral curve. But for t → 1 this curve evidently
tends to +∞, so there is no way to extend it to a bigger interval. Hence in this case
J1 = (−∞, 1) even though we are working on the full space R.

2.7. Flows. Fixing a vector field ξ ∈ X(M), we next define D(ξ) ⊂ M × R as the
set of all (x, t) such that t ∈ Jx, where Jx is the maximal interval obtained in part
(1) of Lemma 2.6. Moreover, we define the flow of ξ as a map Flξ : D(ξ) → M by

Flξ(x, t) := Flξt (x) := cx(t), where cx is the maximal integral curve for ξ obtained in
part (1) of Lemma 2.6.

Theorem 2.7. For a vector field ξ ∈ X(M) on a smooth manifold M we have
(1) The subset D(ξ) ⊂ M × R defined above is an open neighborhood of M × {0}

and thus a manifold.
(2) The flow map Flξ : D(ξ) →M is smooth and it satisfies

(2.4) Flξt+s(x) = Flξt (Fl
ξ
s(x)),

whenever both sides are defined. Moreover, if the right hand side is defined then the left
hand side is defined and the converse holds if t and s have the same sign.

(3) For (x, t) ∈ D(ξ), there is an open neighborhood U of x in M such that Flξt
restricts to a diffeomorphism from U onto an open subset of M .

Proof. Equation (2.4) in part (2) just reads as cx(t + s) = ccx(s)(t), so this has
been proved in part (2) of Lemma 2.6. The latter also easily implies the last part of
(2), since this just relates the conditions that s ∈ Jx, t ∈ Jcx(s) and t+ s ∈ Jx.

(1) and smoothness in (2): The Picard-Lindelöff theorem (including smooth depen-
dence on the initial conditions) applied in charts implies that for any x ∈ M there is
an open neighborhood U of x in M and ϵ > 0 such that U × (−ϵ, ϵ) ⊂ D(ξ) and Flξ
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restricts to a smooth map U × (−ϵ, ϵ) →M . Thus it remains to show that D(ξ) is open
and that Flξ is smooth on all of D(ξ). Consider the subset W ⊂ D(ξ) consisting of all
(x, t) such that there is an open neighborhood U of x in M and an open interval J ⊂ R
with 0, t ∈ J such that U × J ⊂ D(ξ) and Flξ is smooth on U × J . Then from above
we know that W is an open neighborhood of M × {0} in M × R and we can complete
this part of the proof by showing that W = D(ξ).

With a view towards contradiction, suppose that (x0, τ) ∈ D(ξ)\W . We do the case
τ > 0, the case τ < 0 is closely similar. Putting t0 := inf{t ∈ [0,∞) : (x0, t) /∈ W}, we
see from above that 0 < t0 ≤ τ and since τ ∈ Jx0 , we conclude that t0 ∈ Jx0 . Putting

y0 := Flξt0(x0), we know from above that there is an open neighborhood V of y0 in M

and ϵ > 0 such that V × (−ϵ, ϵ) ⊂ D(ξ) and Flξ is smooth on V × (−ϵ, ϵ).
By construction, we can find elements t1 < t0 arbitrarily close to t0 such that

(x0, t1) ∈ W , so in particular we may require t1+ ϵ > t0. By continuity of cx we can also

require that cx0(t1) = Flξt1(x0) ∈ V . Since (x0, t1) ∈ W , we find an open neighborhood

U of x0 in M and a an open interval J ⊂ R with [0, t1] ⊂ J such that Flξ is defined and

smooth on U × J . Replacing U by U ∩ (Flξt1)
−1(V ), we may assume that Flξt1(U) ⊂ V .

Now define J̃ := J ∪ [t1, t1 + ϵ), which by construction is an open interval containing 0
and t0. Define a map F : U × J̃ →M by

F (x, t) :=

{
Flξ(x, t) t ∈ J

Flξ(Flξ(x, t1), t− t1) t ∈ (t1 − ϵ, t1 + ϵ) ∩ J̃

Note that the first line defines a smooth map on U ×J while in the second line we have
Flξ(x, t1) ∈ V and t − t1 ∈ (−ϵ, ϵ), so this is smooth as a composition of two smooth
maps. Moreover, the equation in (2) shows that the two definitions agree on their
overlap, so we obtain a smooth map U × J̃ → M . But the equation in (2) also shows
that F agrees with Flξ on this open set, which implies (x0, t0) ∈ W , thus contradicting
the construction of t0.

(3) Having proved (1) and (2), we readily see that for fixed t ∈ R, the set Mt :=

{x ∈ M : (x, t) ∈ D(ξ)} is open in M and Flξt : Mt → M is smooth. From part (2) of

Lemma 2.6, we see that −t ∈ Jcx(t), so Flξt (Mt) ⊂M−t. Similarly, we conclude that Flξ−t
is a smooth map on M−t and has values in Mt. By the equation in part (2) and the

obvious observation that Flξ0 = idM , we conclude that these maps are inverse to each
other, which implies the claim. □

It is rather easy to understand the implications of relatedness for flows:

Corollary 2.7. Let F : M → N be a smooth map between smooth manifolds and
suppose that ξ ∈ X(M) and η ∈ X(N) satisfy ξ ∼F η. Then (F × idR)(D(ξ)) ⊂ D(η)

and for each (x, t) ∈ D(ξ) we get Flηt (F (x)) = F (Flξt (x)).
In particular, if F is a local diffeomorphism, then for each vector field η ∈ X(N),

we get F ◦ FlF
∗η

t = Flηt ◦F whenever both sides are defined, and if the left hand side is
defined, then the right hand side is defined.

Proof. For a smooth curve c : I → M , we get (F ◦ c)′(t) = Tc(t)F (c
′(t)). If c is

an is an integral curve for ξ, then this equals Tc(t)F (ξ(c(t))) = η(F (c(t))). Thus F ◦ c
is an integral curve for η. Applying this to cx : Jx → M for x ∈ M , we conclude that
Jx ⊂ JF (x) (where we use the same notation for the maximal intervals for both vector
fields). This implies both the relation between the domains of definition and the relation
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between the flows claimed in the first part. The second part then follows immediately
from Proposition 2.3. □

2.8. Completeness. A vector field ξ on a smooth manifold M is called complete
iff all its integral curves are defined for all times, i.e. if D(ξ) = M × R. Then by

Theorem 2.7, Flξt : M → M is smooth for all t and Flξ−t is a smooth inverse, so each

Flξt : M → M is a diffeomorphism. Moreover, the equation in part (2) of Theorem

2.7 just says that Flξt+s = Flξt ◦Flξs, so t 7→ Flξt is a homomorphism from the abelian
group (R,+) to the group of all diffeomorphisms ofM (which evidently is a group under
composition). Otherwise put Flξ : R×M → M defines a group action of (R,+) on M
by diffeomorphisms. The flows of general vector fields should be thought of a “locally
defined analog” of this situation. There are nice sufficient conditions for completeness.

Proposition 2.8. Let ξ be a vector field on a smooth manifold M .
(1) If there is ϵ > 0 such that M × [−ϵ, ϵ] ⊂ D(ξ), then ξ is complete.
(2) If ξ has compact support, then ξ is complete. In particular, any vector field on

a compact manifold is complete.

Proof. (1) By assumption, [−ϵ, ϵ] ⊂ Jx for all x ∈M . Applying part (2) of Lemma
2.6 to cx(ϵ) and cx(−ϵ) we conclude that [−2ϵ, 2ϵ] ⊂ Jx for all x. Iterating this argument,
we see that [−2nϵ, 2nϵ] ⊂ Jx for all x and n ∈ N, which implies Jx = R for all x.

(2) If ξ(x) = 0 then the constant curve cx(t) = x is an integral curve through x, so
Jx = R in this case. Putting K := supp(ξ) ⊂M , we conclude that (M \K)×R ⊂ D(ξ).
On the other hand, since D(ξ) is an open neighborhood of K ×{0} in M ×R, it is well
known from general topology that K × (−ϵ, ϵ) ⊂ D(ξ) for some ϵ > 0. But this implies
that M × [−ϵ/2, ϵ/2] ⊂ D(ξ) and the result follows from (1). □

Example 2.8. Without compactness assumptions, completeness is a rather subtle
property. In particular, the set of complete vector fields is neither a linear subspace
of X(M) nor closed under the Lie bracket. This can be shown by simple examples on
M = R2. Define ξ := x2 ∂

∂x1
and η = (x1)2 ∂

∂x2
. The flows for these two vector fields are

easily found: Flξt (x
1, x2) = (x1+tx2, x2) and Flηt (x

1, x2) = (x1, x2+t(x1)2), so essentially
they behave as the constant vector field in Example (1) of 2.6.

For the sum ξ + η, the system of differential equations describing the flow becomes
(x1)′(t) = x2(t) and (x2)′(t) = x1(t)2, so we obtain (x1)′′(t) = x1(t)2. One immediately
verifies that t 7→ (1− t/

√
6)−2 solves the second equation on the interval (−∞,

√
6) and

there is no extension to a larger interval, so ξ + η is not complete.
Likewise, for the Lie bracket we get [ξ, η] = 2x1x2 ∂

∂x2
− (x1)2 ∂

∂x1
. Thus the equation

for the first component of an integral curve is (x1)′(t) = −x1(t)2 and as in Example (3)
of 2.6 one concludes that the solution of this equation is not defined on all of R.

2.9. The flow box theorem. As a simple application of the theory of flows, we
can show that locally around points in which they are non-zero, all vector fields “look
the same”. More precisely, locally around a point in which it is non-zero, any vector
field can be realized as a coordinate vector field. The idea for the proof is geometrically
very transparent: One locally chooses an appropriate submanifold which is transversal
to the vector field and then “flows out” from this.

Proposition 2.9. Let ξ be a vector field on a smooth manifold M and let x ∈ M
be a point such that ξ(x) ̸= 0. Then there is a local chart (U, u) for M with x ∈ U such
that ξ|U = ∂

∂u1
.
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In particular, for y ∈ U and an open interval I around 0 such that u(y)+ te1 ∈ u(U)

for all t ∈ I, the flow of ξ is given by Flξt (y) = u−1(u(y) + te1) for t ∈ I.

Proof. Choose some chart (V, v) for M with x ∈ V such that v(x) = 0 ∈ Rn and
Txv(ξ(x)) = e1, the first unit vector. (The first condition can be achieved by composing
with a translation and since ξ(x) ̸= 0 the second condition can be achieved by further
composing with a linear map.) Now view Rn−1 as the linear subspace of Rn of all
vectors with first component 0 and consider the intersection v(V )∩Rn−1 ⊂ Rn−1. Now
(t, z) 7→ (v−1(0, z), t) is a smooth map R × (v(V ) ∩ Rn−1) → M × R, and of course
R× (v(V )∩Rn−1) ⊂ Rn is an open subset. By Theorem 2.8, D(ξ) ⊂M ×R is open and
Flξ : D(ξ) → M is smooth, so there is an open neighborhood W of 0 in Rn on which

w(t, z) := Flξt (v
−1(0, z)) defines a smooth map W →M .

Now for each (t0, z0) ∈ W , there is ϵ > 0 such that (t, z0) ∈ W for t ∈ (t0− ϵ, t0+ ϵ).
By construction t 7→ w(t, z0) is an integral curve for ξ, which implies that

(2.5) T(t0,z0)w(e1) = ξ(w(t0, z0)).

On the other hand, (0, z) ∈ W for z in some open neighborhood of zero in Rn−1 and
w(0, z) = v−1(0, z). This in particular shows that T(0,0)w coincides with T(0,0)v

−1 on
the subspace spanned by the last n − 1 basis vectors. But from (2.5), we also see
that these two maps coincide on multiples of the first basis vector. Thus T(0,0)w =
T(0,0)v

−1 and hence is a linear isomorphism. By the inverse function theorem, there
is an open neighborhood of zero on which w restricts to a diffeomorphism onto an
open neighborhood U of x in M , and we let u be the inverse of this restriction. Then
u : U → u(U) is a diffeomorphism, so we know from 1.8 that (U, u) is a chart on M .
Finally, equation (2.5) shows that for y ∈ U we get Tyu(ξ(y)) = e1, which exactly says
that ξ|U = ∂

∂u1
. The last statement then immediately follows from Example (1) of 2.6

by applying Corollary 2.7 to the diffeomorphism w : u(U) → U . □

Excursion: Flows and Lie brackets

To conclude the chapter, we discuss the relations between the two points of view on
vector fields that we have developed so far. This will also provide the first instance of a
general way to construct an action of vector fields on geometric objects via the so-called
Lie derivative.

2.10. The Lie derivative of vector fields. Via the flow map, a vector field ξ
on a manifold M gives rise to local diffeomorphisms around each point. Along such a
local diffeomorphism, we can pull back another vector field η. So locally around x ∈M
and for t ∈ R sufficiently close to 0, we can consider (Flξt )

∗η, and this defines a local

vector field. In particular, for small enough t, we have ((Flξt )
∗η)(x) ∈ TxM . Now one

should expect that this depends smoothly on t and thus one obtains a smooth curve
in the finite dimensional vector space TxM . The derivative of this curve at t = 0 can
be naturally interpreted as a an element of TxM . Since this can be done in each point
x ∈ M , we obtain a map ζ : M → TM such that p ◦ ζ = idM . Finally, by the smooth
dependence of all ingredients on all variables, one should expect that ζ is smooth and
thus defines a vector field on M .

Now we can verify that this strategy actually works out and recovers the Lie bracket
of vector fields.

Theorem 2.10. Let ξ, η ∈ X(M) be vector fields on a smooth manifold M .
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(1) For each x ∈ M , t 7→ ((Flξt )
∗η)(x) is a smooth curve in TxM which is defined

on an open interval around 0. Hence we can define

Lξη(x) := d
dt
|t=0((Fl

ξ
t )

∗η)(x) ∈ TxM.

(2) The construction in (1) defines a smooth vector field Lξη ∈ X(M), and indeed
Lξη = [ξ, η].

Proof. We actually have to prove first that we obtain a well defined vector field
and then identify it with the Lie bracket. For a point x ∈M , we know from Theorem 2.7
that there is an open neighborhood U of x inM and ϵ > 0 such that U×(−ϵ, ϵ) ⊂ D(ξ).
Hence (y, t) 7→ (Flξ(y, t),−t) defines a smooth map U × (−ϵ, ϵ) →M × R and we have
observed in 2.7 that this has values in D(ξ). Next, for (z, s) ∈ D(ξ), we can consider
(η(z), 0) ∈ TzM × TsR ∼= T(z,s)(M × R). This actually lies in p−1(D(ξ)) = TD(ξ) and

we obtain a smooth map D(ξ) → TD(ξ). Finally, T Flξ : TD(ξ) → TM is smooth as
the tangent map of a smooth map. Composing these three smooth maps, we obtain a
smooth map Φ : U × (−ϵ, ϵ) → TM , which by construction satisfies

(2.6) Φ(y, t) = T(Flξt (y),−t)
Flξ(η(Flξt (y)), 0) = TFlξt (y)

Flξ−t(η(Fl
ξ
t (y))).

(The last equality holds because a tangent vector of the form (X, 0) in a point (z,−t)
can be realized as the derivative at s = 0 of a curve of the form c(s) = (c1(s),−t). Then
Flξ(c(s)) = Flξ−t(c1(s)) and differentiating at s = 0, the claim follows.) Applying (2.6)
for the fixed point y = x, we observe that the right hand side has values in TxM for all
t ∈ (−ϵ, ϵ) and this completes the proof of (1).

Possibly shrinking U , we may assume that it is the domain of a chart (U, u) for M .
Then the last n components of Tu ◦Φ : U × (−ϵ, ϵ) → u(U)×Rn are smooth functions
φi : U×(−ϵ, ϵ) → R, i = 1, . . . , n and by definition we obtain Φ(y, t) =

∑
i φ

i(y, t) ∂
∂ui

(y).

Now it follows readily from the definitions that for each i the last partial derivative ∂φi

∂t

defines a smooth function U × (−ϵ, ϵ) → R, too. By construction, we obtain

(2.7) Lξη(y) =
∑

i
∂φi

∂t
(y, 0) ∂

∂ui
(y),

which shows that Lξη is a smooth vector field on U and hence on M .
To complete the proof, we have to show that Lξη(x) = [ξ, η](x) for all x ∈ M . Let

us first consider the case that ξ(x) ̸= 0. Then Theorem 2.9 shows that we can find a
local chart (U, u) around x such that ξ|U = ∂

∂u1
. For y ∈ U and t sufficiently close to

0, we then get u(Flξt y) = u(y) + te1. Using Proposition 1.15, this shows that the local

coordinate representation of T Flξ−t with respect to (U, u) is given by (z, v) 7→ (z−te1, v).
The expansion ηj ∂

∂uj
of η by definition means that the local coordinate representation

of η : M → TM with respect to the charts (U, u) and (p−1(U), Tu) is given by z 7→
(z, η1(u−1(z)), . . . , ηn(u−1(z))). Together with the above, this exactly says that, in a
neighborhood of x and for t sufficiently close to 0, we obtain φi(y, t) = ηi(u−1(u(y)+te1))
for i = 1, . . . n in the notation from above.

Hence the component functions in (2.7) are just the first partial derivatives of the
functions ηi ◦u−1. But these are just the functions ∂

∂u1
(ηi), which are the components of

[ ∂
∂u1
, η] by part (5) of Theorem 2.4. This completes the argument in the case ξ(x) ̸= 0.

By continuity of Lξη and [ξ, η], the two fields then have to coincide on supp(ξ). But
V := M \ supp(ξ) is an open subset of M on which ξ vanishes identically. Hence on

V , Flξt exists and is the identity for all t, which readily implies that Lξη|V = 0, while
[ξ, η]|V = 0 by part (4) of Theorem 2.4. □
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For later developments it will be useful to see that also the action of vector fields
on smooth functions fits into the the picture of a Lie derivative: There is an obvious
way how to pull back a smooth function f : N → R along a local diffeomorphism
F :M → N , by simply putting F ∗f := f ◦F . (Indeed, this extends to arbitrary smooth
maps, but this is not important at this stage.) In particular, given f ∈ C∞(M,R) and
ξ ∈ X(M), then locally around each x ∈ M and for t sufficiently close to 0, we can

consider (Flξt )
∗f : M → R. By definition, in terms of the integral curve cx through x,

we get (Flξt )
∗f(x) = f(cx(t)). Differentiating this at t = 0, we get Txf(ξ(x)) = ξ(f)(x).

Hence we can define the Lie derivative of f by Lξf(x) := d
dt
|t=0((Fl

ξ
t )

∗f(x)) and observe
that it defines a smooth function Lξf :M → R, which coincides with ξ(f).

2.11. Commuting vector fields. We next want to characterize the condition that
for two vector fields ξ, η ∈ X(M), the Lie bracket [ξ, η] vanishes identically. This first
needs a small extension of Theorem 2.10:

Lemma 2.11. Let ξ, η ∈ X(M) be vector fields on a smooth manifold M and let
x ∈ M and t0 ∈ R be such that (x, t0) ∈ D(ξ). Then for all y in some neighborhood of

x and t close enough to t0, t 7→ (Flξt )
∗η(y) defines a smooth curve in TyM and

d
dt
|t=t0((Fl

ξ
t )

∗η)(y) = Lξ((Flξt0)
∗η)(y) = ((Flξt0)

∗(Lξη))(y).

Proof. From Theorem 2.7, we know there is a neighborhood U of x inM and ϵ > 0
such that U × (t0 − ϵ, t0 + ϵ) ⊂ D(ξ) and then smoothness follows as in the proof of

Theorem 2.10. From Theorem 2.7, we also know that Flξt0+s = Flξt0 ◦Fl
ξ
s and as observed

in Section 2.3 this implies that (Flξt0+s)
∗η = (Flξs)

∗((Flξt0)
∗η). Differentiating this with

respect to s at s = 0 in a point and using Theorem 2.10, the first claimed equality
follows.

We can also write Flξt0+s = Flξs ◦Fl
ξ
t0 and inserting this, we obtain (Flξt0+s)

∗η =

(Flξt0)
∗((Flξs)

∗η). Evaluating the right hand side in y, we get Tỹ Fl
ξ
−t0((Fl

ξ
s)

∗η(ỹ)), where

ỹ = Flξt0(y). Differentiating with respect to s at s = 0, we can differentiate through

the constant linear map Tỹ Fl
ξ
−t0 , thus obtaining Tỹ Fl

ξ
−t0(Lξη(ỹ)). This gives the second

claimed equality. □

To formulate the desired characterization, we say that the flows of two vector fields
ξ, η ∈ X(M) commute if and only if for each x ∈ M and any open intervals I, J ⊂ R
containing zero the following is satisfied. If for one of the expressions Flξt (Fl

η
s(x)) and

Flηs(Fl
ξ
t (x)) exists for all (t, s) ∈ I × J , then the other expression exists for all t and s

and they are equal. Using this terminology, we state

Theorem 2.11. For two vector fields ξ and η on a smooth manifoldM , the following
conditions are equivalent:

(1) [ξ, η] = 0.

(2) For any (x, t0) ∈ D(ξ) we get (Flξt )
∗η = η locally around x and for t in an open

interval containing 0 and t0.
(3) For any (x, t0) ∈ D(η) we get (Flηt )

∗ξ = ξ locally around x and for t in an open
interval containing 0 and t0.

(4) The flows of ξ and η commute.

Proof. (1)⇒ (2): Take (x, t0) ∈ D(ξ). Since D(ξ) is open inM×R and {x}×[0, t0]
is compact, there is an open neighborhood U of x ∈M and an open interval I ⊂ R with
0, t0 ∈ I such that U × I ⊂ D(ξ). Hence (Flξt )

∗η(y) is defined for all t ∈ I and y ∈ U .
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But by Lemma 2.11, the curve t 7→ ((Flξt )
∗η)(y) in TyM has vanishing derivative and

thus is constant. Since it clearly gives η(y) for t = 0, the result follows.

(2) ⇒ (1): Since (x, 0) ∈ D(ξ) for all x ∈ M , we see that (Flξt )
∗η = η on some

neighborhood of x and for t sufficiently close to 0. Thus we can differentiate at t = 0
and (1) follows from Theorem 2.10.

Since condition (1) is symmetric in ξ and η, the equivalence of (1) and (3) follows
in the same way.

To show that these equivalent conditions imply (4), let us assume that we have x, I

and J such that Flηs(Fl
ξ
t (x)) exists for all (t, s) ∈ I×J . Fix s and put c(t) := Flηs(Fl

ξ
t (x)),

so c(0) = Flηs(x) and c
′(t) = TFlξt (x)

Flηs(ξ(Fl
ξ
t (x))). Of course (c(t),−s) ∈ D(η) for any

t and hence by (3), (Flη−s)
∗ξ = ξ on some neighborhood of any of the points c(t). This

implies that c′(t) = ξ(c(t)) and hence c(t) = Flξt (Fl
η
s(x)), so (4) is satisfied. If we assume

the other combination of flows exists, we use condition (2) instead of (3).
So let us finally assume that (4) is satisfied. Taking ϵ > 0 small enough, we can

assume that Flξt (Fl
η
s(x)) is defined for |s|, |t| < ϵ and by (4) this equals Flηs(Fl

ξ
t (x)).

Differentiating with respect to s at s = 0, we get Tx Fl
ξ
t (η(x)) = η(Flξt (x)) for all |t| < ϵ.

Applying TFlξt (x)
Flξ−t we see that η(x) = (Flξ−t)

∗η(x) for |t| < ϵ and differentiating with

respect to t at t = 0, [ξ, η](x) = 0 follows. □

Phrased in our current language, we have shown in Theorem 2.4 that the coordinate
vector fields with respect to any local chart for a manifold M always commute with
each other. Now we can show that apart from their point-wise linear independence, this
is the only characterizing property of coordinate vector fields.

Corollary 2.11. Let M be a smooth manifold of dimension n and let ξ1, . . . ξn be
local vector fields defined on some open subset V ⊂M such that

• For each x ∈ V , {ξ1(x), . . . , ξn(x)} is a basis for TxM .
• For each i, j, we get [ξi, ξj] = 0.

Then for each x ∈ V , there is a chart (U, u) for M with x ∈ U ⊂ V such that ξi|U = ∂
∂ui

for each i = 1, . . . , n.

Proof. Consider the map φ(t1, . . . , tn) := (Flξ1t1 ◦ . . . ◦ Fl
ξn
tn )(x). From Theorem 2.7

it easily follows that this is well defined and smooth from some open neighborhood of
0 in Rn to V . By Theorem 2.11 the succession in which we compose the flow maps
does not make any difference. Now we compute the ith partial derivative of φ as
d
ds
|s=0φ(t

1, . . . , ti + s, . . . tn). To do this, we write Flξi
ti+s

= Flξis ◦Flξi
ti
and then commute

the term Flξis to the very left of the expression. This then shows that this ith partial
derivative is given by ξi(φ(t

1, . . . , tn)). By linear independence of the ξi, Tφ is a linear
isomorphism in each point. In particular, there is an open neighborhood W of 0 such
that φ restricts to a diffeomorphism from W onto an open neighborhood U of x in M .
Putting u := (φ|W )−1, we obtain a chart (U, u) with x ∈ U ⊂ V , and the computation
of partial derivatives above shows that ξi|U = ∂

∂ui
for all i. □

2.12. Remarks on further developments. (1) Generalizing Theorem 2.11 there
are improved results relating the non-commutativity of the flows of vector fields to their
Lie brackets. Given two vector fields ξ, η ∈ X(M) and a point x ∈M , one considers the
map

α(t, s) := (Flξ−s ◦Fl
η
−t ◦Flξs ◦Fl

η
t )(x).
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This is defined and smooth on some open neighborhood of zero in R2, so c(t) := α(t, t)
is a smooth curve through x defined on an interval containing zero. If ξ and η commute,
then this clearly is the constant curve x. Now the first obvious idea is to consider c′(0)
but unfortunately, it turns out that c′(0) = 0. Indeed, α(t, 0) = α(0, s) = x for all t
and s, and hence both partial derivatives and thus all directional derivatives of α in
(0, 0) vanish. But one readily verifies that c′(0) = 0 implies that f 7→ (f ◦ c)′′(0) is a
derivation on smooth functions and hence there is a well defined element c′′(0) ∈ TxM .
Now it turns out that c′′(0) = 2[ξ, η](x) which gives a more quantitative version of the
statement that the Lie bracket measures non-commutativity of the flows.

The proof for this result is a rather tedious computation, see Theorem 3.16 in
[Michor], which actually proves a much more general result.

(2) An important result related to our current discussions is the Frobenius theorem.
This starts from the concept of a distribution (not related to generalized functions,
just a different object with the same name) on a smooth manifold. By definition, a
distribution of rank k is given by specifying in each point x ∈M a k-dimensional linear
subspace Ex ⊂ TxM . A (local) smooth section of E then is a (local) vector field ξ onM
such that ξ(x) ∈ Ex for all x in the domain of definition of ξ. A distribution E ⊂ TM
is called smooth if any point x ∈M has an open neighborhood U in M such that there
are local smooth sections ξ1, . . . , ξk of E defined on U , such that ξ1(y), . . . , ξk(y) is a
basis for Ey for all y ∈ U . Such a family is then called a (smooth) local frame for E.

The basic question that arises in this context is whether the subspaces forming
the distribution can be realized as tangent spaces of submanifolds. More formally,
the distribution E is called integrable if for each x ∈ M , there exists a k-dimensional
submanifold N ⊂ M with x ∈ N such that TyN = Ey for all y ∈ N . From what we
have done so far, we see that there is a simple necessary condition for integrability. If
N ⊂ M is an integral submanifold, then as discussed in Example 2.5, for vector fields
ξ, η ∈ X(M) that are tangent to N along N , also the Lie bracket [ξ, η] is tangent to N
along N . This implies that for an integrable distribution E and any two local sections
ξ, η of E also the Lie bracket [ξ, η] must be a (local) section of E. Smooth distributions
with this property are called involutive.

At the first sight it looks like involutivity would be hard to check, since one has to
check a condition for all local sections. Locally, however, this boils down to a finite
problem: Suppose that we have a local frame {ξ1, . . . , ξk} for E defined on U . Then
of course involutivity of E implies that [ξi, ξj] is a (local) section of E for all i, j, but
the key fact is that also the converse is true: One easily shows that any local section of
E defined on U can be written as

∑
i fiξi for smooth functions fi : U → R. But then

using the properties of the Lie bracket proved in Theorem 2.4, we see that we get

[
∑

i fiξi,
∑

j gjξj] =
∑

i,j (fiξi(gj)ξj − gjξj(fi)ξi − figj[ξi, ξj]) ,

and the first two summands clearly are sections for each i and j.
Now the Frobenius theorem states that for smooth distributions involutivity implies

integrability. In fact, one can construct local charts (U, u) for M with u(U) = V ×W ⊂
Rk × Rn−k for open subsets V and W such that for each fixed y ∈ W , u−1(V × {y})
is an integral manifold for E. The proof of this result does not really go beyond what
we have done so far. The basic idea is that one first constructs local frames for E
consisting of commuting vector fields (which mainly needs linear algebra and observing
that things depend smoothly on a point). Having found such frames, the charts are
then constructed via a mix of the proofs of Proposition 2.9 and of Corollary 2.11. A
complete proof can be found in Chapter 2 of my lecture notes [Cap:Lie] on Lie groups,
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which also contains several applications. The Frobenius theorem actually is one of the
cornerstones of analysis on manifolds with a broad range of applications.

It should be mentioned that there are also extensions of the theory of distributions
to the case where the dimension of the subspaces Ex is allowed to depend on x (“distri-
butions of non-constant rank”), for which things become more subtle. This is discussed
in the last part of Chapter 3 of [Michor].





CHAPTER 3

Tensor fields and differential forms

We now turn to a more general class of geometric objects. Initially, the definition of
these objects gets its main input from multilinear algebra rather then from analysis or
geometry. Therefore, the “best” way of formulating things depends quite a lot on the
background of a reader on topics from multilinear algebra like tensor products. It is
possible to basically avoid the use of tensor products by “converting” all objects to mul-
tilinear maps. This obscures many aspects, however, since it singles out one of several
possible interpretations of a tensor product. Being able to fluently use tensor products
and shift between different interpretations simplifies many arguments considerably. The
notes try to follow an intermediate approach, tensor products will be used, but some
details are added to arguments involving tensor products. It is important to notice that
we only need tensor products of finite dimensional vector spaces, so a construction via
free vector spaces is not really needed here.

It should also be mentioned here that at this point comparison to analysis on open
subsets of Rn can become a bit difficult. On open subsets, all the objects we consider
can be interpreted as smooth functions with values in appropriate vector spaces and
people often are not very careful in distinguishing between different types of objects,
say between the derivative of a real valued smooth function (which, as we shall see
readily, is a one-form) and its gradient (which is a vector field in our interpretation).

3.1. One-forms. This is the simplest instance of the type of construction we have
in mind. For a smooth manifoldM , we want to look at a map ω, that associates to each
x ∈M a linear map ω(x) : TxM → R. To talk about smoothness, there are at least two
natural possibilities. On the one hand, given a vector field ξ ∈ X(M), we can define
ω(ξ) : M → R by ω(ξ)(x) := ω(x)(ξ(x)). Similarly, for an open subset U ⊂ M and a
local vector field ξ defined on U , we can form ω(ξ) : U → R. On the other hand, ω
defines a function ω̂ : TM → R, defined by ω̂(X) := ω(p(X))(X), where p : TM → M
is the projection. All these lead to the same concept of smoothness:

Lemma 3.1. For a function ω as above, the following conditions are equivalent:
(1) For any vector field ξ ∈ X(M), the function ω(ξ) :M → R is smooth.
(2) For any open subset U ⊂ M and any local vector field η defined on U , the

function ω(η) : U → R is smooth.
(3) The function ω̂ : TM → R is smooth.

Proof. Since ω(η) = ω̂ ◦ η : U → R, (3) implies (2). Conversely, assume that (2) is
satisfied, take a chart (U, u) for M and the induced chart (p−1(U), Tu) for TM . Then
for (z, v) ∈ u(U) × Rn with v = (v1, . . . , vn), we get (Tu)−1(z, v) =

∑
i vi

∂
∂ui

(u−1(z)).
Hence

(ω̂ ◦ Tu−1)(z, v) =
∑

i viω(
∂
∂ui

)(u−1(z)),

so this is evidently smooth. Taking the charts from an atlas for M , we see that ω̂ has
smooth local coordinate representations with respect to the induced atlas of TM and
hence is smooth. Thus (2) implies (3).

45
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Since (2) obviously implies (1), it remains to show that (1) implies (2). Given U
and η, take a point x ∈ U . Then there is an open neighborhood V of x in M such that
V̄ ⊂ U . By Proposition 2.1, there is a vector field η̃ ∈ X(M) such that η̃|V = ηV , and
then by construction ω(η̃)|V = ω(η)|V . Thus ω(η) is smooth on an open neighborhood
of x and since x was arbitrary, this completes the proof. □

Definition 3.1. A one-form ω on a smooth manifoldM is a map, which associates
to each point x ∈ M a linear map ω(x) : TxM → R and satisfies the equivalent
conditions of Lemma 3.1. The space of all one-forms on M is denoted by Ω1(M).

From the definitions, it follows immediately that pointwise addition and multiplica-
tion by smooth functions makes Ω1(M) into a vector space and a module over C∞(M,R).
It is also no problem to talk about local one-forms on a smooth manifold M , these are
just one-forms on an open subset U ⊂ M . More surprisingly, for a smooth function
f : M → R, x ∈ M and X ∈ TxM we can define df(x)(Xx) := Txf(Xx) ∈ Tf(x)R = R.
Observing that df(ξ) = ξ(f) for ξ ∈ X(M), we see that we obtain df ∈ Ω1(M). Thus
we can naturally associate a one-form to a function, which is not possible with vector
fields without choosing additional structures. Another indication for the usefulness of
one-forms is that, in contrast to vector fields, they can be “moved” between manifolds
by arbitrary smooth maps:

Proposition 3.1. Let F : M → N be a smooth map between smooth manifolds.
Then for any one-form ω ∈ Ω1(N), (F ∗ω)(x)(X) := ω(F (x))(TxF (X)) defines a one-
form F ∗ω ∈ Ω1(M). In particular, for f ∈ C∞(N,R), we get F ∗df = d(f ◦ F ).

Proof. Since ω(F (x)) : TF (x)N → R and TxF : TxM → TF (x)N are linear, F ∗ω
associates to each x ∈M a linear map TxM → R. Concerning smoothness, we observe

that in the notation of Lemma 3.1 we get F̂ ∗ω = ω̂ ◦ TF , so smoothness follows. The
last part readily follows from the chain rule Tx(f ◦ F ) = TF (x)f ◦ TxF . □

This immediately leads to the description of one-forms in local coordinates. Given
a chart (U, u) for M , we have the local coordinates ui : U → R which define one-forms
dui ∈ Ω1(U) for i = 1, . . . , n. In particular, for the coordinate vector fields, we get
dui( ∂

∂uj
) = δij. Given ω ∈ Ω1(M), we obtain smooth functions ωi := ω( ∂

∂ui
) : U → R,

and we readily conclude that ω|U = ωidu
i. (Recall that we always use the summation

convention.) In particular, for a vector field ξ with ξ|U = ξj ∂
∂uj

, we obtain ω(ξ)|U = ωiξ
i.

The behaviour under a change of charts can be deduced directly from the change of
coordinate vector fields. For two charts (Uα, uα) and (Uβ, uβ) with Uαβ ̸= ∅ let us

denote the component functions of ω by ωαi and ωβj , respectively, and the chart changes
by uαβ : uβ(Uαβ) → uα(Uαβ). Using formula (1.2) from Section 1.14, we conclude that

(3.1) ωβi = ω( ∂
∂uiβ

) = ω
(
(∂iu

j
αβ)

∂

∂ujα

)
= (∂iu

j
αβ)ω

α
j .

In the last equality, we have used that ω(fξ) = fω(ξ) for ξ ∈ X(M) and f ∈ C∞(M,R),
which is obvious from the point-wise definition of the action of one-forms on vector fields.
Also, compare this carefully to formula (2.1) for vector fields from Proposition 2.1: Here

the Jacobi-matrix of uαβ gives the coefficients in the expansion of the functions ωβi in
terms of the ωαj , while there these were the coefficients of the functions ξiα in terms

of the functions ξjβ. Thus these coefficients are inverse matrices, which expresses the
duality between vector fields and one-forms.

To get a more systematic description using linear algebra, take a point x in a smooth
manifold M and define the cotangent space T ∗

xM of M at x as the dual of the tangent
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space, i.e. T ∗
xM := (TxM)∗ = L(TxM,R). For ω ∈ Ω1(M), we thus have ω(x) ∈ T ∗

xM .
Our construction of the tangent bundle was based on the fact that any chart (U, u)
for M with x ∈ U gives rise to an identification of TxM with Rn via Txu. But since
the construction of the dual space is natural (i.e. functorial), such an identification
also induces an identification T ∗

xM with Rn∗. Since the dual of a linear map goes in
the opposite direction, we have to dualize (Txu)

−1 : Rn ∼= Tu(x)Rn → TxM to obtain
T ∗
xu := ((Txu)

−1)∗ : T ∗
xM → Rn∗. This is easily made explicit: for λ ∈ T ∗

xM , T ∗
xu(λ) by

definition acts on v ∈ Rn as λ((Txu)
−1(v)), so for v = ei, one obtains λ( ∂

∂ui
(x)).

For two compatible charts (Uα, uα) and (Uβ, uβ) with x ∈ Uαβ, one easily concludes
that

T ∗
xuα ◦ (T ∗

xuβ)
−1 = (Duβα(uα(x)))

∗ : Rn∗ → Rn∗.

This of course depends smoothly on x, so we can imitate the construction of the tangent
bundle from Theorem 1.15. We define a set T ∗M to be the disjoint union of the
cotangent spaces T ∗

xM , which leads to a map p : T ∗M → M . For a chart (U, u) we
piece the maps T ∗

xu together to define T ∗u : p−1(U) → u(U) × Rn∗. Starting from a
countable atlas (Uα, uα), we obtain charts (p−1(Uα), T

∗uα) for T
∗M ,, which are smoothly

compatible. Via Lemma 1.6 (and a separate argument for the Hausdorff property as in
the case of TM), we conclude that T ∗M is a smooth manifold and p : T ∗M → M is a
smooth map.

From the explicit description above, we conclude that for a map ω : M → T ∗M
with p ◦ ω = idM , the local coordinate representation with respect to the charts (U, u)
and (p−1(U), T ∗u) is given by z 7→ (z, (ω1(u

−1(z)), . . . , ωn(u
−1(z)))), where ωi = ω( ∂

∂ui
).

This then directly implies that one-forms onM are exactly smooth maps ω :M → T ∗M
such that p ◦ ω = id. Thus we have arrived at a description closely similar to vector
fields. There is much more symmetry in the situation: Recall that X ∈ TxM defines
a linear map T ∗

xM → R by evaluating linear maps on X. In particular, given a map
ξ : M → TM , we can define ξ(ω) for each ω ∈ Ω1(M) (which equals ω(ξ)) as well as

ξ̂ : T ∗M → R by ξ̂(λ) := λ(ξ(p(λ))). One immediately verifies that smoothness of ξ is

equivalent to smoothness of ξ̂ and to smoothness of ξ(ω) for each ω ∈ Ω1(M).

Remark 3.1. Observe that the dualization that takes place when going from TM
to T ∗M has opposite effects for the functorial properties of the construction and for
the possibility to “transport” sections (i.e. vector fields respectively one-forms). Any
smooth map F : M → N induces a smooth map TF : TM → TN , but to define a
pullback of vector fields, we have to require that each tangent map is invertible, i.e.
that F is a local diffeomorphism. Now the dual to a tangent map TxF : TxM → TF (x)N
is (TxF )

∗ : T ∗
F (x)N → T ∗

xM . This allows us to define a pullback of one-forms for any

F , since by definition (F ∗ω)(x) = (TxF )
∗(ω(F (x))). But these dual maps cannot be

collected to define a map T ∗F . To make the construction of the cotangent bundle
functorial, we have to assume that F : M → N is a local diffeomorphism. As above,
this allows us to define T ∗

xF := ((TxF )
−1)∗ : T ∗

xM → T ∗
F (x)N and these fit together to

define a smooth map T ∗F : T ∗M → T ∗N such that p ◦ T ∗F = F ◦ p.
3.2. Tensor fields. Having prepared the case of one-forms carefully, we can now

introduce the general concept of tensor fields. Given an vector space E and k ∈ N, we
write ⊗kE for the tensor product of k copies of E, with ⊗1E = E and ⊗0E = R. For
a linear map φ : E → F between two vector spaces, we write ⊗kφ : ⊗kE → ⊗kF for
the induced map on tensor powers. On a tensor product of vectors, this just acts by
applying φ to each of the vectors and forming the tensor product of resulting elements
of F . Since all possible tensor products of k elements from a basis of E form a basis
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of ⊗kE, this shows that the matrix entries of ⊗kφ with respect to this induced basis
are obtained by polynomial expressions from the entries of the matrix of φ with respect
to the original basis. So if φ depends smoothly on some parameters, then also ⊗kφ
depends smoothly on these parameters. For tensor products of two different vector
spaces, we use analogous notation and similar arguments apply.

Given a smooth manifold M , a point x ∈ M and (k, ℓ) ∈ N × N, we can form the
vector space ⊗kT ∗

xM ⊗ ⊗ℓTxM . One possible interpretation of this space is as k + ℓ-
linear maps (TxM)k × (T ∗

xM)ℓ → R. Keep in mind that two such multilinear maps
coincide if there values on all possible combinations of elements from some fixed bases
of TxM and T ∗

xM agree. Given a map t that associates to each x ∈ M an element
t(x) =: tx ∈ ⊗kT ∗

xM ⊗ ⊗ℓTxM , k vector fields ξ1, . . . , ξk ∈ X(M) and ℓ one-forms
ω1, . . . , ωℓ ∈ Ω1(M), we get a function t(ξ1, . . . , ξk, ω

1, . . . , ωℓ) : M → R whose value in
x is tx(ξ1(x), . . . , ξk(x), ω

1(x), . . . , ωℓ(x)).

Definition 3.2. A
(
ℓ
k

)
-tensor field on a smooth manifold M is a map t that asso-

ciates to each x ∈ M an element tx ∈ ⊗kT ∗
xM ⊗ ⊗ℓTxM such that for all ξ1, . . . , ξk ∈

X(M) and ω1, . . . , ωℓ ∈ Ω1(M), the function t(ξ1, . . . , ξk, ω
1, . . . ωℓ) :M → R is smooth.

The space of all such tensor fields will be denoted by T ℓ
k (M).

As before, pointwise addition and multiplication by smooth functions makes T ℓ
k (M)

into a vector space and a module over C∞(M,R). There are obvious concepts of locally
defined tensor fields and restriction of tensor fields to open subsets. Moreover, we can
also insert vector fields and one-forms defined on an open subset U into (the restriction
to U of) a tensor field to obtain a function defined on U . Similarly to the proof of
Lemma 3.1, one shows that the resulting function is always smooth on U . The only
fact needed here is that for ω ∈ Ω1(U) and x ∈ U , there exists ω̃ ∈ Ω1(M) and an open
neighborhood V of x such that ω̃|V = ω|V . This is proved using a bump function in
exactly the same way as part (4) of Proposition 2.1.

We can also easily derive the description of tensor fields in local coordinates. Suppose
that (U, u) is a chart for M and consider the associated coordinate vector fields ∂

∂ui
and

one-forms duj. Given t ∈ T ℓ
k (M) and any k + ℓ-tuple (i1, . . . , ik, j1, . . . , jℓ) of integers

in {1, . . . , n} we get a smooth function

(3.2) tj1...jℓi1...ik
:= t

(
∂

∂ui1
, . . . , ∂

∂uik
, duj1 , . . . , dujℓ

)
∈ C∞(U,R).

On the other hand, for each choice of indices as above we obtain a locally defined tensor
field, which in hindsight we denote by

(3.3) dui1 ⊗ · · · ⊗ duik ⊗ ∂
∂uj1

⊗ · · · ⊗ ∂
∂ujℓ

∈ T ℓ
k (U).

(We shall see later on that this is indeed a tensor product of coordinate vector fields
and coordinate one-forms, but here we use this as a symbol.) This is defined by the fact
that its value in x sends X1, . . . , Xk ∈ TxM and λ1, . . . , λℓ ∈ T ∗

xM to

(
∏

r du
ir(x)(Xr))(

∏
s λ

s( ∂
∂ujs

(x))) ∈ R.

This definition readily implies that inserting arbitrary vector fields ξ1, . . . , ξr and one-
forms ω1, . . . , ωs defined on U into the tensor field (3.3), one obtains a product of
component functions ξi11 . . . ξ

ir
r ω

1
j1
. . . ωsjs . Hence we have indeed defined a smooth tensor

field on U . Moreover, this also easily implies that

(3.4) t|U = tj1...jℓi1...ik
dui1 ⊗ · · · ⊗ duik ⊗ ∂

∂uj1
⊗ · · · ⊗ ∂

∂ujℓ
,
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since both sides coincide on all combinations of coordinate vector fields and coordinate
one-forms. Observe that in (3.4) the summations convention applies to all k+ℓ indices,
so this actually is a sum with nk+ℓ terms.

The behavior of these component functions under a change of charts is also not
difficult to describe, but the formulae get a bit long. For two charts (Uα, uα) and (Uβ, uβ)
with Uαβ ̸= ∅ let us define functions Aij, B

r
s : Uαβ → R by Aij(x) := ∂ju

i
αβ(uβ(x))

and Br
s(x) := ∂su

r
βα(uα(x)). By construction, the matrices (Aij(x)) and (Br

s(x)) are

inverse to each other, which reads as AirB
r
j = δij in index notation. In our current

notation, formula (1.2) reads as ∂
∂uiβ

= Aji
∂

∂ujα
. Applying durα to this equation, we get

durα(
∂
∂uiβ

) = Ari , which implies durα = Aridu
i
β and hence duiβ = Bi

jdu
j
α. Now let us

denote by t’s the functions corresponding to (Uα, uα) and by t̃’s the ones corresponding
to (Uβ, uβ). Using formula (3.2) to determine the functions t̃j1...jℓi1...ik

and expanding using
multilinearity, we get

(3.5) t̃j1...jℓi1...ik
= Ar1i1 . . . A

rk
ik
Bj1
s1
. . . Bjℓ

sℓ
ts1...sℓr1...rk

.

(Again, this involves a summation of k + ℓ indices.)

Even if this formula is much more complicated than the ones for vector fields and
one-forms, it allows for an alternative interpretation which is completely parallel to what
we did in these cases: Any chart (U, u) for M with x ∈ U gives rise to the identification

⊗kT ∗
xu⊗⊗ℓTxu : ⊗kT ∗

xM ⊗⊗ℓTxM → ⊗kRn∗ ⊗⊗ℓRn.

For two compatible charts (Uα, uα) and (Uβ, uβ), the change of identifications is given
by ⊗k(T ∗

xuα ◦ (T ∗
xuβ)

−1) ⊗ ⊗ℓ(Txuα ◦ (Txuβ)−1), so this again depends smoothly on x.
Hence we can follow the same strategy as in 1.15 and 3.1 to collect together all the spaces
⊗kT ∗

xM ⊗ ⊗ℓTxM into a manifold ⊗kT ∗M ⊗ ⊗ℓTM that is endowed with a canonical
smooth map p : ⊗kT ∗M ⊗ ⊗ℓTM → M . For a map t : M → ⊗kT ∗M ⊗ ⊗ℓTM such
that p◦ t = id, the local coordinate expressions have as components the functions tj1...jℓi1...ik

,

which shows that
(
ℓ
k

)
-tensor fields on M are exactly the smooth functions with that

property.

Example 3.2. (1) By definition, a
(
0
1

)
-tensor field on M is a one-form on M and

from the end of Section 3.1, we conclude that a
(
1
0

)
-tensor field is a vector field on M .

(2) A
(
0
2

)
-tensor field g by definition associates to each point x ∈M a bilinear form

gx : TxM × TxM → R which is smooth in the sense that x 7→ gx(ξ(x), η(x)) is smooth
for any ξ, η ∈ X(M). If one in addition requires that each gx is symmetric and positive
definite and thus defines an inner product on TxM , g is called a Riemannian metric on
M . If one only requires gx to be symmetric and non-degenerate (i.e. if gx(X, Y ) = 0 for
some X ∈ TxM and all Y ∈ TxM , then X = 0), then g is called a pseudo-Riemannian
metric on M .

An element of T ∗
xM⊗T ∗

xM can also be viewed as defining a linear map TxM → T ∗
xM

via X 7→ gx(X, ) : TxM → R. Thus given g ∈ T 0
2 (M) and ξ ∈ X(M), we can consider

x 7→ gx(ξ(x), ) ∈ T ∗
xM , and this defines a one-form g(ξ, ) ∈ Ω1(M). If we deal

with a pseudo-Riemannian metric, then non-degeneracy says that the induced map
TxM → T ∗

xM has trivial kernel, so it must be a linear isomorphism in each point.
Hence we can consider the point-wise inverses in L(T ∗

xM,TxM) ∼= TxM ⊗ TxM . Since
inversion is a smooth map on invertible matrices, we conclude that these fit together
to define a

(
2
0

)
-tensor field g−1 on M . In particular, to ω ∈ Ω1(M), we can associate

a vector field g−1(ω) ∈ X(M), and this defines an inverse to the map ξ 7→ g(ξ, ). On
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the other hand, linear algebra shows that, viewed as a bilinear form on T ∗
xM , g−1

x is
symmetric for each x ∈M , and if gx is positive definite, so is g−1

x . Hence a Riemannian
metric on M also defines inner products on the cotangent spaces of M .

(3) Similarly as in (2), there are different interpretations of
(
1
1

)
-tensor fields, which

also follow just from linear algebra and observing the things depend smoothly on a
point. Apart from the interpretation as bilinear maps TxM × T ∗

xM → R, we can
also identify T ∗

xM ⊗ TxM with L(TxM,TxM), or with L(T ∗
xM,T ∗

xM). (The resulting
identification between L(TxM,TxM) and L(T ∗

xM,T ∗
xM) simply sends each map to the

dual map.) Thus given a
(
1
1

)
-tensor field Φ, ξ ∈ X(M) and ω ∈ Ω1(M), we can form

Φ(ξ, ω) ∈ C∞(M,R), Φ(ξ) ∈ X(M) and Φ(ω) ∈ Ω1(M). This of course is a certain
abuse of notation, that is justified by the fact that Φ(ξ, ω) = ω(Φ(ξ)) = Φ(ω)(ξ). In
local coordinates, the operations are given by

Φ(ξ, ω)|U = Φj
iξ
iωj (Φ(ξ))i = Φi

jξ
j (Φ(ω))j = Φi

jωi.

3.3. Tensor products and contractions. These are two basic operations on ten-
sor fields, which are defined point-wise, so understanding them again is mainly a matter
of multilinear algebra. To formulate things, it will be helpful to first derive a descrip-
tion of tensor fields that will also be useful later on. Given t ∈ T ℓ

k (M), we can insert
k vector fields and ℓ one-forms into t to obtain a smooth function. Thus t defines an
operator X(M)k × Ω1(M)ℓ → C∞(M,R) and by construction, this is linear (over R)
in each entry. Now we can characterize among all these operators the ones induced by
tensor fields. This will allows us to construct tensor fields in a coordinate-free way, by
prescribing their actions on vector fields and one-forms. To formulate the characteriza-
tion, we observe that vector fields, one-forms and smooth functions can all be multiplied
(point-wise) by smooth functions, and thus for an operator Φ as above the concept of
linearity over smooth functions in any variable makes sense.

Lemma 3.3. Let Φ : X(M)k ×Ω1(M)ℓ → C∞(M,R) be k+ ℓ-linear operator. Then
Φ is induced by a tensor field t ∈ T ℓ

k (M) if and only if it is linear over C∞(M,R) in
each variable.

Proof. For t ∈ T ℓ
k (M), ξ1, . . . , ξk ∈ X(M) and ω1, . . . , ωℓ ∈ Ω1(M), we by defini-

tion have

t(ξ1, . . . , ξk, ω
1, . . . , ωℓ)(x) = tx(ξ1(x), . . . , ξk(x), ω

1(x), . . . , ωℓ(x))

for each x ∈ M . Replacing ξi by fξi for f ∈ C∞(M,R), we get (fξi)(x) = f(x)ξi(x)
and inserting this into tx, we can take f(x) out by multilinearity of tx. So we see that
t(. . . , fξi, . . .) = ft(. . . , ξi, . . .), and for the one-forms things work in the same way.

To prove the converse, we assume that Φ is linear over C∞(M,R) in each vari-
able, and claim that Φ(ξ1, . . . , ω

ℓ)(x) depends only on ξ1(x), . . . , ξk(x) ∈ TxM and on
ω1(x), . . . , ωℓ(x) ∈ T ∗

xM . Having proved this, we can use Φ to define a tensor field t as
follows. Given x ∈M , X1, . . . , Xk ∈ TxM and λ1, . . . , λℓ ∈ T ∗

xM we choose vector fields
ξi ∈ X(M) and one-forms ωj ∈ Ω1(M) such that ξi(x) = Xi and ωj(x) = λj for all i
and j. (Choosing a chart around x this is no problem locally, and then we get global
extensions using a bump function.) Then we put

tx(X1, . . . , Xk, λ
1, . . . , λℓ) := Φ(ξ1, . . . , ξk, ω

1, . . . , ωℓ)(x)

and observe that this is independent of all choices. Inserting vector fields and one-forms
into t, we then recover Φ, so we see that t is smooth and that it induces Φ.

So it remains to prove the claim, and the argument is the same for all variables, so
we do it for ξi. We want to show that Φ(. . . , ξi, . . . )(x) = Φ(. . . , ξ̃i, . . . )(x) provided
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that ξi(x) = ξ̃i(x). By inserting ξi − ξ̃i, it suffices to prove that ξi(x) = 0 implies that
Φ(. . . , ξi, . . . )(x) = 0. As a first step, we prove that Φ(. . . , ξi, . . . )(x) = 0 if there is
an open subset U ⊂ M with x ∈ U such that ξi vanishes identically on U . To do
this, we take a bump function f ∈ C∞(M,R) with supp(f) ⊂ U and f(x) = 1. Then
fξi is identically 0, so by multilinearity, we get 0 = Φ(. . . , fξi, . . . ) = fΦ(. . . , ξi, . . . ).
Evaluating the right hand side in x, we get 1 · Φ(. . . , ξi, . . . )(x), which completes this

step. Assuming now that ξi, ξ̃i ∈ X(M) are such that ξi|U = ξ̃i|U then their difference
vanishes on U and inserting into Φ the result vanishes in x, so Φ(. . . , ξi, . . . )(x) =

Φ(. . . , ξ̃i, . . . )(x).
For the last step, we now assume that ξi(x) = 0, choose a chart (U, u) around x

and take the expansion ξi|U = ξji
∂
∂uj

. Now we can extend the functions ξji to functions
f j ∈ C∞(M,R) and the coordinate vector fields to ηj ∈ X(M) without changing them
on a smaller open neighborhood V of x. Thus ξi|V = (

∑
j f

jηj)|V , and from the last
step, we conclude

Φ(. . . , ξi, . . . )(x) = Φ(. . . ,
∑

j f
jηj, . . . )(x) =

∑
j f

j(x)Φ(. . . , ηj, . . . )(x).

But f j(x) = ξji (x) = 0 for all j, so the claim follows. □

Using this result, we can now express the operation on tensor fields obtained from the
point-wise tensor product directly in terms of operators on vector fields and one-forms.
Given t ∈ T ℓ

k (M) and t′ ∈ T ℓ′

k′ (M), we define an operator on X(M)k+k
′ × Ω1(M)ℓ+ℓ

′
by

sending ξ1, . . . ξk+k′ and ω
1, . . . , ωℓ+ℓ

′
to

t(ξ1, . . . , ξk, ω
1, . . . , ωℓ) · t′(ξk+1, . . . , ξk+k′ , ω

ℓ+1, . . . , ωℓ+ℓ
′
).

This is smooth as a product of smooth functions, and obviously the expression is linear
over C∞(M,R) in each variable, so by Lemma 3.3 it defines t⊗ t′ ∈ T ℓ+ℓ′

k+k′ (M). It is no
problem to iterate tensor products and this is associative. Thus there is no need to put
brackets in an iterated tensor product. Notice however, that the tensor product is not
commutative in general. Obeserve also that, as claimed in Section 3.2, the “coordinate
tensor fields” defined in formula (3.3) indeed are iterated tensor products of coordinate
vector fields and coordinate one-forms.

The basis for the second operation is that for a vector space E with dual E∗, there
is a natural bilinear map E∗ ×E → R which sends (λ, v) to λ(v). This induces a linear
map E∗ ⊗E → R and the construction easily extends to larger tensor products. In the
setting of a point x ∈ M , choosing integers k, ℓ > 0 and 1 ≤ r ≤ k and 1 ≤ s ≤ ℓ, one
obtains a contraction

Cs
r : ⊗kT ∗

xM ⊗⊗ℓTxM → ⊗k−1T ∗
xM ⊗⊗ℓ−1TxM.

On a tensor product of elements, this takes the sth factor in the TxM part, inserts it
into the rth factor of the T ∗

xM part and multiplies the resulting number with the tensor
product of the remaining elements (in the original order). This is a bit clumsy to write
out explicitly. A reasonable way is to use the convention that putting a hat over a symbol

means omission. For example, taking λ1, . . . , λk ∈ T ∗
xM , we write λ1 ⊗ · · · λ̂r · · · ⊗ λk

for λ1 ⊗ · · · ⊗ λr−1 ⊗ λr+1 ⊗ · · · ⊗ λk. Then for these λj and X1, . . . , Xℓ ∈ TxM , we get

Cs
r (λ

1 ⊗ · · · ⊗ λk ⊗X1 ⊗ · · · ⊗Xℓ) = λr(Xs)λ
1 ⊗ · · · λ̂r · · · ⊗ λk ⊗X1 ⊗ · · · X̂s · · · ⊗Xℓ.

Using this description, one easily verifies that applying this in each point defines a
smooth map ⊗kT ∗M ⊗ ⊗ℓTM → ⊗k−1T ∗M ⊗ ⊗ℓ−1TM . Composing this with a

(
ℓ
k

)
-

tensor field t on M , we obtain a
(
ℓ−1
k−1

)
-tensor field, that we denote by Cs

r (t).
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To compute this in coordinates, recall from linear algebra the description of the basic
contraction E∗ ⊗ E → R in the picture of bilinear maps E × E∗ → R. Taking a basis
{ei} for E with dual basis {ej} for E∗ (i.e. ej(ei) = δji ), a bilinear map φ : E ×E∗ → R
can be written as

∑
i,j φ(ei, e

j)ei ⊗ ej. Thus its contraction is given by
∑

i φ(ei, e
i) and

one easily verifies that this is independent of the choice of basis. In the setting of tensor
fields and a chart (U, u) such dual bases are formed by the elements ∂

∂ui
(x) and dui(x)

for each x ∈ U . This shows for the local representations as in (3.4) and using “a” as a
summation index, we get

(Cs
r (t))

j1...jℓ−1

i1...ik−1
= t

j1...js−1ajs...jℓ−1

i1...ir−1air...ik−1

(which finally explains the notation). Observe that viewing E∗ ⊗ E as either L(E,E)
or L(E∗, E∗) the contraction just corresponds to taking the trace of an endomorphism.

Example 3.3. Several things we have done so far admit an interpretation in terms
of tensor products and contractions, which often is technically very helpful. For example
given ξ ∈ X(M) = T 1

0 (M) and ω ∈ Ω1(M) = T 0
1 (M), we can form ω ⊗ ξ =∈ T 1

1 (M).
For the (unique possible) contraction we then get C1

1(ω ⊗ ξ) = ω(ξ). Note that in this
case, there is no difference between ω ⊗ ξ and ξ ⊗ ω.

Similarly, for pseudo-Riemannian metric g ∈ T 0
2 (M) as discussed in Example (2) of

3.2 and ξ ∈ X(M), we get g ⊗ ξ ∈ T 1
2 (M). Now there are two possible contractions

C1
1 and C1

2 of this, but the fact that each gx is symmetric implies that they coincide in
this case and equal g(ξ, ). Also the insertion g−1(ω) of a one-form ω into the inverse
metric can be written as C1

1(g
−1 ⊗ ω) = C2

1(g
−1 ⊗ ω) with g−1 ⊗ ω ∈ T 2

1 (M). In these
examples, there is also no difference between g ⊗ ξ and ξ ⊗ g or between g−1 ⊗ ω and
ω ⊗ g−1.

In the setting of Example (3) of 3.2, we have Φ ∈ T 1
1 (M), ξ ∈ X(M) and ω ∈ Ω1(M).

In this case, there already is a contraction of Φ, namely C1
1(Φ) ∈ C∞(M,R). Further, we

can form Φ⊗ξ ∈ T 2
1 (M), Φ⊗ω ∈ T 1

2 (M) and Φ⊗ω⊗ξ ∈ T 2
2 (M). Now C2

1(Φ⊗ξ) = Φ(ξ)
and C1

2(Φ⊗ ω) = Φ(ω) in the notation from Example (3) of 3.3, while C1
1(Φ⊗ ξ) is the

product of the smooth function C1
1(Φ) with ξ and similarly for C1

1(Φ⊗ ω). Finally, we
can form iterated contractions of Φ⊗ω⊗ξ to obtain Φ(ξ, ω) as either C1

1(C
2
1(Φ⊗ω⊗ξ))

or C1
1(C

1
2(Φ ⊗ ω ⊗ ξ)) (but here the notation we introduced is not optimal any more).

Here Φ ⊗ ω ⊗ ξ = Φ ⊗ ξ ⊗ ω, but the the position of Φ with respect to either of the
other two factors does matter (as seen from the different contractions).

As a generalization of the last observation, observe that for t ∈ T ℓ
k (M), ξ1, . . . , ξk ∈

X(M) and ω1, . . . , ωℓ ∈ Ω1(M), we can always obtain t(ξ1, . . . , ξk, ω
1, . . . , ωℓ) via a

sequence of contractions from t⊗ ω1 ⊗ · · · ⊗ ωℓ ⊗ ξ1 ⊗ · · · ⊗ ξk.

3.4. Excursion: Functoriality and Lie derivatives. We discuss these topics for
general tensor fields only briefly, the case of differential forms will be discussed in more
detail below. Let F : M → N be a local diffeomorphism between smooth manifolds.
Then for each x ∈ M , the tangent map TxF : TxM → TF (x)N is a linear isomorphism
and we can also form its dual map (TxF )

∗ : T ∗
F (x)N → T ∗

xM . Combining this with

(TxF )
−1 we get, for any k, ℓ ∈ N, linear isomorphisms

(3.6) ⊗k(TxF )
∗ ⊗⊗ℓ(TxF )

−1 : ⊗kT ∗
F (x)N ⊗⊗ℓTF (x)N → ⊗kT ∗

xM ⊗⊗ℓTxM.

Given a tensor field t ∈ T ℓ
k (N), we can apply this map to t(F (x)) to obtain an element

(F ∗t)(x) ∈ ⊗kT ∗
xM ⊗⊗ℓTxM . Now for each x ∈ M , there is an open neighborhood U

of x in M such that F (U) =: V ⊂ N is open and F |U : U → V is a diffeomorphism. It
then follows easily that the maps from (3.6) fit together over V to define a smooth map
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p−1(V ) → ⊗kT ∗M⊗⊗ℓTM , which in turn implies that F ∗t is smooth on a neighborhood
of x, and hence F ∗t ∈ T ℓ

k (M). This is called the pullback of t along F . Alternatively,
we can use the map T ∗

xF = ((TxF )
−1)∗ : T ∗

xM → T ∗
F (x)N from Section 3.1 to express

the definition as
(3.7)
(F ∗t)x(X1, . . . , Xk, λ

1, . . . , λℓ) = tF (x)(TxF (X1), . . . , TxF (Xk), T
∗
xF (λ

1), . . . , T ∗
xF (λ

ℓ))

for X1, . . . , Xk ∈ TxM and λ1, . . . , λℓ ∈ T ∗
xM . In particular, this shows that for vec-

tor fields and one-forms, we recover the operations introduced in Sections 2.3 and 3.1,
respectively. This point-wise formula also show that the pullback is linear, and com-
patible with multiplication by smooth functions, i.e. F ∗(t1 + t2) = F ∗t1 + F ∗t2 and
F ∗(ft) = (f ◦ F )(F ∗t) for f ∈ C∞(N,R).

Using this interpretation and the point-wise definition of the operations from Section
3.3, we immediately conclude that pullbacks are compatible with these operations: For
tensor fields t ∈ T ℓ

k (N) and t′ ∈ T ℓ′

k′ (N), we obtain F ∗(t⊗t′) = (F ∗t)⊗(F ∗t′). Similarly,
in case that k, ℓ > 0, for chosen integers 1 ≤ r ≤ k and 1 ≤ s ≤ ℓ, we obtain
F ∗(Cs

r (t)) = Cs
r (F

∗t). For example, for ξ ∈ X(N) and ω ∈ Ω1(N), we know that
ω(ξ) = C1

1(ω ⊗ ξ). Now of course F ∗(ω(ξ)) = ω(ξ) ◦ F and we have just seen that this
coincides with C1

1(F
∗(ω ⊗ ξ)) = C1

1((F
∗ω)⊗ (F ∗ξ)) = (F ∗ω)(F ∗ξ).

Having this at hand, we can now follow the ideas from Section 2.10 to define a Lie
derivative for general tensor fields. This will be easier than the developments there
since we can build on the case of vector fields and work with explicit formulae. Let
us start with a fixed vector field η ∈ X(M) and consider its flow Flηs which, locally
around each x ∈ M , is defined for s ∈ R sufficiently close to 0. Given a tensor field
t ∈ T ℓ

k (M) we have c(s) := ((Flηs)
∗t)(x) ∈ ⊗kT ∗

xM ⊗⊗ℓTxM which is defined for s ∈ R
sufficiently close to 0. To verify that this is a smooth curve, we have to treat the
case of one-forms separately: For ω ∈ Ω1(M) and X ∈ TxM , we by definition have
((Flηs)

∗ω)(x)(X) = ω(Flηs(x))(Tx Fl
η
s(X)), and this visibly depends smoothly on s. We

also know from 2.10 that for each vector field ξ ∈ X(M), s 7→ ((Flηs)
∗ξ)(x) is a smooth

curve in TxM .
Now taking a chart (U, u) for M with x ∈ U , we know from Section 3.2 that we can

write

t|U = tj1...jℓi1...ik
dui1 ⊗ · · · ⊗ duik ⊗ ∂

∂uj1
⊗ · · · ⊗ ∂

∂uj1
.

Pulling this back along Flηs and evaluating in x, we get a sum of terms which are
products of the smooth functions tj1...jℓi1...ik

(Flηs(x)) with the tensor product of the pullbacks

of the individual one-forms duir and pullbacks of the individual vector fields ∂
∂ujs

both
evaluated at x. The tensor products of the resulting smooth curves of course define a
smooth curve in ⊗kT ∗

xM⊗⊗ℓTxM and a linear combination of smooth curves is smooth.
Hence we see that the curve c(s) := ((Flηs)

∗t)(x) is smooth and we can define

(3.8) Lηt(x) := d
ds
|s=0((Fl

η
s)

∗t)(x) ∈ ⊗kT ∗
xM ⊗⊗ℓTxM.

To see that Lηt is again a smooth tensor field, we describe its action on vector fields
and one-forms explicitly, and again we have to treat the case of one-forms separately.
For ω ∈ Ω1(M), ξ ∈ X(M), and x ∈M , we get from above that

ω(ξ)(Flηs(x)) = C(((Flηs)
∗ω)(x)⊗ ((Flηs)

∗ξ)(x)),

where C : T ∗
xM ⊗ TxM → R is the basic contraction. Differentiating the left hand side

at s = 0, we of course get the directional derivative η(x)(ω(ξ)). For the right hand side,
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we can differentiate through the linear map C and use that bilinearity of the tensor
product implies

d
ds
|s=0(c1(s)⊗ c2(s)) = c′1(0)⊗ c2(0) + c1(0)⊗ c′2(0).

Using that d
ds
|s=0((Fl

η
s)

∗ξ)(x) = [η, ξ](x), we conclude that the right hand side equals
Lηω(x)(ξ(x))+ω(x)([η, ξ](x)). Using that this holds in each point x, we can now simply
rearrange terms to obtain

(3.9) (Lηω)(ξ) = η(ω(ξ))− ω([η, ξ]).

Since the right hand side is evidently smooth, this shows that Lηω indeed defines a
smooth one-form on M .

If you feel uneasy with this computation, there also is an alternative approach,
namely using equation (3.9) to define a one-form Lηω. In view of Proposition 3.3 we
only have to verify that the right hand side of (3.9) is linear over smooth function in
the variable ξ. But this immediately follows from the derivation property of η and part
(3) of Theorem 2.4. However, for many applications, the relation of this operation to
the flow of η is crucial. Finally, let us observe that equation(3.9) easily implies that
Lη(fω) = η(f)ω + fLηω.

This line of argument extends to the case of t ∈ T ℓ
k (M) using the last observation

in Section 3.3, namely that t(ξ1, . . . , ξk, ω
1, . . . , ωℓ) can be obtained via a sequence of

contractions from t ⊗ ξ1 ⊗ · · · ⊗ ωℓ. From Section 3.3 we know that both the tensor
product and the sequence of contractions commute with the pullback along local flows
of η. Hence we can write t(ξ1, . . . , ξk, ω

1, . . . , ωℓ)(Flηs(x)) as a linear map (the sequence
of contractions) applied to the tensor product of ((Flηs)

∗t)(x), and factors of the form
((Flηs)

∗ξi)(x) and ((Flηs)
∗ωj)(x). Differentiating with respect to s at s = 0, we again

get η(x)(t(ξ1, . . . , ξk, ω
1, . . . , ωℓ)) in the left hand side. In the right hand side, we can

differentiate through the linear map and get a sum of terms in which exactly one of the
curves in the tensor product is differentiated. Now in the first summand, Lηt(x) occurs
together with the vector fields and one-forms. For the vector fields, differentiation
just leads to [η, ξi](x) while for the one forms we get Lηωj(x) as computed above.
Rearranging terms, we obtain a formula at the point x and the we can leave out x to
conclude that (Lηt)(ξ1, . . . , ξk, ω1, . . . , ωℓ) can be written as

(3.10)
η(t(ξ1, . . . , ω

ℓ))−
∑k

i=1 t(ξ1, . . . , [η, ξi], . . . , ξk, ω
1, . . . , ωℓ)

−
∑ℓ

j=1 t(ξ1, . . . , ξk, ω
1, . . . ,Lηωj, . . . , ωℓ).

Since the right hand side is smooth, this shows that Lηt ∈ T ℓ
k (M). The alternative

approach described in the case of one-forms can also be applied here, namely using
formula (3.10) to define Lηt. By Lemma 3.3, we only have to shows that formula (3.10)
is linear over smooth functions in any of the ξi and any of the ωj. But this immediately
follows from the fact that η acts as a derivation, the formula for [η, fξi] from Theorem
2.4 and the formula for Lη(fωj) that we derived above. However, for many applications
the relation to the pullback along flows of η is crucial.

Differential forms

Although they are probably more difficult to understand intuitively than vector
fields, differential forms are the most versatile geometric objects available on manifolds.
They can be pulled back along arbitrary smooth maps and carry a rich algebraic struc-
ture. Moreover, there are several natural operations available in this setting, which
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combine to an efficient calculus. As we shall see later on, they are also related to
integration on manifolds and to algebraic topology.

3.5. Definition, pull back and wedge product. A differential form of degree k
or a k-form on a manifold M is a

(
0
k

)
-tensor field ω ∈ T 0

k (M) such the for each x ∈ M

the k-linear map ωx : (TxM)k → R is alternating. Recall the latter condition can either
be phrased as the fact that ωx(X1, . . . , Xk) = 0 whenever Xi = Xj for some i ̸= j.
Equivalently, ωx(Xσ1 , . . . , Xσk) = sgn(σ)ωx(X1, . . . , Xk) for any permutation σ ∈ Sk of
k letters and all Xi. The space of all k-forms on M will be denoted by Ωk(M). Observe
that for k = 1 the condition of being alternating is vacuous, so we recover notation from
Section 3.1. We will also extend the definition to k = 0 by putting Ω0(M) := C∞(M,R).
By construction, Ωk(M) is a linear subspace of T 0

k (M) and closed under multiplication
by smooth functions.

From linear algebra, we know that any k-linear map is uniquely determined by its
values on (k-tuples of) elements of a basis, and if the map is alternating, all these basis
elements have to be different in order to lead to a non-zero result. Applying this to ωx, we
conclude that Ωk(M) = 0 for k > n = dim(M). We then define Ω∗(M) := ⊕n

k=0Ω
k(M).

Finally, we observe that Lemma 3.3 shows that we can identify Ωk(M) with the space
of those k-linear maps X(M)k → C∞(M,R) which are alternating and linear over
C∞(M,R) in each variable. (Of course, for an alternating map, it suffices to verify
linearity over C∞(M,R) in one variable.)

In Section 3.1, we have seen that one-forms can be pulled back along arbitrary
smooth maps, and we want to generalize this to

(
0
k

)
-tensor fields and hence to differential

forms. To prepare this, take a manifold M and associate to each x ∈M a k-linear map
tx : (TxM)k → R. Then we can combine these to a map t̂ : ⊗kTM → R and similar
to the proof of Lemma 3.1, one immediately verifies that t̂ is smooth if and only if t
defines a

(
0
k

)
-tensor field on M . Now suppose we have given a smooth map F :M → N

and t ∈ T 0
k (N). Then one simply puts

(3.11) (F ∗t)(x)(X1, . . . , Xk) := t(F (x))(TxF (X1), . . . , TxF (Xk))

for X1, . . . , Xk ∈ TxM . Now of course the map TF : TM → TN gives rise to a smooth

map ⊗kTF : ⊗kTM → ⊗kTN and by construction F̂ ∗t = t̂ ◦⊗kTF . Thus we conclude
that F ∗t ∈ T 0

k (M). Of course, if t(y) is alternating for each y ∈ N , then (F ∗t)(x) is
alternating for each x ∈M , so for ω ∈ Ωk(N), we get F ∗ω ∈ Ωk(M).

The basic algebraic structure on differential forms is a point-wise issue of multilinear
algebra, but we discuss it in the picture relevant for us right away. Recall that a k-linear
map tx : (TxM)k → R can be alternated by defining

(3.12) Alt(tx)(X1, . . . , Xk) :=
∑

σ∈Sk
sgn(σ)tx(Xσ1 , . . . , Xσk).

If tx itself is alternating, then Alt(tx) = k!tx. Evidently, we can apply the alternation
point–wise to obtain Alt(t) ∈ Ωk(M) from t ∈ T 0

k (M). In particular, given one-forms
φ1, . . . , φk ∈ Ω1(M) we define

(3.13) φ1 ∧ · · · ∧ φk := Alt(φ1 ⊗ · · · ⊗ φk) ∈ Ωk(M).

By construction the action of this on tangent vectors X1, . . . , Xk ∈ TxM can be written
as the determinant of the matrix (φi(x)(Xj))i,j=1,...,k. We shall see later on that φ1 ∧
· · · ∧ φk actually is the iterated wedge product (as defined below) of the one-forms φj.
However, at this point, the expression should just be viewed as a notation for a specific
k-form.
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This immediately allows us to deduce the description of k-forms in local coordinates.
For a chart (U, u) for M with x ∈ U and ω ∈ Ωk(M) ⊂ T 0

k (M), we know that

ω|U = ωi1...ikdu
i1 ⊗ · · · ⊗ duik ,

with a sum over all k-tuples of indices in the right hand side and where the function
ωi1...ik is obtained by inserting appropriate coordinate vector fields into ω. In particular,
this implies that ωi1...ik = 0 if two of the indices agree. Alternating both sides of the
equation, the left hand side gives k!ω|U , while in the right hand side the smooth function
ωi1...ik can be taken out of the alternation. Hence we conclude that

ω|U = 1
k!
ωi1...ikdu

i1 ∧ · · · ∧ duik .

But now permuting the indices either in the functions ωi1...ik or in the coordinate one-
forms, one picks up the sign of the permutation. Hence the sum over all possible
permutations of these k values of the indices just gives k! times the single expression
for the case in which the indices occur in (strictly) increasing order. This leads to an
alternative presentation of a k-form in local coordinates as

(3.14) ω|U =
∑

1≤i1<···<ik≤n

ωi1...ikdu
i1 ∧ · · · ∧ duik

for the same functions ωi1...ik : U → R as above.
Similarly to the case of one-forms in (3.13), we can try to define a product of two

differential forms by alternating their tensor product. However, it is necessary to care-
fully introduce numerical factors in order to ensure associativity. It turns out that the
right choice for ω ∈ Ωk(M) and τ ∈ Ωℓ(M) is to define the wedge-product as

(3.15) ω ∧ τ := 1
k!ℓ!

Alt(ω ⊗ τ) ∈ Ωk+ℓ(M).

As a first indication that this is a good choice observe that for k = 0, we get ω =
f ∈ C∞(M,R) and ω ⊗ τ = fτ . Now of course Alt(fτ) = f Alt(τ) = ℓ!fτ , and thus
f ∧ τ = fτ as one would hope. Now we can prove that the wedge product has good
properties in general.

Theorem 3.5. Let M be a smooth manifold. Then the wedge-product on Ω∗(M) is
bilinear over R and over C∞(M,R). It is associative and graded commutative in the
sense that for ω ∈ Ωk(M) and τ ∈ Ωℓ(M) one gets τ ∧ ω = (−1)kℓω ∧ τ . Moreover,
the wedge product is compatible with pull backs, i.e. F ∗(ω ∧ τ) = (F ∗ω)∧ (F ∗τ) for any
smooth map F .

Proof. Since the tensor product is bilinear and the alternation is linear, the wedge
product is bilinear over R. The point-wise definition of the wedge product then readily
implies bilinearity over C∞(M,R) as well as the compatibility with pullbacks. Making
the definition explicit, we see that

(ω ∧ τ)(x)(X1, . . . , Xk+ℓ) =
1
k!ℓ!

∑
σ∈Sk+ℓ

sgn(σ)ωx(Xσ1 , . . . , Xσk)τx(Xσk+1
, . . . , Xσk+ℓ

)

for X1, . . . , Xk+ℓ ∈ TxM . Looking at the right hand side, we conclude that if we change
the order of ω and τ , this only changes the “right” sign that should be associated to a
permutation, and it always changes by (−1)kℓ, since we have to exchange each of the first
k entries with each of the last ℓ entries. This proves the claim on graded commutativity.

Thus it remains to verify associativity, which is slightly subtle. The crucial step is
to prove that for φ1, . . . , φk, ψ1, . . . , ψℓ we get

(3.16) (φ1 ∧ · · · ∧ φk) ∧ (ψ1 ∧ · · · ∧ ψℓ) = φ1 ∧ · · · ∧ ψℓ.
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(The right hand side and the terms in brackets in the left hand side are defined in (3.13),
while between the two bracket terms, we have the product defined in (3.15).) Indeed,
having shown this, we readily conclude that (ω ∧ τ) ∧ ρ = ω ∧ (τ ∧ ρ) in case that each
of the forms is an iterated wedge product of one-forms as in (3.13). By bilinearity, this
extends to forms which can be written as linear combinations of such iterated wedge
products. Since the operation is point-wise, it suffices to be of that form locally, and
we have noted above that this is always the case.

Thus we are left with proving (3.16), which is a point-wise statement. Hence let
us take tangent vectors X1, . . . , Xk+ℓ ∈ TxM . Inserting these into the alternation of
(φ1

x ∧ · · · ∧ φkx)⊗ (ψ1
x ∧ · · · ∧ ψℓx), we obtain∑

σ sgn(σ)(φ
1
x ∧ · · · ∧ φkx)(Xσ1 , . . . , Xσk)(ψ

1
x ∧ · · · ∧ ψℓx)(Xσk+1

, . . . , Xσk+ℓ
).

But to evaluate each of the factors in the product, we again have to alternate the
entries and then insert into one of the one-forms. The result corresponds to one of the
summands in the expansion of (φ1

x∧· · ·∧ψℓx)(X1, . . . , Xk+ℓ) for some permutation (built
up from σ and the additional permutations of k respectively ℓ letters). But this also
shows that each of the summands in this expansion occurs exactly k!ℓ! times in this
process, which is exactly the factor divided by in (3.15). □

3.6. The exterior derivative. This is probably the most important operation in
the whole field of analysis on manifolds. Following the spirit of this course, we will define
the operator by a global formula, i.e. by describing the action on vector fields. While
this formula looks rather involved, it directly shows that the operation is independent
of the choice of local coordinates. One can also derive the properties of the operation
from this global formula, but it is easier to first find an expression in local coordinates
and study the operation via this. The expression in local coordinates is simpler than
the global formula and better suited for explicit computations.

There is a relatively simple motivation for the global formula. We just outline this
here, the details will be done in the exercises: Let us consider an open subset U ⊂ Rn.
For each x ∈ U , we can naturally identify TxM with Rn, so a k-form ω ∈ Ωk(U)
can be simply viewed as a smooth map ω from U to the vector space of all k-linear,
alternating maps (Rn)k → R. For the moment, we write Lka for that space. Now we
can differentiate ω : U → Lka, so for x ∈ U , Dω(x) is a linear map Rn → Lka. But
then for each x ∈ U , (X0, . . . , Xk) 7→ (Dω(x)(X0))(X1, . . . , Xk) is a (k + 1)-linear map
(Rn)k+1 → R. Now we can make this alternating and then the result defines a smooth
function dω : U → Lk+1

a . Since the expression is already alternating in X1, . . . , Xk,
we don’t have to use the full alternation as described in Section 3.5, it suffices to form∑

i(−1)i(Dω(x)(Xi))(X0, . . . , X̂i, . . . , Xk) with the hat indicating omission.
Having constructed this, one can compute how the map dω acts on k+1 vector fields.

Initially, this involves directional derivatives of vector fields viewed as functions with
values in Rn in the direction of other vector fields. However with a bit of manipulation
one shows (see exercises) that these terms can be combined into an expression which
only uses the action of vector fields on smooth real valued functions and Lie brackets
of vector fields. The resulting formula then makes sense on any manifold, and this is
what we use to define the exterior derivative.

Let M be a smooth manifold, ω ∈ Ωk(M) a k-form on M and take k + 1 vector
fields ξ0, . . . , ξk ∈ X(M). Then we consider the following expression in which a hat over
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an argument indicates that the argument has to be omitted:

(3.17)

∑k
i=0(−1)iξi(ω(ξ0, . . . , ξ̂i, . . . , ξk))

+
∑

i<j(−1)i+jω([ξi, ξj], ξ0, . . . , ξ̂i, . . . , ξ̂j, . . . , ξk)

In the first terms, we plug all but one of the vector fields into ω and then use the
remaining vector field to differentiate the resulting smooth function. In the second
terms we plug in the Lie bracket of two of the vector fields together with the remaining
k−1 vector fields into ω. The signs showing up in the formula come from the alternation
in the construction. Anyway, (3.17) evidently is a smooth function M → R.

Observe that for ω = f ∈ Ω0(M) = C∞(M,R) this specializes to ξ0 7→ ξ0(f) =
df(ξ0), so this recovers the one-form df from Section 3.1. For ω ∈ Ω1(M), we get

ξ0(ω(ξ1))− ξ1(ω(ξ0))− ω([ξ0, ξ1]),

which still is rather simple. For higher degrees the formula gets more complicated, but
our main use for it will be conceptual anyway.

Lemma 3.6. Let M be a smooth manifold and let ω ∈ Ωk(M) be a k-form on M .
Then there is a unique k + 1-form dω ∈ Ωk+1(M) such that for any choice of k + 1
vector fields ξ0, . . . , ξk ∈ X(M), the smooth function dω(ξ0, . . . , ξk) is given by (3.17).

Proof. We use Lemma 3.3 in the version for differential forms. So we have to show
that the expression in (3.17) is alternating and linear over smooth functions in one
variable. To prove that the expression is alternating it suffices to show that it vanishes
if two neighboring entries are equal. (This implies that it changes sign if we exchange
two neighboring entries and such changes generate all permutations.) So let us assume
that for some fixed i0 ∈ {0, . . . , k − 1}, we have ξi0 = ξi0+1 = ξ. Then in all terms
of the first sum in (3.17) with i ̸= i0, i0 + 1, both ξi0 and ξi0+1 are inserted into ω, so
the corresponding summand vanishes identically. On the other hand the summands for
i = i0 and i = i0 + 1 agree, apart form the fact that they get opposite signs. So we
conclude that the first sum in (3.17) vanishes identically.

For the second sum in (3.17) we have to distinguish more cases. Let us first fix some
i < i0. Then the terms for j = i0 and j = i0 + 1 are identical apart from an opposite
sign, while all other terms vanish because both ξi0 and ξi0+1 are inserted into ω. Hence
the terms with i < i0 do not contribute and for i > i0+1, there is no contribution since
again both ξi0 and ξi0+1 are inserted into ω. So it remains to discuss the summands
with i = i0 and i = i0 + 1. The summand with i = i0 and j = i0 + 1 vanishes by skew
symmetry of the Lie bracket. But for j > i0 + 1 the summand for i = i0 and j agrees
with the one from i = i0 + 1 and j apart from an opposite sign.

Knowing that the expression in (3.17) is alternating, it suffices to show that replacing
ξ0 by fξ0 in (3.17) for a smooth function f ∈ C∞(M,R), the result simply gets multiplied
by f . In the first sum, f simply comes out of the summand with i = 0. For i > 0, we
can take f out of ω and then in addition to the terms, in which f simply comes out, we
obtain ∑

i>0(−1)iξi(f)ω(ξ0, . . . , ξ̂i, . . . , ξk).

For the second sum, f simply comes out of all summands with i > 0. For i = 0, we just
use [fξ0, ξj] = −[ξj, fξ0] = −ξj(f)ξ0 + f [ξ0, ξj]. For the second summand in the right
hand side, the f then comes out of ω. For the first summand in the right hand side, we
can take the smooth function −ξj(f) out of ω and thus these terms produce∑

j>0−(−1)0+jξj(f)ω(ξ0, . . . , ξ̂j, . . . , ξk),
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which exactly cancels with the contribution from above. □

Observe that this lemma in particular says that the value of dω(ξ0, . . . , ξk) in a point
x ∈ M depends only on the values ξ0(x), . . . , ξk(x) ∈ TxM . In particular, it is possible
to apply dω to tangent vectors, although so far we have to extend them to vector fields
in order to compute the result.

Definition 3.6. For a k-form ω on a smooth manifold M , the k + 1-form dω
obtained in Lemma 3.6 is called the exterior derivative of ω.

At this point, we can view the map ω 7→ dω as defining an operator d : Ωk(M) →
Ωk+1(M), the exterior derivative for any smooth manifold M and any integer k. From
the definition equation (3.17) it is obvious that d is linear over R (but not over C∞(M,R)
as we shall see). We can now prove the important properties of this operation as well
as its description in local coordinates.

Theorem 3.6. The exterior derivative d on a smooth manifold M has the following
properties for ω ∈ Ωk(M), τ ∈ Ωℓ(M) and f ∈ Ω0(M) = C∞(M,R):

(1) d is a local operator, so for an open subset U ⊂M , dω|U depends only on ω|U .
(2) d is a graded derivation, i.e. we get d(fω) = df ∧ ω + fdω and, more generally,

d(ω ∧ τ) = (dω) ∧ τ + (−1)kω ∧ dτ .
(3) d is a differential, i.e. d(dω) = 0.
(4) For a local chart (U, u) for M with ω|U = ωi1...ikdu

i1 ∧ · · · ∧ duik we get

dω|U = d(ωi1...ik) ∧ dui1 ∧ · · · ∧ duik = ∂
∂ui0

(ωi1...ik)du
i0 ∧ · · · ∧ duik .

(5) d is compatible with pullbacks along arbitrary smooth maps, so for any smooth
map F : N →M , we get d(F ∗ω) = F ∗(dω).

Observe that in part (4) we are using standard Einstein sum convention, so the
indices are not necessarily ordered. An explicit expression with ordered indices is not
as easy to write out, since in the right hand side one would have to move dui0 to the
right position (that depends on all the ij) at the expense of a sign.

Proof. (1) Let us first assume that ω vanishes identically on U . Inserting arbitrary
vector fields in ω, the resulting function vanishes identically on U and hence the same
is true for any derivative in the direction of a further vector field. Hence all summands
in the defining equation (3.17) for dω vanish identically on U , so dω|U = 0. Applying
this to the difference of two forms that agree on U , linearity of d implies the claim.

We next prove the first claim in (2) by inserting fω into the defining equation (3.17).
For the second sum, f simply comes out, while for the terms in the first sum, we get
ξi(fω(· · · )) = ξi(f)ω(· · · ) + fξi(ω(· · · )). Using ξi(f) = df(ξi), this shows that

d(fω)(ξ0, . . . , ξk) = fdω(ξ0, . . . , ξk) +
∑

i(−1)idf(ξi)ω(ξ0, . . . , ξ̂i, . . . , ξk).

Skew symmetry of ω immediately implies that the sum coincides with (df∧ω)(ξ0, . . . , ξk)
as defined in (3.15).

Next, we claim that for a chart (U, u) for M and any choice of indices i1, . . . , ik ∈
{1, . . . , n} the form duI := dui1 ∧ · · · ∧ duik ∈ Ωk(U) hast the property that d(duI) = 0.
To prove this, it suffices to show that d(duI) vanishes upon insertion of k+1 coordinate
vector fields, since the coordinate vector fields form a basis for the tangent space in each
point of U . But the Lie bracket of two coordinate vector fields always vanishes, while
inserting k coordinate vector fields in duI , we always get a constant function. This now
implies that all the summands in the defining equation (3.17) vanish identically, which
proves the claim.
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Having these facts at hand, (4) becomes easy: By (1), we know that we can compute
dω|U from the local coordinate representation, which is a sum of terms of the form
ωIdu

I . But then the first expression in (4) follows from the first property in (2) and
d(duI) = 0. The second expression then readily follows from the local coordinate
expression d(ωi1...ik) = d(ωi1...ik)(

∂
∂ui

)dui.
The second property in (2) can be proved locally, and by bilinearity of the wedge

product, it suffices to consider the case that ω = fduI and τ = gduJ for some f, g ∈
C∞(M,R) and sets I and J of indices. Using the properties of the wedge product, we
get ω ∧ τ = fg(duI ∧ duJ). If nonzero, duI ∧ duJ is a wedge product of coordinate one
forms, so d(ω ∧ τ) = d(fg) ∧ duI ∧ duJ . Now d(fg) = (df)g + fdg, and inserting this
and using the properties of the wedge product, we get

df ∧ duI ∧ (gduJ) + (−1)kfduI ∧ dg ∧ duJ = (dω) ∧ τ + (−1)kω ∧ dτ.
(3) Again we can verify this locally and restrict to ω = fduI for which dω = df ∧duI

and then by (2) d2ω = d2f ∧ duI since d(duI) = 0. But computing d2f(ξ0, ξ1) directly
from (3.17), we get

ξ0(df(ξ1))− ξ1(df(ξ0))− df([ξ0, ξ1]) = ξ0(ξ1(f))− ξ1(ξ0(f))− [ξ0, ξ1](f) = 0.

(5) For f ∈ C∞(M,R) = Ω0(M), we by definition have F ∗f = f ◦ F , so the last
statement in Proposition 3.1 reads as F ∗df = d(F ∗f). The proof of the general result
can be done locally around a point y ∈ N , so we can take a chart (U, u) for M with
F (y) ∈ U and work on F−1(U) ⊂ N . By linearity, we may again restrict to the case
that ω = fduI and then dω = df ∧ duI by part (4). Now we already know that
F ∗dui = d(ui ◦ F ), so part (3) shows that d(F ∗dui) = 0. Now by Theorem 3.5, F ∗duI

is the wedge product of the forms F ∗duij so part (2) implies that d(F ∗duI) = 0. Again
by Theorem 3.5, F ∗ω = (F ∗f)(F ∗duI) so applying (2), we get

d(F ∗ω) = d(F ∗f) ∧ F ∗(duI) + 0 = F ∗df ∧ F ∗duI = F ∗dω.

□

Remark 3.6. From our proof we can simply deduce that, as a linear operator
Ωk(M) → Ωk+1(M), the exterior derivative is characterized by a few simple properties.
Namely, assume that we require the graded derivation property from (2) and d2 = 0
from (3), as well as the fact that df(ξ) = ξ(f). Then via (2), we can adapt the usual
argument via a bump function to show that d is a local operator in the sense of part
(1). But in our proof we have seen that (1), (2) and (3) readily lead to the coordinate
formula for d from (4).

Example 3.6. We discuss here examples of one-forms and their exterior derivative
on (open subsets of) R3, which nicely connects to topics we have studied already. Via
local coordinates, a similar discussion applies on general smooth manifolds of dimension
three, and parts extend to general dimensions. Suppose that M is a smooth manifold
of dimension n and consider ω ∈ Ω1(M). For each point x ∈ M , ω(x) : TxM → R is a
linear map, so if ω(x) ̸= 0, then its kernel is a hyperplane in TxM . Specializing to an
open subset U ⊂ R3, we can write ω = ωidx

i (using summation convention) for smooth
functions ωi : U → R. Here the kernel in points, in which ω is non-zero, is a plane in
R3, so we can compare to the planes spanned by two vector fields ξ, η ∈ X(U) as in
Examples 2.4 and 2.5 and realize them in this way.

Let us first take U to be the set of all points with positive last coordinate and
ξ = x3 ∂

∂x1
− x1 ∂

∂x3
and η = x3 ∂

∂x2
− x2 ∂

∂x3
as in Example (1) of 2.4. Then ω(ξ) =

x3ω1 − x1ω3, so to have this vanishing we need x3ω1 = x1ω3 and similarly ω(η) = 0
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leads to x3ω2 = x2ω3. Since x3 is nowhere vanishing on U , we can take any nowhere
vanishing smooth function f : U → R, put ω3 = f , ω1 =

x1

x3
f and ω2 =

x2

x3
f in order to

get ω ∈ Ω1(U) such that ker(ω(x)) is the span of ξ(x) and η(x) for all x ∈ U .

Taking f to be the constant function 1, we get ω = x1

x3
dx1 + x2

x3
dx2 + dx3. Now

dx
1

x3
= 1

x3
dx1− x1

(x3)2
dx3, and similarly for x2

x3
. Skew symmetry of the wedge product then

leads to dω = x1

(x3)2
dx1 ∧ dx3 + x2

(x3)2
dx2 ∧ dx3. At this point, one can verify explicitly

that dω(ξ, η) vanishes identically, which follows from abstract reasoning, since by (3.17),
ω(ξ) = 0 and ω(η) = 0 implies dω(ξ, η) = −ω([ξ, η]) and Example 2.4 (1). Alternatively,
we can write the expression for dω as ω ∧ τ where τ = 1

x3
dx3, which also clearly implies

dω(ξ, η) = 0 as well as ω ∧ dω = 0 (by skew symmetry of the wedge product).
These observations also tell us how we can simplify matters. Since x3 is nowhere

vanishing, x3ω has the same kernel in each point as ω. But we know that d(x3ω) =
dx3∧ω+x3dω = 0, which is also immediately seen directly from x3ω =

∑
i x

idxi. Indeed,
we can write x3ω = dg, where g(x) = 1

2

∑
i(x

i)2. This provides another argument for
d(x3ω) = 0 and, as we have observed in Example 2.5, the planes spanned by ξ(x) and
η(x) are exactly the tangent spaces to the level sets of g.

In Example (2) of 2.4, we considered ξ = ∂
∂x1

− x2 ∂
∂x3

and η = ∂
∂x2

+ x1 ∂
∂x3

on R3.
In this case, a simple choice for ω ∈ Ω1(M) such that ker(ω(x)) is the span of ξ(x) and
η(x) for each x ∈ R3 is ω = x2dx1−x1dx2+dx3. This readily leads to dω = −2dx1∧dx2
and hence dω(ξ, η) = −2, which is consistent with the computation of [ξ, η] in 2.4. This
in turn shows that ω ∧ dω = −2dx1 ∧ dx2 ∧ dx3, so this is nowhere vanishing.

Indeed, the last property depends only on the kernel of ω and not on the form
itself: Any other one-form with the same kernel can be written as fω for a nowhere
vanishing function f ∈ C∞(R3,R) and this leads to d(fω) = df ∧ ω + fdω and thus to
(fω) ∧ d(fω) = f 2(ω ∧ dω), so again this is nowhere vanishing.

The relation between the exterior derivative and submanifolds that becomes visible
in these examples also admits a direct explanation in terms of the calculus of differential
forms. This applies to forms of any degree and is very useful in many situations. Suppose
that M is a smooth manifold and N ⊂ M a submanifold. Denoting by i : N → M the
inclusion, we get the map i∗ : Ωk(M) → Ωk(N) for any k. By definition, for ω ∈ Ωk(M),
the form i∗ω is just the restriction of ω to N in an obvious sense, i.e. one evaluates ω in
points of N and restricts the corresponding multilinear map to vectors tangent to N .
(Therefore, the operator i∗ is often suppressed from the notation, and one simply views
ω also as a form on N .) But now compatibility of the exterior derivative with pullbacks
shows that i∗dω = di∗ω. Hence if we know that i∗ω = 0 (i.e. that ω vanishes along
N if all its entries are tangent to N), then dω must have the same property. Hence
this provides a systematic way to obtain obstructions against the existence of certain
submanifolds.

3.7. Excursion: Insertion operators and Lie derivatives. Here we briefly
discuss how to extend the exterior derivative and the Lie derivative that we already
know from 3.4 to a calculus on differential forms. In the case of differential forms,
formula (3.10) from Section 3.4 simplifies. For ω ∈ Ωk(M), we get

(3.18) (Lηω)(ξ1, . . . , ξk) = η(ω(ξ1, . . . , ξk))−
∑k

i=1 ω(ξ1, . . . , [η, ξi], . . . , ξk).

This is evidently skew symmetric and a short computation shows that it is linear over
smooth functions in all entries, so Lηω ∈ Ωk(M) by the version of Lemma 3.3 for
differential forms. This can be taken as a definition of the Lie derivative, but for many
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applications it is important to know the relation to pullbacks along flows as discussed in
Section 3.4. The general results from that section (or alternatively direct computations
based on (3.18)) show that Lη(ω ∧ τ) = (Lηω) ∧ τ + ω ∧ (Lητ).

The second type of operation is even easier. Given η ∈ X(M) and ω ∈ Ωk(M), we
define a map iηω on (X(M))k−1 by

(3.19) (iηω)(ξ1, . . . , ξk−1) := ω(η, ξ1, . . . , ξk−1)

Obviously, the right hand side is in C∞(M,R) and iηω is alternating an linear over
smooth functions in each variable, so iηω ∈ Ωk−1(M). Thus we have a linear operator
iη : Ω

k(M) → Ωk−1(M) (where Ω−1(M) = {0}), called the insertion operator associated
to η ∈ X(M). A direct computation via the definition of the wedge product shows that
for ω ∈ Ωk(M) and τ ∈ Ωℓ(M), one gets iη(ω ∧ τ) = (iηω) ∧ τ + (−1)kω ∧ (iητ). In
particular, iη(fω) = fiηω, which is actually obvious from (3.19).

Now there is a number of useful identities relating these operations, which are col-
lected in the following result:

Proposition 3.7. Let M be a smooth manifold. Then for vector fields ξ, η ∈ X(M)
and ω ∈ Ωk(M), we have the following identities:

(1) (“Cartan’s magic formula”) Lξω = iξ(dω) + d(iξω)
(2) d(Lξω) = Lξ(dω)
(3) L[ξ,η]ω = Lξ(Lηω)− Lη(Lξω)
(4) i[ξ,η]ω = Lξ(iηω)− iη(Lξω).
(5) iη(iξω) = −iξ(iηω).

All of these identities can be proved by direct computations from the definitions of
the operations. In some cases, say for (4) and (5), this is rather easy and a good exercise,
in other cases it is more tedious. Understanding the relation between Lie derivatives
and pullbacks along flows, (2) is a simple consequence of naturality of d, and so on.

There is a neat algebraic way to interpret these (and further identities), which also
leads to a simple uniform way of proving them. We can view Ω∗(M) = ⊕n

k=0Ω
k(M)

as a graded algebra and write |ω| = k for ω ∈ Ωk(M). The graded commutativity
property of the wedge product then reads as τ ∧ω = (−1)|ω|·|τ |ω ∧ τ . Now one defines a
graded derivation of degree r on Ω∗(M) as a linear map D : Ω∗(M) → Ω∗(M) such that
D(Ωk(M)) ⊂ Ωk+r(M) and such that D(ω ∧ τ) = D(ω) ∧ τ + (−1)r|ω|ω ∧ D(τ). Here
we agree that Ωs(M) = {0} if s /∈ {0, . . . , dim(M)}. In this language, d, Lξ and iξ are
graded derivations of degree 1, 0 and −1, respectively.

Similarly to the discussion in Section 2.2, the composition of two graded derivations
is not a graded derivation, but if D1 has degree r and D2 has degree s, then the graded
commutator [D1, D2] := D1 ◦D2 − (−1)rsD2 ◦D1 is a graded derivation of degree r+ s.
In this language, the statements in Proposition 3.7 read as Lξ = [d, iξ], [d,Lξ] = 0,
L[ξ,η] = [Lξ,Lη], i[ξ,η] = [Lξ, iη], and [iξ, iη] = 0, respectively. Thus, all these statements
boil down to the equality of two graded derivations of the same degree. But then it
is easy to show that any graded derivation on Ω∗(M) is a local operator, so studying
these one can work with local coordinate expressions. Using this, it is easy to show that
two graded derivations on Ω∗(M) agree provided that they agree on Ω0(M) and on all
one-forms of the form df with f ∈ Ω0(M). But in these cases, all the above identities
are easy to verify directly.
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Excursion: Symplectic manifolds and classical mechanics

To conclude the chapter, we briefly discuss a “geometric structure” that is closely
related to differential forms and is of interest both in mathematics and in physics.

3.8. Symplectic manifolds. Recall from linear algebra that skew symmetric bi-
linear forms b : V × V → R on a real vector space V are classified by their rank, which
automatically is even. Most conceptually, this can be viewed in terms of the null-space
N = {v ∈ V : ∀w ∈ V : b(v, w) = 0}. Clearly N ⊂ V is a linear subspace and the rank
rk(b) of b is n− dim(N), where n := dim(V ). In particular, b has the maximal possible
rank n if and only if it is non-degenerate as a bilinear form. Alternatively, rk(b) can be
viewed as the rank of the n× n-matrix (b(vi, vj)) for any basis {v1, . . . , vn} of V . Skew
symmetry of this matrix then implies that rk(b) is even. In particular, non-degenerate
skew symmetric bilinear forms only exist in even dimensions and in each even dimen-
sion, there is only one such form up to isomorphism. One possible realization of this is
the imaginary part of the standard Hermitian form on Cn ∼= R2n.

Definition 3.8. Let M be a smooth manifold of even dimension 2n. A symplectic
form or a symplectic structure on M is a two-form ω ∈ Ω2(M) such that

• For each x ∈M , ω(x) : TxM × TxM → R is non-degenerate.
• dω = 0

The pair (M,ω) is referred to as a symplectic manifold.
If there exists a one-form φ ∈ Ω1(M) such that ω = dφ, then the symplectic structure

ω is called exact and (M,ω) is called an exact symplectic manifold.

Let us postpone the question of why one should look at such objects for the moment,
but use the calculus of differential forms to derive some consequences:

Theorem 3.8. Let (M,ω) be a symplectic manifold dimension 2n.
(1) For each x ∈M , ω(x) induces a linear isomorphism TxM → T ∗

xM . The inverses
of these isomorphisms fit together to define a

(
2
0

)
-tensor field Π ∈ T 2

0 (M).
(2) Mapping ξ to iξω induces an isomorphism X(M) → Ω1(M), whose inverse is

induced by Π in a similar way.
(3) For any smooth function f ∈ C∞(M,R), there is a unique vector field Hf ∈

X(M) such that iHf
ω = df ∈ Ω1(M). In addition, we get LHf

ω = 0.
(4) Putting {f, g} := −ω(Hf , Hg) = dg(Hf ) = −df(Hg) defines a skew symmetric

bilinear operation on C∞(M,R), which satisfies {f, gh} = {f, g}h + g{f, h} for all
f, g, h ∈ C∞(M,R).

Proof. (1) Non-degeneracy of ω(x) exactly says that for each 0 ̸= X ∈ TxM , the
linear functional ω(x)(X, ) is non-zero. Viewed as a linear map TxM → T ∗

xM , ω(x)
thus is injective and hence bijective. The inverse of this linear isomorphism can be
viewed as Πx ∈ ⊗2TxM . Writing ω as a tensor field in local coordinates around x
as ωijdu

i ⊗ duj, we get Πx = Bij ∂
∂ui

|x ⊗ ∂
∂uj

|x, where (Bij) is the inverse matrix to
(ωij(x)). Since matrix inversion is a smooth map, we see that x 7→ Πx is smooth in
local coordinates.

(2) For ξ ∈ X(M), we get iξω ∈ Ω1(M). Conversely, for Π ∈ T 2
0 (M) and φ ∈ Ω1(M),

we can form the contraction C1
1(Π ⊗ φ) ∈ T 1

0 (M) = X(M). The considerations in (1)
easily imply that these two constructions are inverse to each other.

(3) Uniqueness of Hf is clear by injectivity of the map ξ 7→ iξω from (2). Moreover,
for f ∈ C∞(M,R) we can form df ∈ Ω1(M) and then C1

1(Π⊗df) ∈ X(M) has the desired
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property by (2). To compute LHf
ω, we use Cartan’s magic formula from Proposition

3.7 and dω = 0. This gives LHf
ω = d(iHf

ω) = d(df) = 0.
(4) By definition of the vector fields and skew symmetry of ω, we get −ω(Hf , Hg) =

dg(Hf ) = −df(Hg). Linearity of d immediately implies that f 7→ Hf is a linear map,
which shows that { , } is bilinear, while skew symmetry is obvious. By definition, we
get ifξω = fiξω and iξ+ηω = iξω + iηω. This shows that inserting gHh + hHg ∈ X(M)
into ω, we get hdg + gdh = d(gh). Hence Hgh = gHh + hHg and from this, the last
claimed property follows immediately. □

The tensor field Π is called the Poisson tensor associated to the symplectic form
ω, while the vector field Hf is called the Hamiltonian vector field associated to f ∈
C∞(M,R). The operation { , } on C∞(M,R) is called the Poisson bracket. It is
not too difficult to show that the Poisson bracket defines a Lie algebra structure on
C∞(M,R) and that H{f,g} = [Hf , Hg], so one obtains a homomorphism to the Lie
algebra of vector fields. Let us next discuss an example, which is also crucial for the
applications of symplectic structures to physics. These applications also motivate the
terminology we use.

Example 3.8. The simplest version of this is to takeM := U×Rn for an open subset
U ⊂ Rn and use coordinates qi (“positions”) and pi (“momenta”) for i = 1, . . . , n on
the two factors. The put φ =

∑
i pidq

i ∈ Ω1(M) and ω = −dφ =
∑

i dq
i∧dpi ∈ Ω2(M).

This is obviously non-degenerate and thus defines an exact symplectic structure on M .
This generalizes vastly in a surprising way: Let N be any smooth manifold (“con-

figuration space”) of dimension n and put M := T ∗N , the cotangent bundle (“phase
space”). Then there is a canonical one-form φ ∈ Ω1(M) constructed as follows. There
is a canonical projection from M = T ∗N to N which we denote by π here. Now a
point in M by definition is an element of some cotangent space of N , i.e. a linear map
λ : Tπ(λ)N → R. Now given X ∈ TλM , we can form Tλπ(X) ∈ Tπ(λ)N , so it makes
sense to form φ(λ)(X) := λ(Tλπ(X)). To see that this is smooth, we use appropriate
charts following the above notation (which is standard in physics).

Take a chart for N defined on U ⊂ N and denote the corresponding local coordinates
by qi. Then any point λ ∈ π−1(U) ⊂ M can be uniquely expanded in the basis
dqi(π(λ)) and we denote by pi = pi(λ) the coefficients in this expansion. Then we can
use the functions qi (actually these are qi ◦ π but it is standard to drop this from the
notation) and pi for i = 1, . . . , n as the local coordinates on the manifold M . From
this description, it follows readily that (with our slight abuse of notation) we can write
φ(λ) =

∑
i pi(λ)dq

i(λ). Thus we get φ|π−1(U) =
∑

i pidq
i and, as above, for ω = −dφ,

we get ω|π−1(U) =
∑

i dq
i ∧ dpi, so (M,ω) is an exact symplectic manifold. (I am not

aware of an explanation from physics why momenta should be linear functionals rather
than vectors but this is how a generalization works.)

The natural construction of the symplectic structure on M = T ∗N has a very
remarkable consequence: If F : N → N is any diffeomorphism, we get an induced
diffeomorphism F̃ := T ∗F : T ∗N → T ∗N such that π ◦ F̃ = F ◦ π. The latter equation
implies that TF̃ (λ)π ◦ TλF̃ = Tπ(λ)F ◦ Tλπ. Using this, a short computation shows

that F̃ ∗φ = φ, which in turn gives F̃ ∗ω = −F ∗(dφ) = −d(F ∗φ) = ω. Thus any
diffeomorphism of N induces a diffeomorphism of T ∗N compatible with the symplectic
structure, and there is an infinite dimensional family of these.

Remark 3.8. There are further indications that there are many diffeomorphisms
preserving a symplectic structure. As we have seen in part (3) of Theorem 2.8 any
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Hamiltonian vector field Hf has the property that LHf
ω = 0. With the interpretation

via flows discussed in Section 3.4 (see also Theorem 2.11) one easily concludes that

(Fl
Hf

t )∗ω = ω whenever the flow is defined. In fact there are further strong results
showing that symplectic structures are very flexible (at least locally). In particular, the
so-called Darboux theorem (see Theorem 22.13 in [Lee] or Theorem 31.15 in [Michor])
states that for a symplectic manifold (M,ω) and a point x ∈ M , one can always find
local coordinates qi and pi around x in which ω has the form

∑
i(dq

i∧dpi). In particular,
all symplectic manifolds are locally isomorphic. However, global properties of symplectic
structures are a highly interesting topic with lots of current research activity.

3.9. Hamiltonian mechanics. Now we can discuss the motivation for looking at
symplectic manifolds and indicate how the tools from Proposition 3.8 can be applied.
We go to the physics setting thatN ⊂ Rn is an open subset and we considerM = N×Rn

with coordinates qi and pi and the symplectic form
∑

i dq
i ∧ dpi. One interprets N as

the possible positions of some mechanical system and the second components as record-
ing momentum (mass times velocity). Introducing the momentum as an independent
variable implements the common trick to reduce the order of differential equations (in
this case from second order to first order) by introducing derivatives as new variables.
The time evolution of the system will be described by a curve in M , whose components
we simply denote by qi(t) and pi(t) for i = 1, . . . , n. The interpretation of the pi as
momenta then says that pi(t) = m · (qi)′(t) for some constant m.

Now we assume that we have some force-field on N (say an electrical field acting on a
charged particle) that can be described by a potential. This means that there is a smooth
function V : N → R such that the force experienced at the point q is −grad(V )(q),
the negative of the gradient of V . Now by Newton’s second law (which is the only real
physics ingredient in the whole discussion) this force causes an acceleration given by
the quotient of the force by mass. So this leads to the equation (qi)′′(t) = − 1

m
∂V
∂qi

(q(t)),

which can be equivalently written as (pi)
′(t) = − ∂V

∂qi
(q(t)).

Combining this, we get a system of first order ODEs in the variables qi and pi that
govern the system. We can now show that these are the equations for the integral curves
of the Hamiltonian vector field HE associated to a smooth function E :M → R. As an
additional bonus, this function has a beautiful interpretation in physics terms, namely as

the total energy (i.e. kinectic energy plus potential energy): Putting E =
∑

i
(pi)

2

2m
+V (q),

we get dE =
∑

i
pi
m
dpi +

∑
i
∂V
∂qi
dqi. Making the ansatz HE =

∑
i(a

i ∂
∂qi

+ bi ∂
∂pi

) and

computing iHE
ω, we readily conclude that ai =

pi
m

and bi = − ∂V
∂qi

, which proves the

claim.
This has a number of important consequences. First dE(HE) = −ω(HE, HE) = 0,

so E is constant along flow lines of HE (conservation of energy). More generally, for
any smooth function f : M → R such that {f, E} = 0, we have HE(f) = 0, so again f
is constant along flow lines of HE. Thus one obtains a systematic approach to identify
constants of motion.

Guided by this example, symplectic manifolds are considered as the natural arena for
studying classical mechanics. The symplectic nature of classical mechanics is reflected
even in the setting of open subsets of Rn by the concept of what physicists call a
canonical transformation. This is a diffeomorphism of M = T ∗N which pulls back the
canonical symplectic form to itself. As we have seen in 3.8 above, any diffeomorphism of
N (a “point transformation”) induces a canonical transformation, but in fact, canonical
transformations form a much larger class. In physics terms, a canonical transformation
may mix positions and momenta, which is an unexpected idea from the point of view of
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physics. Such transformations may be used to establish isomorphisms between different
systems that are highly non-obvious from a naive point of view, and these can be used
to study their physical properties.



CHAPTER 4

Integration and de-Rham cohomology

In the last part of the course, we discuss two topics that are related to differential
forms. The first topic is integration on manifolds. The emphasis here is not on integrat-
ing a very general class of functions, but to develop a theory of integration for smooth
objects with compact support that is independent of coordinates and natural under
diffeomorphisms. An extension to non-compact support and to non-smooth objects is
then possible in a second step similar to what is classically done on Rn (approximation
by compactly supported objects, completion of spaces of smooth objects with respect to
integral norms, and/or measure theory). The requirement of naturality for the integral
brings in a completely new aspect, which is already fully visible in the smooth case.
In particular, functions are not the appropriate object to be integrated, and there are
two possible replacements. One may either work with so-called densities or restrict to
oriented manifolds, on which differential forms of maximal degree can be integrated.

Integration of differential forms is also the setting in which the most fundamen-
tal theorem about integration is formulated, namely Stokes’s theorem. This needs an
extension of the concept of a manifold, namely manifolds with boundary. Stokes’s the-
orem connects integrals of exterior derivatives of forms over a manifold with boundary
to integrals over the boundary (which is again a manifold). The classical theorems from
analysis concerning boundary integrals can all be deduced rather easily from the general
version.

Finally, we discuss de-Rham cohomology, which provides a connection to algebraic
topology. This mainly builds on differential forms and the exterior derivative, but in
some points also integration becomes an important ingredient, which is why we haven’t
discussed it earlier.

4.1. Densities. The problem of finding a notion of integral that is independent of
coordinates is already there for objects having support contained in the intersection of
two charts. Equivalently on can assume that the support is contained in an open subset,
which is the domain of two charts. Indeed, as we shall see that understanding this case,
a general integral can be built up via some technicalities involving partitions of unity.

To understand what has to happen in this special case, recall how multiple integrals
behave under a change of variables. Consider an open subset U ⊂ Rn and a smooth
function f with compact support that is contained in U . To avoid problems with
notation, we simply denote the integral of f over U by

∫
U
f . For another open subset

V ⊂ Rn and a diffeomorphism Φ : V → U , f ◦ Φ is a smooth function with compact
support that is contained in V . On the other hand, for each x ∈ V , DΦ(x) : Rn → Rn

is a linear isomorphism, which has a well defined determinant. Hence we can consider
x 7→ f(Φ(x))| det(DΦ(x))|, which is a smooth function with compact support contained
in supp(f ◦ Φ) ⊂ V . The transformation law for multiple integrals then states that

(4.1)

∫
U

f =

∫
Φ(V )

f =

∫
V

(f ◦ Φ)| det(DΦ)|.

67
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As we shall see, the absolute value that occurs in this formula is responsible for all the
trouble in integration theory on manifolds. However, this clearly has to be there, e.g.
since integrals of non-negative functions should always be non-negative.

This also suggests a brute-force solution to the problem of integration. On introduces
a class of geometric objects, called densities, which have the right transformation law in
order to be integrated. There are conceptual ways to do this (in the language of natural
vector bundles). Since these are beyond the scope of this course and essentially we are
only interested on one class of examples, we use a coordinate based “definition” here.
If you feel uneasy with this kind of definition, just view it as a wording used to describe
the examples occurring below.

Definition 4.1. A density ν on a smooth manifold M is described in a chart
(Uα, uα) by a smooth function να : Uα → R in such a way that for two charts (Uα, uα) and
(Uβ, uβ) with Uαβ ̸= ∅ and chart change uαβ : uβ(Uαβ) → uα(Uαβ), the corresponding
functions are related by

(4.2) νβ(x) = να(x)| det(Duαβ(uβ(x)))|.

Observe first that it is no problem to restrict densities to open subsets and to talk
about locally defined densities. Next, | det(Duαβ(uβ(x)))| > 0, so if να(x) ̸= 0 for one
chart, then it is non-zero for any chart. Hence it makes sense to say that ν is non-zero
in a point, and hence a density has a well defined support supp(ν). But clearly, ν does
not have a well defined value at x if it is non-zero at x. Moreover, from the definition it
is clear that densities can be added and multiplied by smooth functions point-wise and
we use the usual notation ν + µ and fν for these operations. Hence densities form a
vector space and a module over C∞(M,R). However, in this case this module behaves
like a one-dimensional vector space: Suppose that ν is density on M and x is a point
in which ν is non-zero. Then ν is non-zero on an open neighborhood U of x in M . If
µ is a density defined on U , then for y ∈ U we can use a chart (Uα, uα) with y ∈ Uα
and consider f(y) := µα(y)/να(y) ∈ R. From (4.2) we see that this is independent of
the choice of charts, so we get a smooth function f : U → R such that µ = fν. So if
there are global, nowhere vanishing densities on M and we fix one density ν with this
property, then f 7→ fν identifies C∞(M,R) with the space of densities. This is exactly
what happens for the central example of densities that we discuss next.

Example 4.1. As in Example (2) of 3.2, we consider a
(
0
2

)
-tensor field g ∈ T 0

2 (M) on
on a smooth manifoldM , such that gx : TxM×TxM → R is symmetric for each x ∈M .
For a chart (Uα, uα), this is described by the functions gαij = g( ∂

∂uiα
, ∂

∂ujα
) : Uα → R. The

values gαij(x) are exactly the components of the (symmetric) matrix associated to the
symmetric bilinear form gx with respect to the basis formed by the coordinate vector
fields. In particular, we can form the determinant det(gαij(x)) which gives rise to a
smooth function Uα → R. If we assume that g is a Riemannian metric i.e. that gx is

positive definite for each x, then det(gαij(x)) > 0 for each x. Hence να(x) :=
√
det(gαij(x))

defines a (nowhere vanishing) smooth function να : Uα → R.
If (Uβ, uβ) is another chart such that Uαβ ̸= ∅, then formula (3.5) from Section 3.2

shows that gβij = AkiA
ℓ
jg
α
kℓ, where A

r
s(x) = ∂su

r
αβ(uβ(x)) for x ∈ Uαβ. In matrix language,

these relations read as (gβij) = A(gαij)A
t and as A(x) = Duαβ(uβ(x)), respectively.

(Observe that by symmetry, it doesn’t matter which index of g corresponds to rows and

which to columns.) But now of course det(At) = det(A) and
√

det(A)2 = | det(A)|, and
this readily shows that νβ and να are related by (4.2).
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But this exactly shows that our construction leads to a density ν that is defined on
all of M and nowhere vanishing by construction. This is called the volume density of
the Riemannian metric g. (In fact, there is a very similar construction in the case that
g is a pseudo-Riemannian metric, since det(gij) always has constant sign.) As discussed
above, a Riemannian metric on a manifold M thus gives rise to an identification of
C∞(M,R) with the space of densities. As we shall see below, this leads to a well
defined integral for (compactly supported) smooth functions on Riemannian manifolds.

4.2. Integration of densities. Getting to a well defined integral for densities
(with compact support) now mainly is a bit of technical trickery based on partitions of
unity. We first derive a simple consequence of the existence of partitions of unity. (At
this point, it would not be necessary to start from an atlas, but this will be useful later
on.)

Lemma 4.2. Let M be a smooth manifold, K ⊂ M a compact subset and let A be
an atlas for M . Then we can find finitely many charts (Uα, uα), α ∈ {1, . . . , N} from
A and smooth functions φα ∈ C∞(M,R) with values in [0, 1] such that supp(φα) ⊂ Uα
and

∑N
α=1 φα is identically one on K.

Proof. Since K is compact, we can find finitely many charts in A such that K ⊂
∪Nα=1Uα. Adding U0 := M \K, we obtain an open covering of M , so by Theorem 1.9,
there is a partition of unity {φ̃i : i ∈ N} subordinate to this covering. Put A1 := {i :
supp(φ̃i) ⊂ U1} and φ1 :=

∑
i∈A1

φ̃i. Since the family of supports is locally finite, this
is smooth. Moreover, one easily verifies (see exercises) that the union of a locally finite
family of closed sets is closed. This shows that ∪i∈A1 supp(φ̃i) is a closed set, and this
certainly contains all points in which φ1 is non-zero. Hence supp(φ1) ⊂ ∪i∈A1 supp(φi) ⊂
U1.

Similarly, putting A2 := {i ∈ N \ A1 : supp(φ̃i) ⊂ U2} and φ2 :=
∑

i∈A2
φ̃i, we

obtain a smooth function with supp(φ2) ⊂ U2. Continuing inductively we obtain smooth
functions φα for α ∈ {1, . . . , N}, and it remains to verify that

∑
φα is identically one

on K. But if j /∈ A1 ∪ · · · ∪ AN , we must by construction have supp(φ̃j) ⊂ U0, so this
is identically zero on K. Hence on K,

∑
φα coincides with

∑
i∈N φ̃i = 1. □

Using this we can now define the integral of a density ν with compact support as
follows. By Lemma 4.2, we find finitely many charts (Uα, uα) for M and functions φα
such that supp(ν) ⊂ ∪αUα and

∑
α φα is identically one on supp(ν). With respect

to the chart (Uα, uα), ν is represented by a smooth function να : Uα → R. Now
(φανα) ◦ u−1

α : uα(Uα) → R is a smooth function with compact support, which can be
integrated over Rn without problems (and has finite integral). Thus we may define

(4.3)
∫
M
ν :=

∑N
α=1

∫
Rn(φανα) ◦ u−1

α .

It is not clear that this is well defined, but it is not so difficult to verify this:

Theorem 4.2. The expression in (4.3) is independent of the choice of the charts
(Uα, uα) and of the functions φα. Thus we obtain a well defined integral, which defines
a surjective linear map from the space of densities with compact support to R.

Proof. Suppose that (Vi, vi) and ψi with i = 1, . . . , L is another choice of charts and
functions. PuttingK := supp(ν), we see that for each fixed α, we get φα|K =

∑
i ψiφα|K

and ψiφα has support in Uα ∩ Vi. By linearity of the integral of functions on Rn, we
conclude that

(4.4)
∑

α

∫
Rn(φανα) ◦ u−1

α =
∑

α,i

∫
Rn(ψiφανα) ◦ u−1

α .
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In the same way, we can start from (Vi, vi), and the functions ψiν, which leads to

(4.5)
∑

i

∫
Rn(ψiνi) ◦ v−1

i =
∑

i,α

∫
Rn(φαψiνi) ◦ v−1

i .

Now both in (4.4) and in (4.5) it suffices to sum over those pairs (α, i) for which
Uα ∩ Vi ̸= ∅ since supp(φαψi) is contained in this subset. Fixing one such pair (α, i),
this also shows that we can change the domain of integration to uα(Uα ∩ Vi) in (4.4)
and to vi(Uα ∩ Vi) in (4.5).

Now consider the chart change Φ := uα ◦ v−1
i : vi(Uα ∩ Vi) → uα(Uα ∩ Vi). Now

uα(Uα ∩ Vi) = Φ(vi(Uα ∩ Vi)), so by (4.1), we get∫
uα(Uα∩Vi)

(ψiφανα) ◦ u−1
α =

∫
vi(Uα∩Vi)

((ψiφανα) ◦ u−1
α ◦ Φ)| det(DΦ)|.

But on vi(Uα ∩ Vi), we get u−1
α ◦ Φ = v−1

i and for all x ∈ Uα ∩ Vi the transformation
law (4.2) in Definition 4.1 shows that νi(x) = να(x)| det(DΦ(vi(x)))|. Thus we conclude
that the summands in (4.4) and (4.5) all coincide, which shows that the integral is well
defined.

Linearity of the integral is obvious from the definition and to see that it is surjective,
it suffices to construct one density with non-zero integral. This can easily be done via
Example 4.1. Given a manifoldM , we fix some chart (U, u) forM and a bump function
φ with support contained in U . Then φ2

∑
i(du

i⊗dui) is a smooth
(
0
2

)
-tensor field on U ,

which can be smoothly extended to all of M by zero. Applying the construction from
example 4.1 we get a density ν on M with support contained in U . The coordinate
representation of our tensor field with respect to U is φδij by construction. Since φ

is non-negative, the function representing of ν in the chart (U, u) thus is
√
φ2n = φn.

But we already know that we can compute
∫
M
ν as

∫
Rn φ

n ◦ u−1, and this is evidently
positive. □

Orientations and integration of differential forms

Integration of densities works very well, but apart from the case of (pseudo-)Rieman-
nian geometry discussed in Example 4.1, there is not much connection to the concepts
discussed so far. Such a connection is provided by integration theory for differential
forms, in particular via Stokes’s theorem. To integrate differential forms, one has to
introduce an additional structure to deal with the problem of the absolute value that
occurs in (4.1).

4.3. Orientations. The main observation needed to get integration theory for dif-
ferential forms started is that on a manifold M of dimension n, the behavior of n-forms
under a chart-change is very close to the one of densities. Indeed given a chart (U, u)
for M and ω ∈ Ωn(M), the local coordinate representation from formula (3.14) sim-
plifies to ω|U = ω1...ndu

1 ∧ · · · ∧ dun so this is described by the single smooth function
ω1...n. To obtain the behavior of this function under a change of charts, it is easier to
argue directly than to specialize (3.5). By construction, ω1...n = ω( ∂

∂u1
, . . . , ∂

∂un
) so we

can obtain the transformation law from formula (1.2) from Section 1.14 that applies to
the coordinate vector fields. For two charts (Uα, uα) and (Uβ, uβ) with Uαβ ̸= ∅, this
shows that to pass from ωα1...n to ωβ1...n we have to hit each of the entries of ω with the
linear isomorphism Duαβ(uβ(x)). But the from linear algebra, it is known that for any
n-linear, alternating map on an n-dimensional vector space, this causes a multiplication
by the determinant. Thus we conclude that

(4.6) ωβ1...n(x) = ωα1...n(x) det(Duαβ(uβ(x))),
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so apart from the missing absolute value, this is like formula (4.2) for densities.
Hence we conclude that for an n-form with support contained in the domain of

a chart, we have an integral, which is independent of the choice of chart up to its
sign. The only question is now to deal with this sign issue, having done that, we can
define an integral for compactly supported n-forms exactly as for densities in Section
4.2. In particular, there would be no problem, if we can work with an atlas such that
the determinants of the derivatives of all chart changes are positive. To move towards
this, recall from linear algebra that on a vector space V of dimension n ≥ 1, one can
introduce an equivalence relation on the set of ordered bases of V . One declares two
ordered bases as equivalent if the matrix describing the change between the two bases
has positive determinant. There are exactly two equivalence classes for this relation,
and an orientation on V is given by choosing one of these two classes. Having made this
choice, the bases in that class are called positively oriented, while the others are called
negatively oriented. Given a smooth manifold M of dimension n ≥ 1, we can now try
to choose an orientation on each of the tangent spaces TxM of M . There is a natural
compatibility condition available in this setting as follows.

Definition 4.3. Let M be a smooth manifold of dimension n ≥ 1.
(1) An orientation on M is given by a choice of orientation for each of the tangent

spaces TxM of M which is consistent in the following sense: For any connected open
subset U ⊂M and local vector fields ξ1, . . . , ξn defined on U such that {ξ1(x), . . . , ξn(x)}
is a basis of TxM for each x ∈ U , all these bases have the same orientation (positive or
negative).

(2) The manifold M is called orientable if it admits an orientation, a manifold
endowed with an orientation is called an oriented manifold.

(3) An oriented atlas for M is an atlas A such that for any two charts (Uα, uα) and
(Uβ, uβ) from A and each x ∈ Uαβ, we have det(Duαβ(uβ(x))) > 0.

(4) Two oriented atlases A and B ofM are said to be oriented equivalent if and only
if their union is an oriented atlas.

The consistency condition in (1) can be interpreted as saying that the orientations
of the tangent spaces depend continuously on the base point. Indeed, it does not
really depend on the specific family of vector fields. Given two families, say ξ1, . . . , ξn
and η1, . . . , ηn as in the definition, there are smooth functions aij : U → R such that
ηi =

∑
j aijξj. By construction the matrix (aij(x)) is invertible for each x ∈ U , and

since U is connected, this implies that det(aij(x)) is either positive for all x or negative
for all x. So if the consistency condition is satisfied for ξ1, . . . , ξn, then it is also satisfied
for η1, . . . , ηn. Having this observation at hand, we can nicely characterize orientability
and describe the possible orientations.

Proposition 4.3. Let M be a smooth manifold of dimension n ≥ 1.
(1) The following conditions are equivalent

(i) M is orientable.
(ii) There exists a form ω ∈ Ωn(M) such that ω(x) ̸= 0 for all x ∈M .
(iii) M admits an oriented atlas.

(2) If the conditions from (1) are satisfied, then the possible orientations of M are in
bijective correspondence with the set of oriented equivalence classes of oriented atlases.
IfM is connected, then there are exactly two possible orientations, in general the number
of orientations is 2k, where k is the number of connected components of M .
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Proof. (1): We first show that (i) implies (iii). If M is orientable, we choose
an orientation. Then by definition for a connected chart (U, u) for M , the ordered
bases { ∂

∂u1
(x), . . . , ∂

∂un
(x)} for x ∈ U are either all positively oriented or all negatively

oriented. Depending on this, we call the chart (U, u) positively oriented or negatively
oriented. Moreover, if (U, u) is negatively oriented, then we can just flip the sign of the
first local coordinate u1 to obtain a positively oriented chart. Starting from an atlas
for M that consists of connected charts, we can therefore construct an atlas consisting
of positively oriented charts. Observe that the notion of a positively oriented chart
extends to disconnected charts without problems.

Now, if (Uα, uα) and (Uβ, uβ) are positively oriented charts, then by formula (1.2)
from Section 1.4 the derivative Duαβ(uβ(x)) just represents the base-change between
the bases of TxM coming from the coordinate vector fields. By assumption, these both
are positively oriented, so det(Duαβ(uβ(x))) > 0 for each x ∈ Uαβ. Hence any atlas
consisting entirely of positively oriented charts is an oriented atlas.

(iii) ⇒ (ii): Let {(Uα, uα) : α ∈ I} be an oriented atlas for M . Then by Theorem
1.9, there is a subordinate partition {φi : i ∈ N} of unity and for each i we choose αi
such that supp(φi) ⊂ Uαi

. Putting ωi := φidu
1
αi
∧ · · · ∧ dunαi

∈ Ωn(Uαi
), we see that for

x ∈ Uαi
we get ωi(x) ̸= 0 if and only if φi(x) ̸= 0. Hence supp(ωi) ⊂ Uαi

, so we can
extend it by zero to a form defined on all ofM . Moreover, the family supp(ωi) is locally
finite, so ω :=

∑
i∈N ωi ∈ Ωn(M) is a well defined n-form on M .

Since we started from an oriented atlas, ωi has the property that inserting the
coordinate vector fields of any of the charts (Uα, uα) into ωi (in increasing order), the
result will be non-negative. Moreover, for each x ∈M , there exists an index i such that
φi(x) > 0 and then ωi(x) takes a strictly positive value on the coordinate vector fields
for (Uαi

, uαi
). But this shows that ω(x) ̸= 0.

(ii) ⇒ (i): Suppose that ω ∈ Ωn(M) is nowhere vanishing. Then for each x ∈ M ,
inserting the elements of an ordered basis of TxM into ω(x), one obtains a non-zero
number, and we say that the basis is positively oriented if that number is positive.
Since inserting local vector fields into ω one obtains smooth functions, the resulting
orientations are clearly consistent, so we get an orientation on M is this way.

(2): As observed in (1), there is the notion of positively oriented charts on an oriented
manifold M , by requiring that the coordinate vector fields form a positively oriented
basis for the tangent space in each point. Moreover, from (1) we know that there is
an oriented atlas A for M consisting of charts that all are positively oriented. Now it
follows from the definitions that an oriented atlas B is oriented equivalent to A if and
only if all its charts are positively oriented. This establishes the first claim in (2).

For the second claim, assume first thatM is connected and fix an orientation. Then
as in (1), we find ω ∈ Ωn(M) such that ω(x) is positive on positively oriented ordered
bases for TxM . Now let us keep the form ω but switch to a different orientation on M .
Then there is at least one point x ∈ M such that ω(x) takes a negative value on all
positively oriented ordered bases for TxM and we look at the set A ⊂ M of all such
points. For y ∈ A, we can take a connected chart (U, u) with y ∈ U and its coordinate
vector fields to see that U ⊂ A, so A is open in M . But M \ A admits a similar
description with positive values on positively oriented ordered bases, so this is open,
too. Hence by connectedness M = A, so there is just one other possible orientation.

In the general case, it is clear that the connected components of M are connected
manifolds, and from the definitions it follows easily that the choice of an orientation
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on M is equivalent to the choice of an orientation on each component (and there is no
relation between the components). □

In some cases, orientations are derived from other structures. A nice example is
provided by symplectic manifolds as discussed in Section 3.8. The basis for this is a
result from multilinear algebra, namely that for a non-degenerate alternating bilinear
map b on a real vector space V of dimension 2n the wedge-product of n copies of b is
nonzero. (Indeed, this is an equivalent characterization of non-degeneracy.) Applying
this point-wise, we readily see that for a symplectic manifold (M,ω) of dimension 2n,
the form ωn := ω ∧ · · · ∧ ω ∈ Ω2n(M) is nowhere vanishing. This form determines a
canonical orientation on M . Indeed, the condition that dω = 0 is not relevant for these
considerations.

Remark 4.3. (1) Orientability is a global issue. On the domain of a chart, one
always finds an orientation. Given orientations on open subsets U and V such that
U ∩ V is connected, one may always swap the orientation on one of the two factors to
obtain an orientation on U ∪ V . In this way, one may extend orientations step by step.
But examples like the Möbius band show that one may run into the following situation:
M = U ∪ V for connected open subsets U and V such that U ∩ V has two connected
components and for any choice of orientations on U and V , the orientations agree on
one component of the intersection and disagree on the other. So there is no hope to
find a global orientation in such cases.

(2) Orientability is not a very strong restriction in general. Given a non-orientable

manifold M , there is an orientable manifold M̂ and a local diffeomorphism q : M̂ →M
such that q−1({x}) has exactly two elements for each x ∈M . This falls into the theory

of covering maps from algebraic topology, whence M̂ is called the orientable covering
of M . This often allows to reduce problems to the orientable case.

The construction of M̂ roughly is as follows. For each x ∈M , the n-linear alternating
maps (TxM)n → R form a one-dimensional vector space, that is usually denoted by
ΛnT ∗

xM . Now we can remove zero and then identify maps which are positive multiples
of each other to get “two points sitting over x”. Now as in 3.1 and 3.3, we define

M̂ as the disjoint union of these sets for all x ∈ M , which also defines q : M̂ → M .
Then a chart (U, u) identifies ΛnT ∗

xM with R for all points x ∈ U and this leads to an
identification of q−1(U) with U ×{1,−1}, and we can use u as a chart map on either of
the two components. Still as in 3.1 and 3.3 one shows that things work out well with
chart changes and one can even obtain an oriented atlas in this way, see the last part
of chapter 15 of [Lee] for details.

(3) A nowhere-vanishing n-form on an n-dimensional manifoldM is called a volume-
form on M . In particular, the considerations from Example 4.1 show that on an ori-
ented Riemannian n-manifold (M, g) there is a canonical volume form vol(g) ∈ Ωn(M).
Explicitly, for an oriented chart (U, u) for M such that g|U = gijdu

i ⊗ duj, we get

vol(g)|U =
√
det(gij)du

1 ∧ · · · ∧ dun.

4.4. Integration of differential forms. Having the background on orientations
at hand, we can now construct an integral for (compactly supported) n-forms completely
parallel to the case of densities in Section 4.2. Consider an oriented manifold M and a
form ω ∈ Ωn(M) with compact support. Applying Lemma 4.2 to some oriented atlas
compatible with the orientation of M , we find finitely many positively oriented charts
(Uα, uα), α = 1, . . . , N such that supp(ω) ⊂ ∪Uα and functions φα with values in [0, 1]
such that supp(φα) ⊂ Uα and

∑
α φα is identically one on supp(ω). For each α, we
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have the function ωα1...n : Uα → R from the local coordinate representation of ω, and we
define

(4.7)
∫
M
ω :=

∑N
α=1

∫
Rn(φαω

α
1...n) ◦ u−1

α .

(The summation convention does not apply to α in the right hand side.)
In contrast to the case of densities, where we haven’t discussed the actions of diffeo-

morphisms at all, we want to prove compatibility of the integral with diffeomorphisms
here. This needs another definition.

Definition 4.4. Let M and N be oriented smooth manifolds and let F : M → N
be a diffeomorphism. Then we call F orientation preserving if for each x ∈ M the
tangent map TxF : TxM → TF (x)N is orientation preserving. We call F orientation
reversing if TxF is orientation reversing for each x ∈M .

If M and N are connected, then any diffeomorphism F : M → N is either orienta-
tion preserving or orientation reversing, in general there may be different behavior on
different connected components. Now we can formulate the main result on integration
of differential forms:

Theorem 4.4. (1) On an oriented manifold M , the expression in (4.7) is indepen-
dent of the choice of the (positively oriented) charts (Uα, uα) and of the functions φα.
Thus we obtain a well defined integral, which defines a surjective linear map from the
space of compactly supported n-forms to R.

(2) Let F : M → N be a diffeomorphism between oriented smooth manifolds of
dimension n, which is either orientation preserving or orientation reversing. Then for
any compactly supported form ω ∈ Ωn(N) we get

∫
M
F ∗ω =

∫
N
ω if F is orientation

preserving and
∫
M
F ∗ω = −

∫
N
ω if F is orientation reversing.

Proof. (1) Since the derivative of the chart change between two positively oriented
charts always has positive determinant, we can use exactly the arguments as in the proof
of Theorem 4.2 to prove that the integral is well defined. Linearity then is obvious, and
for surjectivity, we can use φdu1 ∧ · · · ∧ dun for a positively oriented chart (U, u) and a
bump function φ with compact support contained in U .

(2) Note that supp(F ∗ω) = F−1(supp(ω)) which is compact since F is a homeo-
morphism, so it is no problem to form

∫
M
F ∗ω. Given ω, we choose positively oriented

charts (Uα, uα) for N and functions φα to compute
∫
N
ω as in (4.7). If F is orientation

preserving, then for each α, (F−1(Uα), uα ◦ F ) is a positively oriented chart for M and
F ∗duiα = d(uiα ◦ F ). This readily shows that ω|Uα = ωα1...ndu

1
α ∧ · · · ∧ dunα implies that

F ∗ω|F−1(Uα) = (ωα1...n ◦ F )d(u1α ◦ F ) ∧ · · · ∧ d(unα ◦ F ). Since (uα ◦ F )−1 = F−1 ◦ u−1
α we

readily conclude from (4.7) that
∫
M
F ∗ω =

∫
N
ω.

If F is orientation reversing, then we can, for each α, obtain a positively oriented
chart from (F−1(Uα), uα◦F ) by swapping the sign of one coordinate. This readily shows
that the coordinate representation of F ∗ω with respect to the resulting chart is given by
the function −ωα1...n ◦F and using this, the claim follows as in the orientation-preserving
case. □

Manifolds with boundary and Stokes’s theorem

A key feature of integration theory for differential forms is that there is an interplay
between integration and the exterior derivative. For usual manifolds, this boils down
to the fact that for an oriented manifold M of dimension n and a form ω ∈ Ωn−1(M)
with compact support, one has

∫
M
dω = 0. The simplest version of this is M = R,
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where
∫
R df = 0 for a compactly supported smooth function f follows easily from the

fundamental theorem of calculus. But in this case, there is a better version, in which

one integrates over [a, b] rather then R and then
∫ b
a
df = f(b)− f(a), so the integral is

determined by a “boundary term”.
There is a general version of this, which however requires an extension of the notion

of a smooth manifold, which allows for a boundary. The necessary generalization are
not too difficult, so we will discuss this rather briefly.

4.5. Manifolds with boundary. For n ≥ 1, define the n-dimensional half-space
Hn as {x ∈ Rn : x1 ≤ 0}. (The choice of the first coordinate and of non-positive values
is just a convention, this choice avoids the occurrence of signs in Stokes’s theorem.)
We’ll refer to points with x1 < 0 as interior points of Hn and to points with x1 = 0 as
boundary points. This terminology obviously extends to open (for the induced topology)
subsets U ⊂ Hn, but here it may happen that U entirely consists of interior points.

It is no problem to defines smoothness for a map F : U → V between open subsets
of half spaces. One requires that for each x ∈ U , there is a an open subset Ũ ⊂ Rn

and a smooth function F̃ : Ũ → Rn, which coincides with F on U ∩ Ũ . Hence it is
no problem to consider diffeomorphisms between such open subsets, and the inverse
function theorem immediately implies that such a diffeomorphism maps interior points
to interior points and boundary points to boundary points. (Results from algebraic
topology imply that indeed the same is true for homeomorphisms between open subsets
of half spaces.)

Now one defines a topological manifold with boundary of dimension n as a second
countable Hausdorff space M such that each point x ∈M has an open neighborhood in
M that is homeomorphic to an open subset of Hn. Then there are obvious analogs of
all the further notions from Definition 1.6 based on charts (Uα, uα) for which uα(Uα) is
open in Hn. This leads to the notion of a smooth manifold with boundary. From above,
we conclude that if uα(x) is a boundary point for one chart (Uα, uα) with x ∈ Uα, then
the same holds for any compatible chart. Hence on a smooth manifold with boundary,
there is a well defined notion of interior points and of boundary points. The set of all
boundary points of M is denoted by ∂M ⊂M and called the boundary of M .

Observe that the set of interior points of Hn clearly is diffeomorphic to Rn, so any
open subset of Rn is diffeomorphic to an open subset ofHn that consists of interior points
only. Thus the notions from Section 1.6 are the special cases of the ones developed here
in which ∂M = ∅, so any manifold is a manifold with boundary. Of course, an open
subset U ⊂ Hn is a manifold with boundary, for which ∂U is the set of boundary points.
Another obvious example of a manifold with boundary is M := {x ∈ Rn : |x| ≤ 1} for
which ∂M is the sphere Sn−1.

Next, the notions of smoothness of functions on and maps between manifolds with
boundary can be defined via local coordinate representations as for manifolds in Section
1.8. Observe that by our definition of smoothness on open subsets of Hn this means that
one always requires existence of smooth extensions to open neighborhoods of boundary
points in Rn. Theorem 1.9 on partitions of unity extends to manifolds with boundary
without problems.

For an open subset U ⊂ Hn, the set of boundary points of U is an open subset
of Rn−1 (embedded into Rn as points with zero first coordinate). Hence for a chart
(Uα, uα) for M , we can consider the open subset Uα ∩ ∂M of ∂M and uα|Uα∩∂M is a
homeomorphism onto the set of boundary points of uα(Uα). This easily implies that ∂M
is a topological manifold in the sense of Definition 1.6. Moreover, any diffeomorphism of
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open subsets of Hn restricts to a diffeomorphism between the sets of boundary points.
This easily implies that starting from an atlas for M , one obtains compatible charts
and hence an atlas for ∂M . It is easy to see that the resulting smooth structure on ∂M
is independent of the choice of atlas, so ∂M is canonically a smooth manifold (without
boundary). By construction, the inclusion i : ∂M →M is a smooth map, so for smooth
functions or maps defined on M , the restrictions to ∂M are smooth, too.

The concept of germs of smooth functions extends to manifolds with boundary
without problems. Parallel to Lemma 1.10, one easily shows that for any a ∈ Hn

one can canonically identify the space of derivations at a of germs of smooth functions
with Rn. (For interior points, this is clear, but by definition of smoothness, it extends
to boundary points without problems.) Using this, one simply extends the definition
of tangent spaces, all results from Section 1.12, and the coordinate description from
Section 1.14 to manifolds with boundary.

Here a new feature arises in a boundary point x ∈ ∂M . Suppressing the inclusion
from the notation, we can view Tx∂M as a linear subspace of TxM . In view of our
conventions for half spaces, for any chart (U, u) around x, this linear subspace is spanned
by the tangent vectors ∂

∂ui
|x for i = 2, . . . , n. Moreover, vectors in TxM \ Tx∂M (which

are automatically non-zero) can be either inward pointing or outward pointing. Writing
such a vector as a linear combination of the basis elements ∂

∂ui
|x determined by a chart

(U, u), then according to our convention, the inward pointing vectors are those, for
which the coefficient of ∂

∂u1
|x is negative.

For an open subset U ⊂ Hn, we can still identify the union of all tangent spaces with
U ×Rn, which is an open subset in H2n. Using this, one can collect the tangent spaces
of a manifold M with boundary into a set TM endowed with an obvious projection
p : TM → M and make this into a manifold with boundary p−1(∂M). Using this, one
can define vector fields, tensor fields and differential forms on manifolds with boundary
parallel to what we have done in Chapters 2 and 3 with some minor changes. What one
certainly has to be careful about is domains of definitions of flows. These are influenced
by conditions like the well defined concepts that a vector field ξ ∈ X(M) is tangent to
∂M or inward pointing along ∂M , and so on. What we mainly will need here is the
exterior derivative, which extends without problem. Similarly as discussed in Example
3.6, we observe that for ω ∈ Ωk(M), one has i∗ω ∈ Ωk(∂M), and one usually suppresses
i∗ from the notation and simply views ω as a form on M and on ∂M at the same time.
Finally, the concepts of orientations and of oriented atlases makes sense for manifolds
with boundary, and the following observation is crucial for integration theory:

Lemma 4.5. Suppose that M is an orientable manifold with boundary of dimension
n ≥ 2. Then any choice of orientation on M gives rise to an orientation of the manifold
∂M , so ∂M is orientable, too. This correspondence has the property that for a posi-
tively oriented chart (U, u) for M , also the induced chart (U ∩∂M, u|U∩∂M) is positively
oriented.

Proof. Let us consider two charts (Uα, uα) and (Uβ, uβ) for M and a point x ∈
Uαβ ∩ ∂M (so we assume that this intersection is non-empty). Then the chart change
uαβ : uβ(Uαβ) → Hn maps boundary points to boundary points. In particular, the

derivative Duαβ(uβ(x)) has to be of the block form

(
λ 0
v A

)
with block sizes 1 and

n− 1, so λ ∈ R and v ∈ Rn−1 and A is the derivative of the chart change between the
two induced charts at x. But by assumption uαβ also has to send points with negative
first coordinate to points with negative first coordinate, so λ > 0. Thus det(Duαβ(x))
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and det(A) have the same sign. Hence for an oriented atlas for M the induced atlas
for ∂M is oriented and for two such atlases which are oriented equivalent, the induced
atlases are oriented equivalent, too. By Proposition 4.3, this implies that an orientation
on M induces an orientation on ∂M , an then the last claimed property is satisfied by
construction. □

It is not difficult to describe the induced orientation on ∂M explicitly: We have the
linear subspace Tx∂M ⊂ TxM and of course adding any vector in TxM \ Tx∂M to a
basis of Tx∂M , one obtains a basis of TxM . Then from the construction in the proof we
conclude that an ordered basis of Tx∂M is positively oriented if and only if adding an
outward pointing vector in TxM \ Tx∂M as the first element, one obtains a positively
oriented basis of TxM .

4.6. Stokes’s theorem. Given a manifold M with boundary, let us write Ωk
c (M)

for the space of k-forms on M with compact support. By part (1) of Theorem 3.6, the
exterior derivative is a local operator, so if ω ∈ Ωk(M) vanishes identically on some
open subset U ⊂M , then also dω|U vanishes identically. This implies that supp(dω) ⊂
supp(ω), so d maps Ωk

c (M) to Ωk+1
c (M). In particular, for ω ∈ Ωn−1

c (M), we have
dω ∈ Ωn

c (M), so if M is oriented, we can form
∫
M
dω ∈ R. But on the other hand,

we can restrict ω to ∂M , which is also oriented, and then form
∫
∂M

ω. Hence we can
formulate Stokes’s theorem:

Theorem 4.6 (Stokes). For an oriented smooth manifold M with boundary ∂M
and any form ω ∈ Ωn−1

c (M), we have
∫
M
dω =

∫
∂M

ω. In case of a manifold without
boundary, we get

∫
M
dω = 0 for any ω ∈ Ωn−1

c (M).

Proof. As observed in Section 4.4, there are finitely many positively oriented charts
(Uα, uα), α = 1, . . . , N such that supp(ω) ⊂ ∪Nα=1Uα and smooth functions φα such that
supp(φα) ⊂ Uα and

∑
α φα is identically one on supp(ω). As we have noted above

supp(d(φαω)) ⊂ supp(φαω) ⊂ Uα and by construction dω =
∑N

α=1 d(φαω). Linearity of

the integral then shows that
∫
M
dω =

∑N
α=1

∫
M
d(φαω). On the other hand denoting by

i : ∂M →M the inclusion we see that for i∗ω ∈ Ωn−1(∂M) we get supp(i∗ω) ⊂ supp(ω)∩
∂M . Hence this is contained in ∪α∂Uα, where ∂Uα := Uα ∩ ∂M and

∑N
α=1(φα|∂M) is

identically one on supp(i∗ω). By Lemma 4.5, the charts (∂Uα, uα|∂Uα) are positively

oriented for the induced orientation on ∂M , so
∫
∂M

ω =
∑N

α=1

∫
∂M

(φα|∂M)i∗ω.
This shows that it suffices to prove that

∫
M
dω =

∫
∂M

i∗ω in the case that the support
of ω is contained in one positively oriented chart (U, u) for M , and we restrict to this
case from now on. Slightly simplifying the notation for the local coordinate expression
for the rest of this proof, we get

ω|U =
∑n

k=1 ωkdu
1 ∧ · · · ∧ d̂uk ∧ · · · ∧ dun.

Now we know that for x ∈ ∂U , a tangent vector Xx lies in the subset Tx∂M ⊂ TxM
if and only if expanding it in terms of the ∂

∂ui
|x, the coefficient of ∂

∂u1
|x is zero. This

shows that i∗du1 = 0 and hence i∗ω = ω1du
2 ∧ · · · ∧ dun. So by definition, we get∫

∂M
i∗ω =

∫
u(U)∩Rn−1 ω1 ◦ u−1. Observe that the integral remains unchanged if we

replace the domain of integration by all of Rn−1.
Applying part (4) of Theorem 3.6, we also see that

dω|U =
∑n

k=1(−1)k−1 ∂
∂uk

(ωk)du
1 ∧ · · · ∧ dun
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(with the sign coming from the fact that we have moved duk to the kth position in the
wedge product). Hence by definition we get∫

M
dω =

∑n
k=1(−1)k−1

∫
u(U)

∂k(ωk ◦ u−1).

Now by construction, the integral remains unchanged if we replace the domain of in-
tegration by Hn = (−∞, 0] × Rn−1. Then by Fubini’s theorem, the integral over Hn

can be computed as an iterated integral over the individual variables and the result is
independent of the order in which the integrals are performed. Now for the summand
involving ∂k(ωk ◦ u−1), we first integrate over the kth variable. For k > 1, this gives us
an integral of the form∫∞

−∞
∂
∂t
(ωk ◦ u−1)(y1, . . . , yk−1, t, yk+1, . . . , yn)dt.

Since the function in the interior has compact support, this may be computed as an in-
tegral over some large closed interval and then the integral vanishes by the fundamental
theorem of calculus. Hence all these summands to not contribute to the integral. For
k = 1, we get the integral∫ 0

−∞
∂
∂t
(ω1 ◦ u−1)(t, y2, . . . , yn)dt = (ω1 ◦ u−1)(0, y2, . . . , yn).

Thus we conclude that
∫
M
dω =

∫
{0}×Rn−1 ω1 ◦u−1, which we know from above coincides

with
∫
∂M

i∗ω. □

Even the version of Stokes’s theorem for manifolds without boundary has very in-
teresting applications. Suppose that (M,ω) is a symplectic manifold of dimension 2n
as in Section 3.8. As we have seen in Section 4.3, the form ωn = ω ∧ · · · ∧ ω ∈ Ω2n(M)
is nowhere vanishing and hence determines an orientation on M . If M is compact, then
we can form

∫
M
ωn and since the coordinate representation of ωn with respect to any

oriented chart is a positive function,
∫
M
ωn > 0. By Stokes’s theorem and compactness

of M , we conclude that there cannot be any form α ∈ Ω2n−1(M) such that ωn = dα.
But now suppose that the symplectic structure ω were exact, i.e. ω = dβ for some
β ∈ Ω1(M). Then we can define α := β ∧ ωn−1 = β ∧ ω ∧ · · · ∧ ω and the compatibility
of d with the wedge product from Theorem 3.6 shows that dα = dβ ∧ωn−1 = ωn, which
is a contradiction. Hence in contrast to the example of cotangent bundles discussed in
Section 3.8, a symplectic structure on a compact manifold can never be exact.

Remark 4.6. Initially, integration and Stokes’s Theorem applies only to top degree
forms on a manifold, but it can be easily used to study lower degree forms. For example
let S be a compact, oriented smooth k-dimensional manifold without boundary and let
i : S → M be an embedding into some n-dimensional manifold. Then for ω ∈ Ωk(M),
we can form i∗ω ∈ Ωk(S) and then

∫
S
i∗ω ∈ R. Now if there is some τ ∈ Ωk−1(M)

such that ω = dτ then i∗ω = i∗dτ = di∗τ by Theorem 3.6 and hence
∫
S
i∗ω vanishes by

Stokes’s theorem. Conversely, if for given ω we can find some S such that
∫
S
i∗ω ̸= 0,

we can conclude that ω cannot be of the form dτ for some τ ∈ Ωk−1(M).

4.7. Excursion: vector analysis and classical integral theorems. The clas-
sical operations of gradient, divergence and rotation for vector fields on open subsets of
R3 actually are all instances of the exterior derivative in disguise. Realizing this, the
general version of Stokes’s theorem in Theorem 4.6 easily leads to the classical integral
theorems from analysis. Some of these ideas admit generalizations, often related to
Riemannian geometry and we’ll discuss things in this general setting.

As we have observed in Example 3.3, a Riemannian metric g on a smooth manifold
M gives rise to an isomorphism between vector fields and one-forms on M , which sends
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ξ ∈ X(M) to η 7→ g(ξ, η). In particular, given a smooth function f ∈ C∞(M,R),
there is a unique vector field grad(f) ∈ X(M), called the gradient of f , such that
g(grad(f), η) = df(η). In particular, this can be done on an open subset U ⊂ Rn with
respect to metric given by the standard inner product on Rn ∼= TxU for each x ∈ U .
Then grad(f) has components ∂if , so this is just the classical gradient, which thereby
is derived from the exterior derivative.

On the other hand, suppose that M is an n-dimensional manifold, and we fix a
top-degree form ω ∈ Ωn(M). This obviously gives rise to a map from C∞(M,R) to
Ωn(M) by sending f to fω. Moreover, for ξ ∈ X(M), we can form iξω ∈ Ωn−1(M).
Both this operations are point-wise and it follows from multilinear algebra that they
define isomorphisms at a point x provided that ω(x) ̸= 0. Hence if ω is a volume form
on M (i.e. ω(x) ̸= 0 for all x ∈ M), it leads to an identification of C∞(M,R) with
Ωn(M) and of X(M) with Ωn−1(M). In particular, for ξ ∈ X(M), there is a unique
function div(ξ) ∈ C∞(M,R), called the divergence of ξ such that diξω = div(ξ)ω.

Recall from Section 4.5 that on an oriented Riemannian manifold, there is a canonical
volume form vol(g) ∈ Ωn(M) associated to g. Hence any vector field on an oriented
Riemannian manifold has a divergence, which can be interpreted as a smooth function.
In the case of an open subset U ⊂ Rn and the metric coming from the inner product,
this becomes easy: The volume form in this case is just dx1 ∧ · · · ∧ dxn (which gives the
determinant on each tangent space). Hence for a vector field

∑
ξi ∂
∂xi

, iξ vol(g) is given
by ∑

k(−1)k−1ξkdx1 ∧ · · · ∧ d̂xk ∧ · · · ∧ dxn.

Thus div(ξ) =
∑

k
∂ξk

∂xk
, which is the classical divergence. In this setting, Stokes’s theo-

rem leads to the divergence theorem, which says that the integral of a divergence over a
compact oriented Riemannian manifold without boundary always vanishes.

In dimensions n = 2 and n = 3, this already allows us to identify all the spaces
Ωk(M) on an oriented Riemannian manifold M of dimension n with either C∞(M,R)
or with X(M). For n = 2, we have encoded the available exterior derivatives into f 7→
grad(f) and ξ 7→ div(ξ). Now this may suggest that d ◦ d = 0 implies div(grad(f)) = 0
for any f ∈ C∞(M,R), which of course isn’t true (since this gives the Laplacian of
f). The reason for this is that we have used two different identifications of X(M) with
Ω1(M) which send ξ to g(ξ, ) and iξ vol(g), respectively. In particular, for an open
subset U ⊂ R2, ξ1 ∂

∂x1
+ ξ2 ∂

∂x2
corresponds to ξ1dx1+ ξ2dx2 in the first identification and

to −ξ2dx1 + ξ1dx2 in the second identification.
In dimension 3, this does not arise, but we have the additional exterior derivative

d : Ω1(M) → Ω2(M) to interpret. Given ξ ∈ X(M), there exists a unique vector field
rot(ξ) ∈ X(M) such that d(g(ξ, )) = irot(ξ)(vol(g)). In the case of an open subset
U ⊂ R3, one immediately derives the usual formula related to the cross-product. Here
the fact that d ◦ d = 0 immediately leads to rot(grad(f)) = 0 and div(rot(ξ)) = 0. As
in dimension 2, div(grad(f)) gives the Laplacian of f .

To discuss an example of a classical integral theorem, consider a compact manifold
M of dimension 3 with boundary ∂M , which is contained in some open subset U ⊂ R3.
Then TxM = R3 for each x ∈M and hence we get an orientation onM and the induced
orientation on ∂M . Restricting the volume form vol(g) to M causes no problem, and
the inner product on R3 also gives rise to a volume form (or area form) on ∂M , which
is classically denoted by dA. What one requires is that this form sends a positively
oriented orthonormal basis to 1 ∈ R, which is well defined and pins down the form
uniquely. The area form can most easily be described in terms of an outward pointing
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unit normal n for ∂M , i.e. the function n : ∂M → R3, which assigns to each x ∈ ∂M
the outward pointing vector of length one that is orthogonal to Tx∂M ⊂ R3. This turns
out to be smooth and for x ∈ ∂M one obtains dA(x) by inserting n(x) into vol(g)(x).

Now take a vector field ξ ∈ X(U). As discussed above, this gives rise to ω =
iξ vol(g) ∈ Ω2(U), which can be restricted to both M and ∂M , and by Theorem 4.6,∫
M
dω =

∫
∂M

ω. Interpreting the integral as being defined on functions, the left hand
side by definition gives

∫
M
div(ξ). For the right hand side, consider a point x ∈ ∂M ,

and split ξ(x) = ⟨ξ(x), n(x)⟩n(x) + Y with Y ∈ Tx∂M . Inserting Y into vol(g)(x), one
obtains a form that evidently vanishes on Tx∂M × Tx∂M . But this shows that the
restriction of ω(x) to Tx∂M × Tx∂M coincides with ⟨ξ(x), n(x)⟩dA. Hence we obtain∫
∂M

⟨ξ, n⟩dA =
∫
M
div(ξ), which is called Gauß’ theorem.

In physics terms, ξ is interpreted as describing a field, and the theorem says that
the “normal flow of ξ through ∂M” can be computed via the integral of div(ξ) over M .
Vanishing of the boundary integral interpreted as the fact that there are no “sources”
of this field insideM . From above, we conclude that this always is the case if ξ = rot(η)
for some η ∈ X(U). On the other hand, if ξ = grad(f) (which means that the field can
be described by a potential, compare to Section 3.9), this is the case if ∆(f) = 0. There
is a (simpler) analog for compact 2-dimensional manifolds with boundary contained in
an open subset U ⊂ R2, which is called Green’s theorem.

There is also a result in vector analysis called Stokes’s theorem. This deals with a
compact oriented manifold M of dimension 2 with boundary ∂M contained in an open
subset U ⊂ R3. For the applications of this result in physics it is important the the
vector fields we are talking about are defined on all of U , while M should rather be
viewed as a “test surface”. Thus we also use the identifications of differential forms
with vector fields or functions coming from the (three-dimensional) open subset U and
not from the (two-dimensional) manifold M . Observe that by Theorem 3.6, restricting
differential forms to M is compatible with the exterior derivative.

Given a vector field ξ ∈ X(U), we get the one-form ω = g(ξ, ) ∈ Ω1(U) and by
Theorem 4.6 we get

∫
M
dω =

∫
∂M

ω. In the simplest case, ∂M ∼= S1, so this can be
interpreted as a closed, regular curve in R3, and the right hand side leads to the classical
version of a loop integral. For a parametrization c : [a, b] → ∂M (for which c(a) is the

only double point), this can be written as
∫ b
a
⟨ξ(c(t)), c′(t)⟩dt. In physics terms, this is

interpreted as the energy needed to “move a test particle through the field” along the
closed curve. From above, we know that dω = irot(ξ) vol(g) and, as above, we conclude
that the loop integral can be computed as

∫
M
⟨rot(ξ), n⟩dA. In particular, this always

vanishes for fields that can be described by a potential, i.e. if ξ = grad(f). Indeed the
relation to closed curves in this theorem is why the operator rot got its name. In this
setting, one obtains simple consequences of the result, which are very interesting. For
example, the integrals of ⟨rot(ξ), n⟩dA over two surfaces with the same boundary have
to agree.

Excursion: De-Rham cohomology

The last topic we discuss in the course provides a connection between differen-
tial forms and the topology of manifolds. Here one should think about “topology” as
properties of manifolds that are unchanged by “deformations”, the difference between
smoothness and continuity is not as important initially. While from the discussion here
it should be visible that one obtains relatively robust notions, much more background is
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needed to see that there is an actual connection to algebraic topology, which in addition
concerns fairly advanced parts of that field.

4.8. Basic notions. The basis for de-Rham cohomology is the fact that d2 =
d ◦ d = 0 as observed in Theorem 3.6. The standard terminology here is to call a form
ω ∈ Ωk(M) closed if dω = 0 and exact if it is of the form dτ for some τ ∈ Ωk−1(M). In
this language, d2 = 0 says that any exact form is closed. By linearity of d, both the sets
Zk(M) of closed k-forms and the set Bk(M) of exact k-forms are linear subspaces of
Ωk(M), and Bk(M) ⊂ Zk(M). Thus we can form the quotient vector space Hk(M) :=
Zk(M)/Bk(M), which is called the kth de-Rham cohomology of M . One then puts
H∗(M) := ⊕n

k=0H
k(M) and calls this the total de-Rham cohomology of M .

The best way to view Hk(M) is as a space of equivalence classes [ω] for ω ∈ Ωk(M)
with dω = 0, where [ω̃] = [ω] if and only if there is a form α ∈ Ωk−1(M) such that
ω̃ = ω + dα. Addition and scalar multiplication on Hk(M) is simply defined via repre-
sentatives. Using this language, we can easily sort out some basic properties:

Proposition 4.8. Let M be a smooth manifold and let ω ∈ Zk(M) and τ ∈ Zℓ(M)
be closed forms.

(1) Putting [ω] ∧ [τ ] := [ω ∧ τ ] induces a well defined map Hk(M) × Hℓ(M) →
Hk+ℓ(M). This defines a multiplication on H∗(M), making it into an associative algebra
which is graded commutative in the sense that [τ ] ∧ [ω] = (−1)kℓ[ω] ∧ [τ ].

(2) For another smooth manifold N , and a smooth map F : N → M , putting
F#([ω]) := [F ∗ω] defines an algebra homomorphism F# = H∗(F ) : H∗(M) → H∗(N).
If F is a diffeomorphism, then this is an isomorphism of algebras.

Proof. (1) Since d is a graded derivation (part (2) of Theorem 3.6), we see that
ω∧τ ∈ Zk+ℓ(M), so it makes sense to form [ω∧τ ]. This also shows that for α ∈ Ωk−1(M)
we get dα ∧ τ = d(α ∧ τ), which together with bilinearity of the wedge product shows
that [ω ∧ τ ] depends only on [ω]. Similarly it depends only on [τ ], so we get a well
defined map as claimed. By Theorem 3.5 is is bilinear and hence makes H∗(M) into an
algebra, whose properties follow directly from Theorem 3.5.

(2) By part (5) of Theorem 3.6, pullbacks of closed forms are closed and pullbacks
of exact forms are exact, so there is a well defined linear map F# between the quotient
spaces. Compatibility of the wedge product with pullbacks shows that this defines a
homomorphism of algebras. If F is a diffeomorphism, then F−1 induces an inverse to
this homomorphism, which completes the argument. □

The first indication that cohomology is robust and may be related to topology is
what happens in degree zero. By definition, H0(M) = {f ∈ C∞(M,R) : df = 0},
so in local coordinates, these are the functions for which all partial derivatives vanish
identically. Of course, this means that they have to be constant in a neighborhood
of each point of M and hence on any connected component of M . Conversely, if f
is constant on each connected component of M , then df = 0, so H0(M) = Rb0(M),
where b0(M) is the number of connected components of M . If M has several connected
components, each of them is a smooth manifold Mi and M is the disjoint union ⊔i∈IMi

of the Mi. It is then easy to see that Hk(M) is the product
∏

i∈I H
k(Mi) for each k (so

if I is finite, this coincides with the direct sum).
Generalizing the number b0(M), one defines bk(M) ∈ N ∪ {∞} to be the dimension

of Hk(M) and calls it the kth Betti number of M . It turns out these Betti numbers are
often finite, in particular, it turns out that they are always finite if M is compact, see
Section 4.11.
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As an example for an application of de-Rham cohomology, let us consider a compact
manifold M of even dimension 2n. If there exists a symplectic form ω ∈ Ω2(M) on M ,
then dω = 0, so we can consider [ω] ∈ H2(M). From Section 4.6 we know that ω cannot
be exact, so [ω] has to be non-zero. This immediately shows that a compact manifold
M such that H2(M) = {0} cannot admit any symplectic structure. In particular, it
turns out that for the sphere Sk, the only nontrivial cohomology groups are H0 and
Hk, so for n ≥ 2, the sphere S2n does not admit a symplectic structure. This can be
refined, since from Section 4.6 we known that ωn = ω ∧ · · · ∧ ω cannot be exact either.
Thus if M admits a symplectic structure, then there even must be a class in H2(M),
whose nth power is non-zero in H2n(M). This easily implies that all the lower powers
must be non-zero, too. Hence for M to admit a symplectic structure, H2i(M) must be
non-trivial for all i = 1, . . . , n.

4.9. Homotopy invariance and the Poincaré lemma. The crucial step towards
robustness and topological significance of the de-Rham cohomology is related to the
concept of homotopy, which is central for algebraic topology. In our setting we need a
smooth version of this concept.

Definition 4.9. Let F,G : M → N be two smooth maps between smooth mani-
folds. A homotopy from F to G is a smooth map H : M × I → N , where I ⊂ R is an
open interval containing [0, 1], such that H(x, 0) = F (x) and H(x, 1) = G(x) for each
x ∈M . If such a homotopy exists, we call F and G homotopic.

One shows that being homotopic is an equivalence relation on the set C∞(M,N) of
smooth maps fromM to N . Reflexivity and symmetry of the relation are fairly obvious,
for transitivity, one has to work with cutoff functions. Using those, one shows that one
may always work with homotopies defined onM×R, which even satisfy H(x, t) = F (x)
for all x and t < 1/4 and H(x, t) = G(x) for all x and t > 3/4. Such homotopies can
then be pieced together smoothly without big problems.

The main result on homotopy invariance of de-Rham cohomology then reads as
follows.

Theorem 4.9. Let F,G :M → N be homotopic smooth maps between smooth man-
ifolds. Then F and G induce the same homomorphisms in cohomology, i.e. H∗(F ) =
H∗(G) : H∗(N) → H∗(M).

Sketch of proof. Let I ⊂ R be an open interval containing [0, 1] and for t ∈ I
consider the smooth map jt : M → M × I defined by jt(x) := (x, t). Then it suffices
to construct, for each k, a map h = hk : Ωk(M × I) → Ωk−1(M) such that for each
ω ∈ Ωk(M × I), we get (j1)

∗ω − (j0)
∗ω = hk+1(dω) + dhk(ω). Indeed, for a homotopy

H from F to G, we then get F = H ◦ j0 and G = H ◦ j1 and for τ ∈ Zk(N) we compute
as follows, using dH∗τ = 0.

G∗(τ) = (j1)
∗(H∗τ) = (j0)

∗(H∗τ) + dhk(H
∗τ) = F ∗τ + dhk(H

∗τ),

and hence G#[τ ] = F#[τ ].
Denote by s the obvious coordinate on I, which also defines a coordinate on M × I,

and by ∂s ∈ X(M × I) the corresponding coordinate vector field. Then for ω ∈ Ωk(M ×
I), x ∈ M and t ∈ I, we can form (jt)

∗(i∂sω)(x). This lies in the finite dimensional
vector space Λk−1T ∗

xM of (k − 1)-linear alternating maps (TxM)k−1 → R. One easily

verifies that this depends smoothly on t and then defines (hω)(x) :=
∫ 1

0
(jt)

∗(i∂sω)(x)dt.

Next, one shows that this depends smoothly on x and thus hω ∈ Ωk−1(M) and verifies
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directly that dhω(x) =
∫ 1

0
(jt)

∗(di∂sω)(x)dt, which mainly needs commuting d with the
integral. Using this and Cartan’s magic formula from Proposition 3.7, we obtain

(4.8) hdω(x) + dhω(x) =
∫ 1

0
(jt)

∗(L∂sω)(x)dt
Since the flow of ∂s is just translation in the I-coordinate, one finally concludes that
(jt)

∗(L∂sω)(x) = d
dt
j∗t ω(x), and then the fundamental theorem of calculus implies that

the right hand side of (4.8) gives (j1)
∗ω(x)− (j0)

∗ω(x) which completes the argument.
□

As a corollary, we can compute the cohomology of Rn and of subsets U ⊂ Rn which
are star-shaped in the sense that they contain a point x0 ∈ U such that for each x ∈ U ,
the line-segment {tx0 + (1 − t)x : t ∈ [0, 1]} joining x0 to x is contained in U . This in
turn implies that any closed form on a smooth manifold M is locally exact.

Corollary 4.9 (Lemma of Poincaré). (1) For a star shaped open subset U ⊂ Rn,
we have H0(U) = R and Hk(U) = {0} for k > 0.

(2) For a smooth manifold M , a closed form ω ∈ Zk(M) with k > 0 and any point
x ∈M , there are an open neighborhood V of x ∈M and a form α ∈ Ωk−1(V ) such that
ω|V = dα.

Proof. (1) By assumption U is path connected and thus connected so H0(U) ∼= R.
Let ψ : R → R be a smooth function with values in [0, 1] such that ψ(t) = 0 for all
t ≤ 1/4 and ψ(t) = 1 for all t ≥ 3/4, compare to Section 1.9. Then the smooth map
H : U ×R → Rn defined by H(y, t) := ψ(t)x0 + (1−ψ(t))y has values in U and defines
a homotopy from idU to the constant map q(y) := x0. For k > 0 and ω ∈ Ωk(U) we of
course have q∗ω = 0. But if ω is closed, then by Theorem 4.9, this represents the same
class in Hk(U) as (idU)

∗ω = ω, which proves the first claim.
(2) Take a chart (V, v) for M with x ∈ V such v(V ) ⊂ Rn is an open ball. By

(1), (v−1)∗ω ∈ Zk(v(V )) can be written as dβ for some β ∈ Ωk−1(v(V )) and then
α = v∗β ∈ Ωk−1(M) does the job. □

4.10. De-Rham cohomology and integration. Suppose that M is a compact,
oriented manifold of dimension n. Then from Theorem 4.4 we know that the integral
defines a surjective linear map

∫
M

: Ωn(M) → R. Moreover, by Stokes’s theorem (The-
orem 4.6), the integral of an exact form is always zero. Since on a manifold of dimension
n, any n-form is automatically closed, we see that the integral actually induces a surjec-
tion Hn(M) → R. (This is sometimes called the cohomological integral.) It needs some
effort to show that on a connected, compact oriented manifold M , the cohomological
integral actually is a linear isomorphism. (In fact the proofs in [Michor] and [Lee]
both use some facts about compactly supported cohomology that we will discuss in the
next section.)

Theorem 4.10. Let M be a connected manifold of dimension n. Then Hn(M) ∼=
R if M is compact and oriented (with the isomorphism induced by the integral) and
Hn(M) = {0} if M is either non-compact or non-orientable.

This allows for immediate, rather strong applications: Consider a smooth map F :
M → N between connected compact oriented manifolds of dimension n. Then we obtain
a linear map Hn(F ) : Hn(N) → Hn(M) and both spaces can be canonically identified
with R by Theorem 4.10. Thus Hn(F ) is given by multiplication by a number, which
is called the mapping degree of F and denoted by deg(F ) ∈ R. Explicitly, this can be
described as follows: Choose ω ∈ Ωn(N) such that

∫
N
ω = 1 and then deg(F ) =

∫
M
F ∗ω.
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It is a consequence of Theorem 4.10 that this is well defined: Indeed, for another choice
ω̃ ∈ Ωn(M) with

∫
N
ω̃ = 1, we obtain

∫
N
(ω̃ − ω) = 0, which by Theorem 4.10 implies

that ω̃−ω = dα for some α ∈ Ωn−1(N). But then F ∗ω̃ = F ∗(ω+dα) = F ∗ω+dF ∗α by
Theorem 3.6 and hence

∫
M
F ∗ω̃ =

∫
M
F ∗ω+

∫
M
dα, and

∫
M
dα = 0 by Stokes’s theorem.

Recall from Section 4.4 that a diffeomorphism F : M → N between connected
oriented compact manifolds is either orientation preserving or orientation reversing.
Theorem 4.4 then shows that deg(F ) = 1 if F is orientation preserving and deg(F ) = −1
if F is orientation reversing.

The mapping degree is a rather robust invariant: If F,G : M → N are homotopic,
then Hn(F ) = Hn(G) by Theorem 4.9 and hence deg(F ) = deg(G), so this is stable
under smooth deformations. On the other hand, suppose that F : M → N is not
surjective. Then F (M) ⊂ N is closed by compactness and hence V := N \ F (M) is
a non-empty open subset. Taking an oriented chart (U, u) for N with U ⊂ V , and
ω = φdu1 ∧ · · · ∧ dun for a bump function φ with support contained in U , we obtain∫
N
ω > 0, so multiplying by an appropriate constant we may assume

∫
N
ω = 1. But

then by construction F ∗ω = 0 and hence deg(F ) = 0. Hence we conclude that a
diffeomorphism from a connected compact oriented manifold M (for example on Sn) to
itself can never be homotopic to a map that is not surjective, so in particular it is not
homotopic to a constant map. In particular, this applies to the identity map idM .

In fact, it turns out that deg(F ) always is an integer, which is one of the reasons for
its robustness, but difficult to see from the definition. We can see this nicely assuming
that there is a regular value y ∈ N for F , i.e. a point such that for each x ∈ M with
F (x) = y the tangent map TxF : TxM → TF (x)N is a linear isomorphism. (Using
differential topology, one can prove that the set of such regular values is always dense
in N , but this is beyond the scope of this course.) If we assume that y is a regular
value than each xi ∈ F−1({y}) has an open neighborhood on which F restricts to a
diffeomorphism. Hence F−1({y}) ⊂ M is discrete and hence finite by compactness.
Now for each xi, one puts ϵi = 1 if TxiF is orientation preserving and ϵi = −1 if TxiF is
orientation reversing. Then one easily shows that there are neighborhoods V of y in N
and Ui of xi inM for each i such that Ui∩Uj = ∅ for i ̸= j and such that F |Ui

: Ui → V
is a diffeomorphism for each i. As above, we can find ω ∈ Ωn(N) such that

∫
N
ω = 1

with supp(ω) ⊂ V . Diffeomorphism invariance of the integral then easily implies that
deg(F ) =

∫
M
F ∗ω =

∑
i

∫
Ui
F ∗ω =

∑
i ϵi. Hence one can obtain the mapping degree of

F by counting preimages of a regular value taking into account orientations.
The mapping degree also leads to a nice proof of the hairy-ball theorem that we

have mentioned in Example 2.1. This says that on an even dimensional sphere Sn

any vector field ξ ∈ X(Sn) has at least one zero. The proof is based on the antipodal
map A : Sn → Sn, A(x) = −x. One can construct a volume form ω on Sn from the
volume form on Rn+1 as discussed in Section 4.7 and for this it is easy to see that
A∗ω = (−1)n+1ω. If n is even, then this implies that deg(A) = −1.

Now if ξ : Sn → Rn+1 is any vector field on Sn, then x + ξ(x) ̸= 0 for any x, so we

can define F : Sn → Sn by F (x) := x+ξ(x)
|x+ξ(x)| . Of course, this is homotopic to the identity

map via H(x, t) := x+ψ(t)ξ(x)
|x+ψ(t)ξ(x)| for a cutoff function ψ and hence deg(F ) = 1. But if we

in additon assume that ξ(x) ̸= 0 for all x ∈ Sn, then F (x) ̸= x for all x and then F

is homotopic to the antipodal map A via H(x, t) = t(−x)+(1−t)F (x)
|t(−x)+(1−t)F (x)| (which makes sense

only if F (x) ̸= x). This implies that 1 = deg(F ) = deg(A) which is a contradiction for
even n.
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4.11. Cohomology with compact supports and Poincaré duality. We con-
clude our discussion of cohomology by indicating how some of the ideas discussed so
far can be extended beyond the setting of compact manifolds. At the same time, these
ideas lead to Poincaré duality, which is the most important fact about the cohomology
of manifolds.

The starting point for this is the observation that there is an analog of cohomol-
ogy based on forms with compact support. As in Section 4.6, we write Ωk

c (M) for
the space of k-forms on M with compact support. There we have also noted that
supp(dω) ⊂ supp(ω), so d(Ωk−1

c (M)) ⊂ Ωk
c (M). Hence we can define the kth de-Rham

cohomology with compact support Hk
c (M) as the quotient of ker(d) ⊂ Ωk

c (M) by the
subspace d(Ωk−1

c (M)) and then put H∗
c (M) := ⊕n

k=0H
k
c (M). In the picture of equiva-

lence classes, we consider [ω] for ω ∈ Ωk
c (M) with dω = 0 and [ω] = [ω̃] if and only if

ω̃ = ω + dα for some α ∈ Ωk−1
c (M). So this is more restrictive than ω̃ and ω differing

by an exact form.
From the definition of the wedge product, it follows that ω ∧ τ vanishes in a point x

if one of the two forms vanishes in x. This easily implies that supp(ω ∧ τ) ⊂ supp(ω)∩
supp(τ), so a wedge product of two forms has compact support if at least one of the
factors has compact support. In particular, the wedge product again makes H∗

c (M) into
an an associative, graded commutative algebra.

The situation with pullbacks is less simple and needs a restriction. We call a smooth
map F :M → N proper if for any compact subset K ⊂ N , the preimage F−1(K) ⊂M
is compact. This makes sure that for ω ∈ Ωk

c (N) one gets F ∗ω ∈ Ωk
c (M), and then a

proper smooth map F induces an algebra homomorphism H∗
c (F ) : H

∗
c (N) → H∗

c (M).
This issue also affects the question of homotopy invariance, which we do not discuss in
detail here. There is a notion of proper homotopy of proper smooth maps, see Section
12.5 of [Michor]. By essentially the same proof as for Theorem 4.9, proper homotopic
proper maps induce the same homomorphism in compactly supported cohomology.

Also, H0
c (M) is slightly more subtle that H0(M). Indeed, a locally constant function

f :M → R has compact support if and only if it vanishes on any non-compact connected
component of M . In particular, if M is connected then H0

c (M) = R if M is compact
and H0

c (M) = {0} if M is non-compact. For a disjoint union M = ⊔i∈IMi a form has
compact support if and only if its restriction to each Mi has compact support and only
finitely many of these restrictions are non-zero. This easily implies that Hk

c (⊔i∈IMi) =
⊕i∈IH

k
c (Mi) for each k.

The most important features of compactly supported cohomology come from its
interplay with integration. On an oriented manifoldM of dimension n, we can integrate
compactly supported n-forms and form Theorem 4.4 we know that

∫
M

: Ωn
c (M) → R is

surjective. By Stokes’s theorem (Theorem 4.6), we get
∫
M
dα = 0 for any α ∈ Ωn−1

c (M),
so the integral again factors to a surjective linear map Hn

c (M) → R, the cohomological
integral. (Observe that Stokes’s theorem does not say that the integral of ω ∈ Ωn

c (M)
vanishes if ω is exact. Indeed, by Theorem 4.10 any n-form on a non-compact orientable
n-manifold is exact.) It then turns out that for any connected oriented manifold M of
dimension n, the cohomological integral defines a linear isomorphism Hn

c (M) → R
(which is usually obtained as a very special instance of Poincaré duality as discussed
below). This then shows that the notion of mapping degree extends to proper smooth
maps between connected oriented manifolds of the same dimension.

The ideas about integration apply in a much more general setting, however. Let
M be an oriented manifold of dimension n, and for some k = 0, . . . , n consider forms
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ω ∈ Ωk(M) and τ ∈ Ωn−k
c (M). Then we can form ω ∧ τ and as we have observed

above supp(ω ∧ τ) ⊂ supp(τ) so this lies in Ωn
c (M). Thus in this situation we can

form
∫
M
ω ∧ τ ∈ R. If we assume that τ is closed, then for α ∈ Ωk−1(M) we get

dα ∧ τ = d(α ∧ τ) and α ∧ τ ∈ Ωn−1
c (M). Hence if also ω is closed, then

∫
M
ω ∧ τ

depends only on [ω] ∈ Hk(M). Similarly, if ω is closed then for β ∈ Ωn−k−1
c (M) we get

ω ∧ dβ = (−1)kd(ω ∧ β) and ω ∧ β ∈ Ωn−1
c (M). Thus

∫
M
ω ∧ τ also depends only on

[τ ] ∈ Hn−k
c (M), so we obtain a well defined bilinear map, the Poincaré pairing

(4.9) P : Hk(M)×Hn−k
c (M) → R P([ω], [τ ]) :=

∫
M
ω ∧ τ.

This allows us to formulate the Poincaré duality theorem, which is the most fundamental
result on the topology of manifolds:

Theorem 4.11. On any oriented smooth manifold M of dimension n, the Poincaré
pairing induces linear isomorphisms Hk(M) ∼= (Hn−k

c (M))∗ for each k, so in particular,
it is non-degenerate. If M is compact, then its Betti numbers satisfy bk = bn−k for each
k.

As mentioned above, this in particular shows that dim(Hn
c (M)) = dim(H0(M)),

which is one in the case of connectedM . Since we know that the cohomological integral
defines a surjection Hn

c (M) → R this implies that it is a linear isomorphisms and hence
for ω ∈ Ωn

c (M), we get
∫
M
ω = 0 if and only if there is α ∈ Ωn−1

c (M) such that ω = dα.
Poincaré duality has a number of interesting consequences. First, if M is compact,

then the pairing acts on the ordinary cohomologyH∗(M). Applying it twice, we see that
Hk(M) ∼= (Hn−k(M))∗ ∼= (Hk(M)∗)∗. Since we are talking about algebraic duals here,
being isomorphic to its bidual is only possible for finite-dimensional spaces, so we see
that all cohomologies of a compact oriented manifold are finite dimensional. Next, for
a compact manifold M of even dimension n = 2m, we can consider cohomology in the
middle dimension m. Since m = n−m, the Poincaré pairing defines a non-degenerate
bilinear form on the finite dimensional vector space Hm(M). If m is even (and hence
the dimension of M is divisible by 4), then this form is symmetric and thus has a well
defined signature, which is called the signature of M . This is a fundamental topological
invariant of such manifolds.

There are several other techniques of algebraic topology that can be formulated in
the context of de-Rham cohomology. For example, for a covering of a smooth manifold
M by two open subsets U, V ⊂ M the Mayer–Vietoris sequence relates H∗(M) to
H∗(U), H∗(V ) and H∗(U ∩ V ). This for example allows to compute the cohomologies
of spheres. Formulating the result precisely needs the concept of exact sequences, which
is beyond the scope of this course, see Chapter 17 of [Lee] or Sections 11.6 – 11.10 of
[Michor].
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