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Andreas Čap Cartan connections



Conformal geometry and parabolic geometries
Parabolic contact structures

PACS structures

Starting from the example of conformal geometry, I will outline
several basic features of the theory of parabolic geometries. In
particular, I will emphasize the interplay between geometry
and representation theory that is typical for the field.

The basic examples of parabolic geometries that will be
discussed are parabolic contact structures. This class already
exhibits most of the general features of parabolic geometries
and contains well known structures like CR structures.

In the last part of the talk, I will briefly describe joint work
with T. Salač (Prague) on a relation between parabolic
contact structures and symplectic geometry.

This builds on a class of geometric structures refining almost
conformally symplectic structures and their realization as
symmetry reductions of parabolic contact structures.
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The starting point of conformal geometry is to look for “robust”
aspects of Riemannian geometry. Here it will be more natural to
view a conformal structure as a geometric structure in its own
right. The basic difference between Riemannian and conformal
structures can be seen from a property of their automorphisms.

If f : M → M is an isometry for a Riemannian metric g on M,
then the one-jet of f in a point x ∈ M uniquely determines
the local behavior of f around x .

This is closely related to the existence of a canonical linear
connection on TM (the Levi–Civita connection).

In contrast, if f is just a conformal isometry, then the local
behavior around x is determined by the two-jet in x , but not
by the one-jet in x .

Hence a conformal structure does not determine a canonical
connection on TM.
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The “naive” approach to conformal geometry of working with a
representative metric and then checking how things behave under
rescaling quickly gets unmanageably complicated. But there is a
canonical connection associated to a conformal structure on an
“extended bundle” (two equivalent descriptions).

Cartan connection: One starts from the “homogeneous model”
Sn = G/P, where G := SO(n + 1, 1) and P ⊂ G is the stabilizer
of a null–line (a parabolic subgroup). A conformal structure on Mn

then canonically determines a principal P–bundle G → M and a
Cartan connection ω ∈ Ω1(G, g), which nicely trivializes TG .

Representations of P ∼= CO(n) nRn∗ determine natural vector
bundles, but ω does not induce linear connection on such bundles.
There is an induced linear connection on bundles if one uses
representations of G (restricted to P). This gives rise to tractor
bundles and tractor connections, which equivalently encode the
Cartan bundle and connection.
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Conformal standard tractors

Given (Mn, [g ]), this is the associated bundle T → M for the
representation of P on Rn+2. So this comes with a natural bundle
metric h of signature (n + 1, 1), a distinguished line subbundle
T 1 ⊂ T (isotropic for h) and a canonical linear connection ∇T .
Choosing a metric g in the class, T gets identified with
E [1]⊕ T ∗M[1]⊕ E [−1], and one obtains explicit formulae:

For ĝ = e2Ωg , ̂(σ, µa, ρ) = (σ, µa + Υaσ, ρ−Υbµb − 1
2 ΥbΥbσ),

with Υa = dΩ, the metric h is associated to 2σρ+ µaµa, and
∇Ta (σ, µb, ρ) = (∇aσ − µa,∇aµb + Pabσ + gabρ,∇aρ− Pabµ

b).

Alternatively, one may use the sum together with the conformal
transformation law as defining a bundle T → M. Then one can
directly verify that the above formulae define canonical objects.
(One may then reconstruct (G, ω) as an “adapted frame bundle”
with connection form.)
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The theory of parabolic geometries basically deals with geometric
structures that have a homogeneous model G/P with G any
semisimple Lie group and P ⊂ G any parabolic subgroup. These
underlying structures can be described explicitly from Lie algebraic
data. In particular, one obtains

families of distinguished connections (Weyl structures)

tractor bundles endowed with canonical connections, and a
general description in terms of underlying data

various general constructions for differential operators intrinsic
to the structure (e.g. BGG sequences – representation theory)

natural notions of distinguished curves generalizing conformal
circles and the chains used in CR geometry

several natural constructions relating geometries of different
types (twistor spaces, Fefferman constructions, etc.)
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Let g be a simple Lie algebra, which contains a highest root vector,
let g2 be the highest and g−2 the lowest root space. For a
standard generator E ⊂ [g2, g−2] we get a decomposition into
eigenspaces for adE as g = ⊕2

i=−2gi , so [gi , gj ] ⊂ gi+j . Structure
theory easily implies the following:

The bracket g−1 × g−1 → g−2 is non–degenerate, so
g− = g−2 ⊕ g−1 is a Heisenberg algebra.

g0 is a subalgebra of g acting by derivations on g−, and hence
gets identified with a subalgebra of dergr (g−) ∼= csp(g−1).

The model example is g = su(p + 1, q + 1) for which g−1 inherits a
complex structure and g0 consists of all complex linear maps in
csp(g−1). The case that g itself is a symplectic algebra is
exceptional since then g0 = csp(g−1). This corresponds to contact
projective structures, which are interesting but will not be
discussed here.
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Given a group G with Lie algebra g, define P ⊂ G to be the
stabilizer of the line g2 under the adjoint action. This has Lie
algebra p := ⊕2

i=0gi and is a parabolic subgroup of G . Now g−1

defines a P–invariant subspace in g/p, hence inducing a
G–invariant hyperplane distribution on G/P, which is contact.
Moreover, G/P gets identified with a closed G–orbit in P(g) and
thus is compact.

The subalgebra p+ := g1 ⊕ g2 corresponds to a closed subgroup
P+ ⊂ P, so G0 := P/P+ has Lie algebra g0.

Given a contact manifold (M,H), put Q := TM/H. Then H ⊕ Q
has a natural frame bundle with structure group CSp(2n,R). Thus
the concept of a reduction of structure group of this bundle to G0

makes sense, and this defines a parabolic contact structure of type
(G ,P). It turns out that the corresponding principal G0–bundle
can be canonically extended to a P–bundle and endowed with a
Cartan connection.
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For the model example g = su(p + 1, q + 1) the reduction to G0 is
equivalent to a complex structure J on H, for which L : Λ2H → Q
is Hermitian. Then in each x ∈ M, this is the imaginary part of a
Hermitian form, and we require this to have signature (p, q). So
this is partially integrable almost CR structure.

The other parabolic contact structures admit similar descriptions.
One always has some additional structure on H, say a quaternionic
structure or a decomposition as a tensor product of auxiliary
bundles, which is compatible with L in an appropriate sense.

From the equivalent description via a Cartan geometry, one directly
gets, for example:

families of distinguished connections (c.f. Webster–Tanaka)
fundamental invariants (harmonic curvatures)
canonical curves generalizing Chern–Moser chains
Fefferman’s construction, including relations between tractor
bundles, canonical curves, etc.
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BGG sequences and complexes

Starting with a type (G ,P) of structures, any representation V of
G gives rise to a tractor bundle VM → M over each manifold M
with such a structure. This carries a natural connection ∇V that
can be coupled to the exterior derivative to obtain the twisted
de-Rham sequence (Ω∗(M,VM), dV ) corresponding to V .

Restricting the representation V to g−, there are the Lie algebra
cohomology spaces Hk(g−,V ). These are naturally representations
of G0 that are explicitly described (in representation theory terms)
by Kostant’s theorem.

The construction of BGG sequences realizes the associated bundle
HV

k corresponding to Hk(g−,V ) as a subquotient of ΛkT ∗M⊗VM
and “compresses” the dV to a sequence of higher order invariant
operators between these bundles. On locally flat geometries both
sequences are complexes that compute the same cohomology.
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General parabolic geometries correspond in a similar fashion to
arbitrary gradings g = ⊕k

i=−kgi on semisimple Lie algebras. They
can be equivalently described as Cartan geometries of type (G ,P)
with p = ⊕k

i=0gi or as underlying structures that consist of

A distribution of rank dim(g−1) giving rise to a filtration
{T iM}−ki=−1 with associated graded isomorphic to g−.

A reduction of structure group of the associated graded
gr(TM) to the structure group G0 := P/P+.

For k = 1, one obtains standard G0–structures, for example
conformal structures. It may also happen that G0 is the full
automorphism group of the graded Lie algebra g−. In that case,
the whole geometry is equivalent to the distribution T−1M ⊂ TM.
This includes generic rank k distributions in dimension n for
(k , n) = (2, 5), (3, 6), (4, 7), (4, 8), and (k, k(k+1)

2 ).
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Let us return to a contact grading g = ⊕2
i=−2gi of a simple Lie

algebra g (not of type Cn). This led to a parabolic contact
structure in dimension 2n + 1, where 2n = dim(g−1). Since
g0 ⊂ csp(g−1), this also defines an ordinary G0–structure in
dimension 2n, which has an underlying almost conformally
symplectic structure (a non–degenerate line subbundle in Λ2T ∗M).

Such a PACS structure on M turns out to determine a canonical
linear connection on TM. Its torsion naturally splits into two parts,
one obstructing the ACS structure from being CS. The other part
resembles the harmonic torsion from the parabolic contact case.

For the su–algebras, one obtains a weakening of almost Kähler
structures, with the canonical connection preserving all ingredients.
The explicit description of the other PACS structures is closely
parallel the description of parabolic contact structures.
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Given a parabolic contact structure endowed with a transversal
infinitesimal automorphism of this structure, one can form local
leaf spaces for the corresponding foliation. These inherit a natural
PCS structure. Conversely, it turns out that any PCS structure can
locally be realized (uniquely up to isomorphism) in this way. This
admits an analog in type Cn via conformally Fedosov structures
(which again determine a canonical connection).

For a PCS structure, the canonical connection locally is symplectic.
This relates to special symplectic connections in the sense of
Cahen and Schwachhöfer, a class, which in particular contains all
affine connections with exotic holonomy that preserve a symplectic
form. It turns out that these special symplectic connections are
exactly the distinguished connections of PCS structures that can
locally be realized as reductions of locally flat parabolic contact
structures by a transversal infinitesimal automorphism.
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For a symmetry reduction M̃ → M as above, one obtains a direct
relation between natural vector bundles, and sections of such a
bundle over M naturally form a subspace of sections of the
corresponding bundle over M̃. This easily implies that natural
differential operators for parabolic contact structures can be
“descended” to natural operators on PCS structures.

Since there is a canonical connection for PCS structures,
constructing natural operators is not difficult. However, starting
from a complex upstairs, one obtains a complex downstairs.
Applying this to BGG sequences, one obtain families of differential
complexes on manifolds endowed with special symplectic
connections, in particular on CPn.

In some cases, one may descend relative BGG sequences that are
complexes or subcomplexes in curved BGG sequences, to obtain
natural differential complexes associated in more general
situations, for example on Kähler manifolds.
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