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based on the joint article math.DG/0508534 with V. Souček (Prague)

An almost quaternionic structure on a smooth manifold M gives rise
to a large number of invariant differential operators, i.e. operators
which are intrinsic to this structure.

The machinery of BGG sequences offers a uniform construction for
most of these operators and a calculus relating them to differential
forms with values in auxiliary bundles.

If the almost quaternionic structure is quaternionic (i.e. satsifies an
integrability condition), then we obtain a large number of natural
complexes, many of which are elliptic.
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Andreas Čap (University of Vienna) Quaternionic Complexes Berlin, March 2007 2 / 19



Structure

1 Basic notions and motivation

2 Invariant differential operators

3 Quaternionic complexes
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almost complex and complex structures

“almost complex structure”: J ∈ Γ(L(TM,TM)) such that
J ◦ J = − id

this makes each tangent space into a complex vector space

“complex structure”: almost complex structure J such that there is a
torsion free connection on TM for which J is parallel.

Newlander-Nirenberg theorem: any complex structure comes from a
holomorphic atlas

There are two possible versions of a quaternionic analogue of this concept,
since (in contrast to C) the skew field H of quaternions has many
automorphisms.
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almost quaternionic and quaternionic structures

“almost hypercomplex structure”: two almost complex structures I
and J such that K := I ◦ J = −J ◦ I

“almost quaternionic structure”: rank three subbundle
Q ⊂ L(TM,TM) which locally around each point can be spanned by
smooth sections I , J, and K with the above properties

integrability (“hypercomplex structure” respectively “quaternionic
structure”) is defined as existence of a compatible torsion free
connection

These structures can be equivalently defined as first order G–structures
corresponding to the subgroups GL(n, H) respectively
S(GL(1, H)GL(n, H)) of GL(4n, R). Integrability then is the standard
concept for G–structures.
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Example: The quaternionic projective space HPn carries a quaternionic
structure which is invariant under the natural action of SL(n + 1, H). But
it does not admit an almost hypercomplex structure. It is well known that
HP1 ∼= S4 does not even admit an almost complex structure.

motivation

(1) One of the two maximal irreducible special Riemannian holonomies is
Sp(1)Sp(n) ⊂ SO(4n), corresponding to quaternion–Kähler (qK)
manifolds. These have an underlying quaternionic structure (but not an
underlying complex structure in general).

(2) For n = 1 almost quaternionic structure are equivalent to conformal
structures in dimension 4, and integrability corresponds to self duality. In
many respects, almost quaternionic structures are the “right” higher
dimensional analog of four dimensional conformal structures (e.g. for
Penrose transforms and twistor theory).
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An almost quaternionic manifold (M,Q) carries a G–structure with
structure group G0 := S(GL(1, H)GL(n, H)) ⊂ GL(4n, R). Hence any
representation of G0 gives rise to a natural vector bundle on M, and tensor
bundles may admit a finer decomposition according to the restriction of
the corresponding representation of GL(4n, R) to the subgroup G0.

We can apply this to the bundles of differential forms to obtain

ΛkT ∗M =
⊕

0≤p≤q≤2n;p+q=k

Λp,qT ∗M

This gives rise to a decomposition of the de–Rham complex of the form
(written out for n = 1 and n = 2):
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The components d1,0 : Ωp,q(M) → Ωp+1,q(M) and d0,1 of the exterior
derivative are differential operators intrinsic to an almost quaternionic
structure. To understand more general examples of such operators, we
have to first study the special case HPn.

the homogeneous model

Consider G := SL(n + 1, H), and let P ⊂ G be the stabilizer of a
quaternionic line in Hn+1, so HPn ∼= G/P. Denoting by o = eP ∈ HPn

the base point, we get ToHPn ∼= g/p ∼= Hn. Mapping g ∈ P to To`g

induces a surjection P → G0 = S(GL(1, H)GL(n, H)). In particular, any
representation of G0 canonically extends to P, thus giving rise to a
homogeneous vector bundle on HPn.
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For a homogeneous vector bundle E → HPn, the space Γ(E ) of smooth
sections carries a canonical representation of G (“parabolic induction”).
These are principal series representations of G . A differential operator
intrinsic to the almost quaternionic structure has to define a G–equivariant
map Γ(E ) → Γ(F ). Using a dualization argument, G–equivariant
differential operators are equivalent to homomorphisms of generalized
Verma modules. Using central character and Harish–Chandra’s theorem,
this leads to strong restrictions

Properties of G–equivariant differential operators

Invariant operators occur in patterns which have the form of the
decomposed de–Rham complex

the different patterns are indexed by certain integral weights for g

the G0–representations inducing the bundles in each pattern and the
orders of the operators are algorithmically computable

any irreducible representation of G0 occurs in exactly one position in
one pattern only
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Existence of homomorphisms between generalized Verma modules was
proved in the 1970’s by Bernstein–Gelfand–Gelfand and Lepowsky, so on
the level of HPn one has a fairly complete understanding (in an unusual
equivalent picture) of invariant differential operators.

These proofs are purely combinatorial and even the results are difficult to
translate into the language of differential operators. In joint work with
J. Slovák and V. Souček (improved later by D. Calderbank and
T. Diemer), we gave an independent construction phrased directly in terms
of differential operators. This construction generalizes without changes to
arbitrary almost quaternionic structures using the fact that they can be
described as Cartan geometries, i.e. as “curved analogs” of the
homogeneous space HPn = G/P.
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Andreas Čap (University of Vienna) Quaternionic Complexes Berlin, March 2007 12 / 19



Almost quaternionic structures as Cartan geometries

we have seen that G0 is naturally a quotient of P

the principal G0–bundle G0 → M defining an almost quaternionic
structure canonically extends to a principal P–bundle G → M

the bundle G → M carriers a canonical Cartan connection
ω ∈ Ω1(G, g) generalizing the Maurer–Cartan form on G → G/P

the pair (G, ω) is uniquely determined by the almost quaternionic
structure up to isomorphism

tractor bundles

Hence any representation of P gives rise to a natural vector bundle on
almost quaternionic manifolds. In particular we can use restrictions of
representations of G . The corresponding bundles are called tractor
bundles. These bundles define unusual geometric objects but have the
advantage that they carry canonical linear connections induced by the
Cartan connection ω.
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For a representation V of G let VM be the corresponding tractor bundle
and ∇V the tractor connection. This induces a twisted de–Rham sequence
(Ω∗(M,VM), d∇

V
).

For the Lie algebra p of P we get p = Hn o g0. The infinitesimal
representation of g on V restricts to a representation of the abelian Lie
algebra Hn, so the Lie algebra homology groups Hk(Hn,V ) are defined.

homology differentials are P–equivariant, so homology groups are
P–modules

Hn ⊂ p is invariant under Ad(P) and the corresponding natural
bundle is T ∗M

the complex computing the homology carries over to a sequence of
natural bundle maps on the bundles ΛkT ∗M ⊗ VM of VM–valued
differential forms

by Kostant’s version of the BBW theorem the pointwise homologies
are exactly the bundles in the pattern of differential operators
corresponding to V
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the complex computing the homology carries over to a sequence of
natural bundle maps on the bundles ΛkT ∗M ⊗ VM of VM–valued
differential forms

by Kostant’s version of the BBW theorem the pointwise homologies
are exactly the bundles in the pattern of differential operators
corresponding to V
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Starting from a tractor bundle VM, we have the bundles ΛkT ∗M ⊗ VM of
VM–valued differential forms, which have the (pointwise) homology
bundles Hk(T ∗M,VM) as subquotients.

the BGG construction

Using algebraic tools, one constructs higher order natural operators

Γ(Hk(T ∗M,VM)) → Ωk(M,VM),

which split the tensorial projections. Using these, the covariant exterior
derivatives can be compressed to higher order differential operators

DV : Γ(Hk(T ∗M,VM)) → Γ(Hk+1(T
∗M,VM)),

and decomposing the homology bundles into irreducibles, one arrives at
the patterns of operators.
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For structures locally isomorphic to HPn, the tractor connections are flat,
so the twisted de-Rham sequence is a resolution of the constant sheaf V .
It is then easy to show that also the BGG sequence
(Γ(H∗(T

∗M,VM)),DV ) is a complex which computes the same
cohomology. This can be used to show that in the locally flat case, we
recover the classical BGG resolution.

For general structures, the composition of two covariant exterior
derivatives is given by the action of the curvature of the tractor
connection. Hence also DV ◦ DV 6= 0 in general, but individual
components of the operators still may have trivial composition. For torsion
free (i.e. quaternionic) geometries we were able to deduce an explicit
condition on the representations inducing the two bundles which ensures
vanishing of the composition of two subsequent components of DV .
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Subcomplexes

The weights of the representations inducing the bundles in a BGG pattern
are described in terms of the action of the Weyl group of g. The vanishing
criterion can be applied systematically to show that, for quaternionic
structures, each BGG sequence contains a number of subcomplexes. In the
triangular shape, the composition of any two upwards directed arrows or
any two downwards directed arrows is zero. Explicitly, in the case n = 2,
we have the following subcomplexes in each BGG sequence:
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Ellipticity

A highest weight for g = sl(n + 1, H) is given by 2n non–negative integers
(writing it as a linear combination of fundamental weights). If only the
first and last of these coefficients are nonzero, then we were able to prove
that the subcomplexes along the edges of the triangle are elliptic.
Depending on the choice of representation, these may contain operators of
arbitrarily high order.
A particularly important example is the following

Theorem. (C, 2005) Let V be the adjoint representation g. Then for a
quaternionic manifold (M,Q), the elliptic subcomplex along the left edge
of the triangle can be interpreted as a deformation complex in the category
of quaternionic structures.
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