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This talk reports on joint work with T. Mettler (Uni Distance,
Brig, Switzerland) available as arXiv:2301.03217 and building
on arXiv:1908.10325.

A torsion-free affine connection on a smooth manifold M
gives rise to a split signature metric on T ∗M, called the
Patterson-Walker metric. For Weyl connections of a
torsion-free AHS structure, this construction can be modified
in a universal way to produce almost para-Kähler-Einstein
metrics that depend (up to isomorphism) only on the
underlying AHS-structure.

I will first explain this for projective, conformal and (2,m)
Grassmannian structures.

Then I will give a uniform description and explain the Cartan
geometric origins of the construction.
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Let M be a smooth n-manifold and let ∇ be a torsion-free linear
connection on TM. This also induces a connection on T ∗M and
hence a horizontal subbundle H ⊂ T (T ∗M) which is
complementary to the vertical subbundle V . For x ∈ M and
α ∈ T ∗xM, we can identify Hα with TxM and Vα with T ∗xM.

Viewing the dual pairing as a map TαT
∗M × TαT

∗M and
symmetrizing this, one obtains a pseudo-Riemannian metric h∇ on
T ∗M for which the subbundle V and H are isotropic.

In the setting of 2-dimensional projective structures, M. Dunajski
and T. Mettler proposed a modification of h∇ involving the
Ricci-curvature of ∇ and the tautological one-form on T ∗M. They
showed that together with the canonical symplectic form (slightly
modified if ∇ is not volume preserving), this modification defines a
self-dual almost para-Kähler-Einstein metric on the 4-manifold
T ∗M.
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In a general dimension n consider a connection ∇ with Ricci
curvature Rij and let Pij = 1

n−1R(ij) + 1
n+1R[ij] be its (projective)

Schouten tensor. Denote by τ ∈ Ω1(T ∗M) the tautological
one-form on T ∗M. Define h̃∇ := h∇ − p∗P(ij) − τ ⊗ τ , where
p : T ∗M → M is the projection.

Theorem

The split-signature metric h̃∇ on T ∗M is Einstein. Together with
the two-form −dτ + p∗(P[ij]) (which coincides with the canonical
two-form if ∇ preserves a volume form) it defines an almost
para-Kähler-Einstein metric on T ∗M. The metrics associated to
projectively equivalent connections are isometric.

Observe that the two terms used to modify h∇ are of different
nature. The first term is a pullback and hence constant along the
fibers. The canonical one-form τ is of course homogeneous of
degree one along the fibers of T ∗M, and hence the second term is
homogeneous of degree two along the fibers.
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Next, suppose that (M, g) is a pseudo-Riemannian n-manifold and
that ∇ is a torsion-free Weyl connection for g , i.e. that ∇g is
conformal to g . Let Rij be the Ricci curvature of ∇ and
Pij = 1

n−2R(ij)0
+ 1

nR[ij] + 1
n(n−2)Rgij its conformal Schouten tensor.

The metric g on M induces a natural symmetric
(0

2

)
-tensor field

| |2p∗g on T ∗M, which sends X ,Y ∈ TαT
∗M to

g−1(α, α)g(Tαp(X ),Tαp(Y )). Observe that this is homogeneous
of degree two along the fibers and depends only on the conformal
class of g . Now define h̃∇ := h∇ − p∗P(ij) − τ ⊗ τ + 1

2 | |
2p∗g .

Theorem

The metric h̃∇ on T ∗M is Einstein. Together with the two-form
−dτ + p∗(P[ij]) it defines an almost para-Kähler-Einstein metric on
T ∗M. The metrics associated to different Weyl connections are
isometric.
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There is a parallel story for (2,m) Grassmannian structures with
n = 2m. Basically, these are given by isomorphisms TM ∼= E ∗ ⊗ F
and Λ2E ∗ ∼= ΛmF for auxiliary bundles E ,F → M of rank 2 and m,
respectively. Compatible connections on TM are induced by
connections on E and F , and there is a natural notion of the
Schouten tensor for such connections.

The other part of the modification is more subtle. We get
T ∗M ∼= E ⊗ F ∗, so there is a “composition map” that sends
X ∈ TxM and α ∈ T ∗xM to α ◦ X : Ex → Ex . This leads to an
analog τG ∈ Ω1(T ∗M, L(p∗E , p∗E )) of the tautological one-form
τ . Explicitly, τG (α)(X ) := α ◦ Tαp(X ) and τ = tr(τG ), the
(point-wise) trace of τG . Via composition, we define a symmetric
two-tensor τG ⊗ τG with values in L(p∗E , p∗E ).

The point-wise trace of this defines a symmetric tensor field on
T ∗M and for torsion-free ∇, h̃∇ = h∇ − p∗P(ij) − tr(τG ⊗ τG ) is
an almost para-K.-E. modification of the Patterson-Walker metric.
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Towards a uniform interpretation

Conformal structures and (2,m) (almost) Grassmannian structures
can be described as G0-structures for appropriate subgroups
G0 ⊂ GL(n,R). On the Lie algebra level, these arise via a grading
g = g−1 ⊕ g0 ⊕ g1, where g is simple and the representation of G0

on Rn ∼= g−1 comes from the adjoint action. Also, g1
∼= g∗−1 as a

representation of G0 via the Killing form B of g. For projective
structures there is a similar underlying picture, in which
G0 = GL(n,R) and g = sl(n + 1,R).

This Lie algebraic picture leads to a fundamental tensor field on
M, which is of type

(2
2

)
. This is induced by the map

(Z ,W ,X ,Y ) 7→ 1
2B(W , [[X ,Z ],Y ]) for X ,Y ∈ g−1 and

Z ,W ∈ g1. One immediately verifies that this is symmetric both in
(X ,Y ) and in (Z ,W ), so it induces a tensor field
q ∈ Γ(S2TM ⊗ S2T ∗M).
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One can view the tautological one-form on T ∗M as a “lift” of the
canonical

(1
1

)
-tensor field idTM ∈ Γ(TM ⊗ T ∗M) to a

(0
1

)
-tensor

field on T ∗M, which is homogeneous of degree one along the
fibers. In the same way, the tensor field q on M defines a
symmetric

(0
2

)
-tensor field q̃ on T ∗M. Explicitly, for α ∈ T ∗xM and

X ,Y ∈ TαT
∗M, one defines

q̃(α)(X ,Y ) := q(x)(α, α,Tαp(X ),Tαp(Y )).

In particular, q̃ is always homogeneous of degree two along the
fibers of T ∗M → M. It turns out that in each of the examples
above, the modification of the Patterson-Walker metric is given by
−Symm(P) + q̃.

The Lie algebraic approach also provides a uniform description of
the Schouten tensor, which is closely related to the fundamental
tensor field q as follows.
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Given a
(0

2

)
-tensor field V , one defines a

(1
3

)
-tensor field ∂V with

curvature type symmetries via

Z (∂V (X1,X2)(X3)) = q(Z ,V (X1),X2,X3)− q(Z ,V (X2),X1,X3).

Then the Schouten tensor of a torsion-free compatible connection
with curvature R is the unique

(0
2

)
-tensor P such that R − ∂P has

vanishing Ricci-type contraction.

At this point we have described both ingredients for the
modification of the Patterson-Walker metric in terms of the
G0-structure and the data coming from the grading of the simple
Lie algebra defining the structure. It should then be possible to
directly verify the properties of the modified Patterson-Walker
metric using this Lie algebraic input.

The is a much neater way towards this, which is also how these
metrics originally arose. This is based on the Cartan geometric
description of projective, conformal and Grassmannian structures.
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The G0-structures discussed above are given by a G0-principal
bundle G0 → M. A fundamental fact about these structures is that
there is a canonical extension of the bundle to a principal bundle
p : G → M with structure group P ⊃ G0 that has Lie algebra
g0 ⊕ g1. This bundle can be endowed with a canonical Cartan
connection ω ∈ Ω1(G, g) whose curvature satisfies a normalization
condition that can be expressed in Lie algebraic terms.

Consider A := G/G0
∼= G ×P (P/G0)→ M. Then A→ M is a

natural fiber bundle and the obvious projection G → A is a
principal fiber bundle with structure group G0. The canonical
Cartan connection ω makes this into a Cartan geometry with
homogeneous model G/G0. The decomposition of g by the grading
readily shows that G/G0 is a para-Hermitian symmetric space.

Large parts of this structure on the homogeneous model carry over
to A via the Cartan geometry.
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TA ∼= G ×G0 (g/g0), so TA = L− ⊕ L+, with L± = G ×G0 g±1

L+ ∼= (L−)∗ and the pairing gives rise to h ∈ Γ(S2T ∗A) and
to Ω ∈ Ω2(A) by symmetrizing and alternating

the g0-component of ω is a principal connection on G → A for
which L±, h and Ω are parallel

All this follows from first principles, but understanding the
properties of these structures is much more subtle. It mainly
requires understanding the consequences of normality of ω for the
geometric structures induced on A.

Theorem

the canonical connection on TA is torsion-free iff ω is flat

dΩ = 0 iff the original geometry on M is torsion-free

if the geometry on M is torsion-free, then the split signature
metric h is almost para-K.-E. with fundamental 2-form Ω.
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A as the bundle of Weyl structures

Recall that A = G ×P (P/G0)→ M. By principal bundle theory,
sections of π : A→ M parametrize reductions of p : G → M to the
structure group G0. These are equivalent to G0-equivariant
sections G0 → G, which are known as Weyl-structures and well
understood. In particular, they parametrize the Weyl connections.

One obtains a direct relation between natural bundles over A and
over M, in particular L− = π∗TM and hence L+ ∼= π∗T ∗M. Given
a section s : M → A, one can obtain the corresponding Weyl
connection and its Schouten tensor as pullbacks of objects on A.
In particular, viewed as an element of Ω1(A, L+), the projection
TA→ L+ pulls back to P along s.

To close the circle, we have to relate A→ M to T ∗M. This is the
interpretation on A of the well-known fact that Weyl structures
form an affine space modelled on Ω1(M).
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Proposition

A smooth section s : M → A canonically lifts to an isomorphism
Ψs : T ∗M → A of fiber bundles that sends the zero-section of
T ∗M to s. In particular, a Weyl connection ∇ with section s∇
leads to the almost para-Kähler-Einstein metric (Ψs∇)∗h on T ∗M.

The diffeomorphism Ψs can be made explicit using that
T ∗M = G0×G0 g1. Denoting by σ : G0 → G the section determined
by s, it is induced by (u,Z ) 7→ σ(u) · exp(Z )G0. To compute
(Ψs∇)∗h and (Ψs∇)∗Ω mainly needs computing the pullbacks of
the components of ω in g±1 via the map (u,Z ) 7→ σ(u) · exp(Z ).

This leads to the universal formula (Ψs∇)∗h = h∇ − Symm(P) + q̃,
with P coming from the pullback of the g1 component ω1, while
the double brackets producing q̃ come from computing the
g1-component of ad(expZ ) ◦ ω−1. Specializing to the individual
geometries is then a matter of direct computations.
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