
Review of the BGG construction
The Rumin complex and generalizations

The Rumin complex
of a domain in R3

Andreas Čap
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Many of the complexes that are important in applications
arise as BGG (Berstein-Gelfand-Gelfand) sequences. The most
prominent example here is the fundemantal complex of linear
elasticity (or Calabi complex).

In my talk, I will discuss an instance of the BGG construction,
which in several respects is partciularly simple. It leads to a
complex that computes the de Rham cohomology, but with
smaller spaces than the usual de Rham complex. There is a
geometric structure in the background, but still an infinite
dimensional group of symmetries acts on the complex.

To put things into perspective, I’ll start by reviewing several
aspects of the BGG construction in the beginning of my talk.

If time permits, I will briefly outline generalizations (i.e.
smaller complexes that compute de Rham cohomology) in the
end of the talk.
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I will review here those cases of the BGG construction that have
their origin in representation theory. Moreover, I will restrict to the
case of smooth objects on an open subset U ⊂ Rn and ingnore
versions for manifolds or in lower regularity.
The basic pattern of the construction looks as follows:

1 Consider differential forms on U with values in vector space
V = V1 ⊕ · · · ⊕ VN , so Ωk(U,V ) = ⊕N

i=1Ωk(U,Vi ).

2 Introduce tensorial (point-wise) operations
S : Ωk(U,Vi )→ Ωk+1(U,Vi−1), which are chosen in such a
way that d − S computes the same cohomology as d .

3 Use the operators S to define subspaces Hk ⊂ Ωk(U,V ) and
d and S to define operators D : Hk → Hk+1 such that
(H∗,D) is a complex that computes the same chomology as
(Ω∗(U,V ), d − S).
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A major difficulty is that in general situations finding the “right”
choices for V and S and computing the subspaces Hk and the
operators D requires a substantial amount of representation theory.
The nature of this theory implies that there is a fixed list of cases
for which the construction works, and finding “small variations”
may turn out to be unexpectedly difficult.

The interpretation as V -valued differential forms is misleading,
since the S-operators mix the form-part with the values. For
elasticity on U ⊂ R3, one usually takes V1 = V2 = R3, but one
should actually view them as R3∗ and Λ2R3∗, respectively. A
function U → V2 then can be viewed a 2-form on U and hence a
special (skew-symmetric) instance of a 1-form with values in R3∗.
This defines S : C∞(U,V2)→ Ω1(U,V1).

This is important, since identifying C∞(U,R3∗) with Ω1(R3) uses
the trivialization of the cotangent bundle or equivalently the flat
connection on U coming from R3.
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This trivialization is not preserved by general diffeomorphisms, but
only by restrictions of affine transformations. Hence, although one
starts from de Rham complexes (which are invariant under
diffeomorphisms), the resulting BGG sequence is only invariant
under (restrictions of) affine transformations.

Moreover, the “right” action of affine transformations on the
spaces in question can only be found using the correct geometric
interpretation and looks quite unexpected. For the elasticity
complex, this is discussed in [1] for volume preserving affine
transformations, the general formulae are even more complicated.

The BGG sequences discussed above come in two families. For one
of those, one obtains an action of affine transformations (with
simpler formulae in the volume-preserving case). For the other
family, conformal transformations act, with simpler formulae for
isometries, i.e. restrictions of rigid motions.
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The Rumin complex that I will discuss now does not belong to the
two families discussed above, it is related to a different geometric
structure. From the current perspective, I would like to emphasize
the following aspects:

1 The starting point is the (scalar) de Rham complex on a
domain U ⊂ R3 and the resulting complex will also compute
the de Rham cohomology of U.

2 The S-operators arise in a natural way from choosing a
so-called contact form α on R3. One can view the initial
change from the de Rham complex as “sorting things
differently”, a more conceptual intrepretation will be discussed
later.

3 The resulting complex admits a natural action of the group of
all diffeomorphisms that preserve α up to multiplication by a
nowhere-vanishing function. This group turns out to be
infinite dimensional.
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For U ⊂ R3 open, the de Rham complex can be viewed as

C∞(U,R)
grad−→ C∞(U,R3)

curl−→ C∞(U,R3)
div−→ C∞(U,R).

Via the following identifictaions, these are instances of the exterior
derivative on differential forms:

(f1, f2, f3)↔ f1dx + f2dy + f3dz

(f1, f2, f3)↔ f1dy ∧ dz − f2dx ∧ dz + f3dx ∧ dy

f ↔ fdx ∧ dy ∧ dz

To pass to the Rumin complex, we replace one of the coordinate
forms (here dz) by a contact form α. We use a symmetric choice,
namely α := dz + 1

2xdy −
1
2ydx . This satisfies dα = dx ∧ dy and

hence dα ∧ α = α ∧ dα = vol := dx ∧ dy ∧ dz . Clearly, any 1-form
can be expanded in terms of dx , dy , and α and hence any 2-form
in terms of dy ∧ α, −dx ∧ α, and dα = dx ∧ dy .
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We can simply compute the exerior derivatives in terms of this new
“coframe” {dx , dy , α} to get an isomorphic copy of the de Rham
complex. The spaces in this complex are again C∞(U,R) and
C∞(U,R3) but with different interpretations as differential forms.

This is conveniently encoded by introducing differential operators
∂̃x := ∂x + 1

2y∂z and ∂̃y := ∂y − 1
2x∂z . (Viewed as vector fields,

these span the kernel of α.) Corresponding to the difference
between dz and α, these do not commute, but [∂̃x , ∂̃y ] = −∂z .

This exhibts a first key feature: If ∂̃x f = 0 and ∂̃y f = 0, then
∂z f = 0 and hence df = 0. (This corresponds to the so–called
“Hörmander condition” in analysis.) In fact,

df = ∂x fdx + ∂y fdy + ∂z fdz = ∂̃x fdx + ∂̃y fdy + ∂z f α,

and this is the motivation for the definition of ∂̃x and ∂̃y .
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The exterior derivative from 2-forms to 3-forms is also easily
computed directly:

d(f1dy ∧ α− f2dx ∧ α + f3dα) =
(
∂̃x f1 + ∂̃y f2 + ∂z f3

)
vol.

The main features occur in degree one, with key computation
d(f α) = (∂̃x fdx + ∂̃y fdy + ∂z f α) ∧ α + fdα.
More generally,one computes that d(f1dx + f2dy + f3α) is given by

(∂̃y f3−∂z f2)dy ∧α− (−∂̃x f3 +∂z f1)dx ∧α+ (−∂̃y f1 + ∂̃x f2 + f3)dα,

and the un-differentiated f3 in the last summand is the tensorial
component of d created by the different coframe. Hence

1 If d(f1dx + f2dy + f3α) = 0, then f3 = ∂̃y f1 − ∂̃x f2.

2 If ψ = g1dy ∧ α− g2dx ∧ α + g3dα, then ψ − d(g3α) has
vanishing dα-component.

These two observations directly lead to the definition of the Rumin
complex and to its relation to the de Rham complex.
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L(f1, f2) = (f1, f2, ∂̃y f1 − ∂̃x f2), L̃(g1, g2, g3) = (g1 − ∂̃yg3, g2 + ∂̃xg3).

d =
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∂z 0 −∂̃x
−∂̃y ∂̃x 1

 D =
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x

)

Now dϕ = 0⇒ ϕ = L(π(ϕ)), d ◦ L = i ◦ D, so L and i are a chain map.
The induced map in chomology is an isomorphism in degrees 0 and 1.
Also, i ◦ L̃(g1, g2, g3) = (g1, g2, g3)− dg3α and this easily implies that

one also obtains isomorphisms in degerees 2 and 3.
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Conceptual interpretation

The most relevant structure is the familiy H = {Hx := ker(α(x))}
of planes in the tangent spaces at x ∈ U (“contact structure”).
The condition that α ∧ dα is nowhere vanishing says that these are
as far from tangent planes to embedded surfaces as possible. All
contact structures are locally isomorphic (“Pfaff theorem”).

The two middle spaces in the Rumin complex should be interpreted
as restrictions of 1-forms to H and as 2-forms that vanish if both
their entries are from H. If Φ is a diffeomorphism, such that
Φ∗α = hα with h(x) 6= 0 ∀x , then DΦ(x) maps Hx to HΦ(x).
One shows that the Rumin complex is functorial for such
diffeomorphisms, which form an infinite dimensional group.

Contact structures have a nice interpretation as describing
constrained mechanical systems, for example describing the motion
of a hand truck and of a unicycle.
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Generalizations

Contact forms and contact structures exist in all odd dimensions
and there always is an associated Rumin complex. The ranks of
the involved bundles drop more heavily than for n = 3 (total rank
6 instead of 8), e.g. 20 instead of 32 for n = 5 and 84 instead of
128 for n = 7.

For n = 4, there are so-called Engel distributions of rank 2. These
again are all locally isomorphic and have infinite dimensional
automorphisms. There is a BGG complex with bundles of ranks 1,
2, 2, 2 and 1 (instead of 1, 4, 6, 4 and 1 for de Rham).

In higher dimensions, there are examples of generic distributions
with (rank,dimension)=(2, 5), (3, 6), (4, 7), (4, 8), (n, n(n+1)

2 ), each
of which leads to an associated BGG complex with much smaller
bundles than de Rham. However, these distributions themselves
have local invariants and finite dimensional automorphism groups.
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