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based on recent joint work with A.R. Gover and M. Hammerl,
available as arXiv:1005.2246.

The machinery of BGG sequences gives a construction of a
large number of invariant differential operators associated to a
family of geometric structures called parabolic geometries.

The first operator in each BGG sequence defines a geometric
overdetermined system of PDEs, so existence of solutions for
each of these systems defines an interesting subclass of
geometries.

My talk will be devoted to the study of solutions of such
systems for the simplest example of a parabolic geometry,
namely classical projective structures. This leads to surprising
relations to algebraic geometry and compactifications of
Einstein manifolds. Many of these considerations have analogs
for the other parabolic geometries.
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Conformal BGG equations

The overdetermined systems produced by the machinery of
BGG sequences on conformal structures include the equations
for twistor spinors, the conformal Killing equations on vector
fields, differential forms, and on symmetric tensor fields, and
the equation of almost Einstein scales.
For many of these equations, there are interesting results on
possible zeros (or higher order zeros) of solutions.
Let us discuss the almost Einstein equation in a bit more
detail:

Let gab be a metric in the conformal class and let ∇ be its Levi
Civita connections and Pab its Schouten tensor. Look for functions
σ such that

Almost Einstein equation

∇a∇bσ + Pabσ = fgab for some smooth function f
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It turns out that for any solution σ of this equation the subset
U := {x : σ(x) 6= 0} is open and dense, and the equation is
equivalent to the fact that the rescaling 1

σ2 gab defines an Einstein
metric on U. From this interpretation it follows easily that the
equations satisfies a conformal covariance property.

Via the BGG machinery, solutions to the almost Einstein equation
are in bijective correspondence with sections of the standard
tractor bundle, which are parallel for the canonical linear
connection on this bundle.

Using this correspondence, R. Gover analyzed the possible zeros of
solutions. It turns out that zeros are either isolated or form
embedded hypersurfaces, and locally around these, one obtains
Poinceré–Einstein metrics (i.e. conformal compactifications of
Einstein manifolds). Conversely, any such compactification is
obtained in this way.
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Basic definitions

Let M be a smooth manifold of dimension n ≥ 2.

Two torsion free linear connections ∇ and ∇̂ on the tangent
bundle TM are called projectively equivalent if their difference
is given by ∇̂ξη −∇ξη = Υ(ξ)η + Υ(η)ξ for some
Υ ∈ Ω1(M) and all ξ, η ∈ X(M).

This can be equivalently characterized geometrically as ∇ and
∇̂ having the same geodesics up to parametrization.

Denoting by Rab
c
d the curvature of a connection ∇ on TM,

one puts Rab := Rca
c
b and defines the Rho–tensor and the

Weyl curvature by Pab = −1
(n−1)(n+1) (nRab + Rba) and

Wab
c
d = Rab

c
d + δcaPbd − δcbPad − Pabδ

c
d + Pbaδ

c
d
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Now one defines a projective structure on M as a projective
equivalence class [∇] of torsion free linear connections on TM. It
turns out that all connections in the class have the same
Weyl–curvature, which is the basic invariant of the structure if
n ≥ 3. (For n = 2, the symmetries of W imply its vanishing, the
basic invariant then is the tensor ∇[aPb]c .)

A projective structure on M gives rise to a family of distinguished
unparametrized curves, with one curve through each point in each
direction. It turns out that a local diffeomorphism between two
manifolds with projective structures is a morphism of projective
structures (in the evident sense) if and only if it is compatible with
these families. In this way, projective structures are closely related
to the geometry of systems of second order ODEs.
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The homogeneous model

The basic example of a projective structure is given by projective
space RPn with the family of projective lines as distinguished
curves. Locally on each affine chart, these can be realized as the
geodesics of the flat connection on Rn which describes the
projective class in terms of connections. The group
G := PSL(n + 1,R) acts transitively on RPn by automorphisms of
the projective structure, and it turns out that these are all
automorphisms. Hence we can identify RPn with G/P, where
P ⊂ G is the stabilizer of a line.
It turns out that P ∼= G0 n P+, where P+

∼= Rn∗ is an Abelian
normal subgroup and P/P+ = G0

∼= GL(n,R). In particular, the
natural projection G/P+ → G/P is a principal bundle with
structure group G0. It turns out that this can be naturally
identified with the linear frame bundle of RPn.
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The Cartan description

We want to obtain an analogous description for (M, [∇]).

Let p0 : G0 → M be the linear frame bundle of M, which has
structure group G0 = GL(n,R).

Attach to each point u0 ∈ G0 the values of the connections in
[∇] in the point x = p0(u0), thus defining p : G → M. This
can be made into a principal P–bundle.

The Lie algebra g of G can be identified with Rn ⊕ g0 ⊕ Rn∗

with the last two summands forming the Lie algebra p of P.
Construct a tautological one form ω ∈ Ω1(G,Rn ⊕ g0) from
the soldering form and the connection forms of the
connections in the projective class.

This can be canonically extended to a Cartan connection
ω ∈ Ω1(G, g) which trivializes TG in a P–equivariant way.
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Tensor bundles

Via the adjoint action, g is a representation of P and p ⊂ g is a
P–invariant subspace, so there is a natural P–action on g/p. It
follows directly from the definition of a Cartan connection that, via
ω, the associated bundle G ×P (g/p) can be identified with the
tangent bundle TM.

Forming duals, tensor products, and natural subbundles in there,
we see that any tensor bundle over M is associated to the Cartan
bundle G → M. The Cartan connection ω does not induce linear
connections on general associated vector bundles. On each tensor
bundle one only has the family of preferred linear connections
induced by the connections in the projective class.
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Standard tractors

Let Rn+1 be the standard representation of G , restrict it to P and
put T := G ×P Rn+1, the standard tractor bundle. This contains a
line subbundle T 1 =: E(−1) (coming from the line stabilized by P)
such that T /T 1 ∼= TM(−1) := TM ⊗ E(−1). It turns out that
E(−1) is the bundle of 1

n–densities, and we denote by E(w) the
bundle of (−w

n )–densities. The Cartan connection ω induces a
linear connection ∇T on T .

On RPn, T is trivial, ∇T is flat, T 1 ⊂ T is the tautological
bundle, and the description of T /T 1 just encodes the well known
description of TRPn as L(T 1, T /T 1).

The Cartan bundle G and ω can be recovered from (T , T 1,∇T ) as
an adapted frame bundle.
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The cone description

For projective structures, there is a particularly simple way to
equivalently encode the standard tractor bundle. Let M# be the
frame bundle of E(−1), so π : M# → M is a principal R+–bundle,
and let ζ ∈ X(M#) be the infinitesimal generator of the
R+–action.

M# = G/Q = G ×P (P/Q) for a subgroup Q ⊂ P

ω induces a linear connection ∇# on TM#, whose geodesics
project to the distinguished paths on M

T can be recovered as TM#/R+, where the action is chosen
in such a way that sections of T correspond to vector fields
homogeneous of degree −1

T 1 comes from the vertical bundle and ∇T is induced by ∇#
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Tractor bundles

The dual T ∗ → M of T is the standard cotractor bundle. One
obtains an exact sequence

0→ T ∗M ⊗ E(1)→ T ∗ → E(1)→ 0

Applying tensorial constructions to T and T ∗, one obtains tractor
bundles V → M, which all inherit canonical linear connections
from ∇T . Any such tractor bundle V has a composition series
induced by the composition series of T and T ∗, and we denote by
H0 the canonical quotient of V, which is a tensor bundle.

A tractor bundle V → M corresponds to a tensor bundle V# → M#

and sections correspond to tensor fields which are homogeneous of
appropriate degree. This identification is compatible with the
natural connections on both bundles, so parallel tractor fields on M
correspond to parallel tensor fields on M#.
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For any tractor bundle V → M, one has the tractor connection
∇V . The machinery of BGG–sequences uses this to construct
higher order operators, which are intrinsic to the projective
structure. These operators map between certain tensor bundles,
which are subquotients of the bundles of V–valued differential
forms. We only need a special case:

∇V : Γ(V)→ Ω1(M,V) induces an invariant operator
DV : Γ(H0)→ Γ(H1), where H0 is the canonical quotient of V
and H1 is a certain subquotient of T ∗M ⊗ V
DV(σ) = 0 is an overdetermined system of PDEs, which has
no solutions on generic projective structures

if s ∈ Γ(V) satisfies ∇Vs = 0, then it projects to σ ∈ Γ(H0)
satisfying DV(σ) = 0 (“normal solutions”)
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Normal charts and generalized homogeneous coordinates

Choose a point u0 in M# and a basis {e0, . . . , en} of Tu0M#, such
that e0 = ζ(u0), the infinitesimal generator of the R+–action.

Consider the span of {e1, . . . , en} in Tu0M#. Use the affine
exponential map of ∇# to identify an open neighborhood of
zero with a subset in M# which diffeomorphically projects
onto an open subset U ⊂ M.

Apply the same construction to Rn+1 \ {0} = (RPn)# with u0

the first vector in the standard basis, and all standard basis
vectors for the ei .

This defines an R+–equivariant diffeomorphism Φ from an
invariant open subset of Rn+1 \ {0} to π−1(U) ⊂ M#, which
descends to a diffeomorphism ϕ from an open subset
U ′ ⊂ RPn onto U, which is compatible with distinguished
curves through u0.
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Generalized homogeneous coordinates and normal frames

Pulling back the standard coordinates x i on Rn+1 via Φ one
obtains densities X 0, . . . ,X n+1 ∈ Γ(E(1)) on M (“generalized
homogeneous coordinates”).

Next, transport the tangent vectors e1, . . . , en ∈ Tu0M#

parallely along geodesics in directions spanned by these
vectors.

Then extend e1, . . . , en homogeneous of degree −1 for the
R+–action. Together with e0 = ζ, this defines a frame for
TM# on π−1(U).

This corresponds to a local adapted frame for T , while
{e1, . . . , en} projects to a local frame of TM. This induces
local frames of all tractor and tensor bundles, called normal
frames. On (RPn)#, the normal frame is
{
∑

x i∂i , ∂1, . . . , ∂n}.
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Putting f0 := e0 −
∑n

j=1
X j

X 0 ei and fi = ei for i = 1, . . . , n on

obtains a local frame on π−1(U) which is parallel along horizontal
geodesics through u0. In particular, any parallel section of a tractor
bundle must have constant coordinate functions with respect to
the frame induced by {fi}.
This also holds on RPn, where one in addition knows that any
tractor bundle is trivial, so any element in the distinguished fiber of
a tractor bundle uniquely extends to a parallel section. Passing
back to the frames ei and induced frames of H0, we conclude:

Theorem

For any normal solution σ of a first BGG operator on M, the
coefficients of σ with respect to a local normal frame of the bundle
H0 are pulled back via ϕ to the coefficients of a solution on of the
same BGG operator on RPn. On RPn, these solutions are certain
polynomial systems, which can be described explicitly.
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In particular, this implies that ϕ : U ′ → U restricts to a bijection
between the zero sets of the two solutions, and on RPn this zero
set is an algebraic variety. Moreover, since ϕ is compatible with
certain distinguished curves one can carry over statements about
subsets being totally geodesic, or open subsets being geodesically
complete for some representatives of the projective class from RPn

to M.
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Example 1: Ricci flatness

The first BGG equation corresponding to the standard cotractor
bundle T ∗ is the equation ∇a∇bσ + Pabσ = 0 on σ ∈ Γ(E(1)).
Outside its zero set, a solution σ determines a connection ∇ in the
projective class with Rab = 0.

On RPn, solutions of this equation simply correspond to linear
functionals λ ∈ R(n+1)∗ and the zero set of the corresponding
density is the projective hyperplane corresponding to the kernel of
λ. In particular, this is totally geodesic, and we conclude:

If σ ∈ Γ(E(1)) satisfies ∇a∇bσ + Pabσ = 0, then its zero set is
either empty or a totally geodesic hypersurface of M. On the dense
open subset where σ 6= 0, one obtains a Ricci flat affine connection
in the projective class.
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Example 2: Klein–Einstein structures

The first BGG equation corresponding to S2T ∗ is the equation

∇(a∇b∇c)σ + 4P(ab∇c)σ + 2(∇(aPbc))σ = 0 (∗)

on a density σ ∈ Γ(E(2)). Outside its zeros, σ determines a
connection ∇ in the projective class such that ∇aPbc = 0. If Pab is
non–degenerate, it defines a pseudo–Riemannian metric, for which
∇ is the Levi–Civita connection and which is automatically
Einstein. If M is compact, the closure of such a set can thus be
viewed as a compactification of an Einstein manifold.

On RPn, solutions correspond to symmetric bilinear forms on Rn+1

and in the non–degenerate case, the zero set of the corresponding
density is a quadric in RPn, which canonically inherits a conformal
structure. Outside the zero set, Pab is non–degenerate and
connected components of this open subset are geodesically
complete. Thus we obtain:
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Let σ be a solution of (∗) which corresponds to a non–degenerate
bilinear form on T . Then the zero set of σ is either empty or an
embedded hypersurface, which inherits a conformal structure from
the projective structure on M. On each connected component of
of {x ∈ M : σ(x) 6= 0}, one obtains a pseudo–Riemannian Einstein
metric whose Levi–Civita connection lies in the projective class.

If M is compact, these Einstein metrics are geodesically complete.
Taking the closure of such a component defines a compactification
of the Einstein manifold, in which one adds a boundary at infinity
which carries a conformal structure. This is not a conformal
compactification, however.
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