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University of Vienna
Faculty of Mathematics

DGA conference, Hradec Kralove, July 2022

1supported by the Austrian Science Fund (FWF)
Andreas Čap



This talk reports on joint work with Kaibo Hu (University of
Oxford), arXiv:2203.01300 and in preparation.

The Riemannian deformation complex for the flat metric on a
bounded domain in R3 plays an important role in applied
mathematics under the name “fundamental complex of linear
elasticity”.

This triggered an interest in the BGG construction and led to
several attempts for generalizations with a view towards
applications in numerical analysis.

These need the complexes in low (Sobolev) regularity, and I
will outline how the construction of BGG sequences via
geometry and representation theory can contribute to these
developments.

Our procedure is universal and algorithmic, provided that a
certain algebraic background is given. This background can
usually be derived from representation theory.
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The setup

Recall that for a Riemannian manifold (M, g) the Riemannian
deformation sequence starts as

X(M)
K−→ Γ(S2T ∗M)

R−→ Γ(CM)→ . . .

Here K is the Killing operator, R is the linearized curvature
operator and CM is the bundle of curvature tensors.

This can be obtained as a BGG sequence associated to the
projective structure defined by ∇ = ∇g . The BGG construction
starts from the twisted de-Rham complex associated to the tractor
connection on a tractor bundle VM → M. Fixing g , we get
VM ∼= T ∗M ⊕ Λ2T ∗M.

Let W be the natural bundle induced by a representation W of
O(n), e.g. W = Rn∗ for T ∗M. Then W carries a Levi-Civita
connection ∇, which can be coupled to d to obtain an operation
d∇ on Ω∗(M,WM). These naturally occur as components in
tractor connections, so we can view this as a starting point.
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In the case of an open subset U ⊂ Rn with the flat metric, we can
trivialize WU ∼= U ×W by parallel sections. This identifies
Ωk(U,WU) ∼= Ωk(U)⊗W and d∇ with d ⊗ id. The latter space
is C∞(U,ΛkRn∗ ⊗W), so in particular, it is easy to pass to
Sobolev spaces of forms in this picture.

Take a representation V = ⊕N
i=0Vi of O(n). A simplified version of

BGG can be viewed as starting from (Ω∗(U,VU), d∇) and

1 Modify d∇ by a tensorial term to obtain a complex that
computes the same cohomology.

2 “Remove” the parts of the sequence that get identified by the
tensorial terms, since they cannot contribute to cohomology.

We formulate this in an abstract setting starting with bounded
Hilbert complexes (Z ∗,j , d∗,j) for j = 0, . . . ,N, each of length n.
For step 1, we need bounded operators K = {K i ,j} from which we
construct bounded operators S = {S i ,j} via S = dK − Kd as in
the following diagram:
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· · · d // Z i−1,j d // Z i ,j d // Z i+1,j d // · · ·

· · · d // Z i−1,j+1

K

OO
S

99

d // Z i ,j+1

K

OO
S

99

d // Z i+1,j+1

K

OO

d // · · ·

Define S = dK − Kd and require that KS = SK . Using d2 = 0,
these imply that dS = −Sd , which in turn implies S2 = 0.

Theorem 1

The operator dV := d − S defines a differential on Z ∗ := ⊕jZ
∗,j .

Moreover, F := exp(K ) defines a bounded isomorphism of
complexes from (Z ∗, dV ) to (Z ∗, d) = ⊕j(Z

∗,j , d∗,j).

This completes step 1. For step 2, we will not need the operators
K any more, so we will only assume that we have given bounded
operators S = {S i ,j} such that dS = −Sd and S2 = 0. We have
to make an additional assumption at this stage however, namely
that for each i , j , the range R(S i ,j) is a closed subspace of
Z i+1,j−1. Observe that R(S i ,j) lies in the kernel N (S i+1,j−1).
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Defining the total degree as i + j on Z i ,j , we see that S preserves
the total degree, while d raises it. Hence the “lowest homogeneous
part” of dV is tensorial and we can use this to “reduce” the
complex (smaller spaces, but more complicated operators) without
changing its cohomology.
By assumption S i ,j restricts to a bounded linear isomorphism form
N (S)⊥ ⊂ Z i ,j to R(S) ⊂ Z i+1,j−1 and we denote the bounded
inverses by T . Define Υi ,j ⊂ Z i ,j to be the closed subspace
N (S) ∩R(S)⊥ (homologies of S).

Now Td maps Z i ,j to Z i ,j+1 and hence is nilpotent. Thus we can
define a bounded operator G : Z i ,∗ → Z i ,∗ by

∑∞
k=0(TdV )kT for

each i . Then define A : Υi ,∗ → Z i ,∗ by A := Id−GdV and
D : Υi ,∗ → Υi+1,∗ as D := PdVA. Here we denote by P the
projection onto Υ.
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Properties of the splitting operators A

One verifies explicitly that for α ∈ Υi ,∗ one gets

Aα ∈ R(S)⊥ and PAα = α

dvAα ∈ R(S)⊥

and these two properties characterize the operator A.

Using this characterization and d2
V = 0, one easily verifies that

dV ◦ A = A ◦ D and in turn D ◦ D = 0. Hence (Υ∗,D) is a
complex and A defines a chain map from this complex to (Z ∗, dV ).
Direct arguments then show:

Theorem 2

Under the assumptions on S = {S i ,j} we have imposed, the chain
map A induces an isomorphism in cohomology. In particular, by
Theorem 1, (Υ∗,D) computes the same cohomology as (Z ∗, d).
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Getting examples from representation theory

This starts from Lie algebra gradings g = g−1 ⊕ g0 ⊕ g1 with
o(n) ⊂ g0 and g−1

∼= Rn and g1 = Rn∗. These are available for
g = sl(n + 1,R) (“projective case”) and for g = so(n + 1, 1)
(“conformal case”). An irreducible representation V of g naturally
decomposes as V = ⊕N

j=0Vj such that gi · Vj ⊂ Vi+j .

Now V is a representation of g−1, and this gives rise to a
g0-equivariant Lie algebra cohomology differential
∂ : ΛkRn∗ ⊗ V→ Λk+1Rn∗ ⊗ V which maps the Vi -component to
the Vi−1-component and satisfies ∂ ◦ ∂ = 0.

For U ⊂ Rn open and each i and j , composing with ∂ defines a
tensorial map S : Ωi (U)⊗ Vj → Ωi+1(U)⊗ Vj−1. This of course
extends to Sobolev spaces provided that the regularity of the
source is at least the regularity of the target.
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In all cases that we looked at, the operator S can be written as
dK − Kd for operators K : Ωi (U)⊗ Vj → Ωi (U)⊗ Vj−1. These
are tensorial, but not natural, involving e.g. multiplications by
coordinate functions. They are obtained via transforming the
d-parallel (standard) frame into a dV -parallel frame. Assuming
that U ⊂ Rn is bounded, the operators K also make sense in a
Sobolev setting, provided that the regularity of the source is at
least the regularity of the target.

Fixing q ∈ R and denoting Sobolev spaces by Hs , we have all
ingredients to do step 1 with Z i ,j = Hq−i (U,ΛiRn∗ ⊗ Vj). While
the operators S are bounded in this setting, they don’t have closed
range, since they map Hq−i to Hq−i−1.

Assuming that U has Lipschitz boundary, one can use results on
Sobolev-de-Rham complexes to prove that the inclusion induces an
isomorphism in cohomology for (Z i ,∗, dV ) and (Ẑ i ,∗, dV ) where
Ẑ i ,j := Hq−i−j(U,ΛiRn∗ ⊗ Vj), for which the operators S have
closed range. (But the K ’s are no more available.)
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Hence we can do step 2 and arrive at a Sobolev-BGG complex. The
spaces in this complex can be obtained from explicitly analyzing
N (S i ,j)/R(S i+1,j−1) or via computing Lie algebra cohomology via
Kostant’s theorem. BGG operators defined on Υi ,j can only map
to Υi+1,k with k ≥ j and then the order is k − j + 1, which also
shows that one gets the “right” Sobolev regularity in each case.

Apart from computing the cohomology of Sobolev-BGG complexes,
we get direct applications to inequalities including a new
2-dimensional analog of the conformal Korn inequality and a
construction of bounded Poincaré operators (using available results
for Sobolev-de-Rham complexes).
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Example: Conformal Hessian (standard tractors) in 3d

Put N = 2, V0 = V2 = R, V1 := R3. For (ψ1, ψ2, ψ3) ∈ Ωi (U,V1)
and ω ∈ Ωi (U,V2) define
K (ψ1, ψ2, ψ3) :=

∑
x`ψ` K (ω) := (x1ω, x2ω, x3ω).

Defining S via S = dK − Kd we obtain
S(ψ1, ψ2, ψ3) :=

∑
dx`∧ψ` S(ω) := (dx1∧ω, dx2∧ω, dx3∧ω).

To apply the machinery, we only need to check that
KS(ω) = SK (ω) and obviously both sides give

∑
` x

`dx` ∧ ω.
The pattern of ∂’s has the form

R R3∗ Λ2R3∗ Λ3R3∗

R3

88

R3∗ ⊗ R3

66

Λ2R3∗ ⊗ R3

55

Λ3R3∗ ⊗ R3

R

88

R3∗

66

Λ2R3∗

55

Λ3R3∗
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Example (continued)

This shows that non-zero homologies are R in degrees (0, 0) and
(3, 2) and S2

0R3∗ in degrees (1, 1) and (2, 1). Hence the resulting
Sobolev BGG complex gets the form

Hq(U,R)→ Hq−2(U, S2
0R3∗)→ Hq−3(U, S2

0R3∗)→ Hq−5(U,R)
with operators of order 2, 1 and 2. The first operator is the
tracefree part of the Hessian.

If U is bounded with Lipschitz boundary, then the cohomology of
this complex is given (in any regularity q) by the tensor product of
the de-Rham cohomology H∗(U) with R5.

Andreas Čap


