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CHAPTER 1

Structures on a vector space

The aim of this course is to discuss a general approach to a very broad notion of
“geometric structures” in the setting of differential geometry. The model example of
a geometric structure in this sense is provided by a Riemannian metric on a manifold.
But there are other examples that typically occur already in a course on analysis on
manifolds which are of quite different nature, for example an orientation on a manifold
or a symplectic structure. As a motivation for the further developments, we start
by outlining the fundamental differences between Riemannian metrics and (almost)
symplectic structures. We then switch to the “point-wise” version of a discussion of
geometric structures, which discusses “structures” on a vector space.

Motivation: Riemannian and almost symplectic structures

1.1. Some remarks on diffeomorphisms. As a first step we have to recall how
soft and flexible diffeomorphisms of a manifold M are. Of course, for any smooth
manifold M , the diffeomorphisms Φ : M →M form a group Diff(M) under composition.
Further, for any vector field ξ ∈ X(M) with compact support, we get a globally defined

flow Flξt : M → M for each t ∈ R which is a diffeomorphism with inverse Flξ−t. In
particular, taking the open unit ball Bn

1 ⊂ Rn, we can interpret any smooth function
f : Bn

1 → Rn as a vector field on Bn
1 . Taking a bump function ϕ with support contained

in Bn
1 , which is identically one on a slightly smaller ball Bn

1−ε we can extend ϕf to a
globally defined vector field on Rn with support in Bn

1 . The flow of this vector filed
defines a diffeomorphism on Rn which is the identity outside of Bn

1 . Via local charts we
can transport such diffeomorphisms to any smooth manifold of dimension n or combine
different diffeomorphisms of that type on different balls and so on. This already implies
that, the diffeomorphism group of any manifold has infinite dimension (i.e. cannot be
finite dimensional).

Let us discuss some more explicit examples. Consider the unit circle S1 and let
∂t ∈ X(S1) be the derivative of an arc length parametrization of S1. Choose a finite
collection of points xi ∈ S1 for i = 1, . . . , N which are ordered in an obvious sense. For
each i < N , choose yi between xi and xi+1 and choose yN between xN and x1 and take
any function ϕ : {1, . . . , N} → {±1}. Then we claim that there is a diffeomorphism
f : S1 → S1 such that f(xi) = xi for all i while f(yi) is moved towards xi+1 if ϕ(i) = 1
and towards xi if ϕ(i) = −1. Indeed, we can find a connected open neighborhood Ui of
yi, which does not contain any xj and a bump function hi : S1 → [0,∞) with support

contained in Ui such that hi(yi) = 1. Then we define ξ :=
∑N

i=1 ϕ(i)hi∂t ∈ X(S1). By
construction, this vector field satisfies ξ(xi) = 0 for all i while ξ(yi) is a positive multiple
of ∂t if ϕ(i) = 1 and a negative multiple of ∂t if ϕ(i) = −1. This shows that for any
s > 0, Flξs ∈ Diff(S1) has the required property.

Another typical example of such a construction works on any connected manifold
M of dimension n ≥ 3. Choose any finite number N and points xi, yi ∈ M for each
i = 1, . . . , N such that xi 6= xj and yi 6= yj for i 6= j. Then there is a diffeomorphism

1
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f : M → M such that f(xi) = yi for all i. The idea how to obtain this is as follows.
For each i, one can find a smooth curve ci : (−ε, 1 + ε) → M such that ci(0) = xi and
ci(1) = yi. Since dim(M) > 3 things can be arranged in such a way that the curves ci
have disjoint images. With a bit of differential topology (tubular neighborhoods) one
can find disjoint open neighborhoods Ui of the images of the ci with compact closure
and bump functions hi : M → R with support contained in Ui, which are identically
1 along the image of ci. Then one extends c′i to a vector field ξ̃i defined on Ui and

then hiξ̃i can be extended by zero to a vector field ξi on M , which by construction has
compact support. Then also ξ :=

∑
i ξi has compact support and thus defines a global

flow f := Flξ1 ∈ Diff(M). But by construction, each ci is an integral curve for ξi and
hence for ξ, and thus f(xi) = ci(1) = yi for each i = 1, . . . , N .

1.2. Riemannian metrics. By definition, a Riemannian metric on a smooth man-
ifold M is given by choosing a positive definite inner product gx on the tangent space
TxM for each point x ∈ M . This has to depend smoothly on x, thus defining a

(
0
2

)
-

tensor field g on M . One then calls (M, g) a Riemannian manifold. The diffeomorphisms
f ∈ Diff(M) that are compatible with g in the sense that f ∗g = g are called isometries
of (M, g). Of course, they form a subgroup Isom(M, g) ⊂ Diff(M). The main point we
want to illustrate here is that compatibility with g is an extremely restrictive condition.
This shows up in several different ways, which initially look rather unrelated. Exploring
their relations in a general setting will be a major aim of this course.

A first way to observe this is to look at a model example. By linear algebra, there
is only one positive definite inner product on an n-dimensional vector space up to
isomorphism. Thus we can focus on the example of the standard inner product 〈 , 〉
on Rn. Now if we consider Rn (or rather the affine space underlying Rn) as a smooth
manifold, we get a canonical trivialization of the tangent bundle as TRn ∼= Rn × Rn.
The inverse of this trivialization maps (x, v) to the tangent vector d

dt
|t=0(x + tv) or, in

the picture of derivations, to the directional derivative at x in direction v. Putting the
standard inner product on Rn thus defines a Riemannian metric on Rn, the resulting
Riemannian manifold is usually called the Euclidean space En. One would expect this
to be the simplest and most symmetric Riemannian manifold of dimension n, which
turns out to be the case. Still, its isometry group is quite small.

Proposition 1.2. Let f : En → En be an isometry. Then there is an orthogonal
matrix A ∈ O(n) and a vector b ∈ Rn such that f(x) = Ax + b for all x ∈ Rn. So the
isometries of En are exactly the Euclidean motions, which form a Lie group of dimension
n(n+1)

2
.

Proof. Let f : En → En be a diffeomorphism. Then via the trivialization TEn ∼=
En × Rn from above, the tangent map of f corresponds to (x, v) 7→ (f(x), Df(x)(v)).
Hence the condition that f is an isometry is equivalent to

(1.1) 〈Df(x)(v), Df(x)(w)〉 = 〈v, w〉
for all x ∈ En and v, w ∈ Rn. Equivalently, Df(x) ∈ O(n) ⊂ GL(n,R) for each x ∈ En.
Taking (1.1) for fixed v and w as a function of x and differentiating in direction z ∈ Rn,
we obtain

(1.2) 〈D2f(x)(z, v), Df(x)(w)〉+ 〈Df(x)(v), D2f(x)(z, w)〉 = 0.

Fixing x, the map (z, v, w) 7→ 〈D2f(x)(z, v), Df(x)(w)〉 defines a trilinear map Φ :
(Rn)3 → R and by symmetry of 〈 , 〉, (1.2) exactly says that Φ(z, v, w) = −Φ(z, w, v).
On the other hand, symmetry of the second derivative shows that Φ(z, v, w) = Φ(v, z, w).
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But these two properties algebraically imply that Φ = 0, since we can compute as fol-
lows.

Φ(z, v, w) =− Φ(z, w, v) = −Φ(w, z, v) = Φ(w, v, z)

=Φ(v, w, z) = −Φ(v, z, w) = −Φ(z, v, w).

Since Df(x) is a linear isomorphism, we conclude that D2f(x) = 0 for any x ∈ En. Thus
Df(x) = A for some fixed matrix A ∈ O(n), so the curve c(t) = f(tx) has derivative

c′(t) = Ax for all t. Hence c(1) − c(0) =
∫ 1

0
c′(t)dt = Ax, and putting b := f(0) ∈ Rn,

we get f(x) = Ax+ b as claimed.
Conversely, any such function determines an isometry of En. For f(x) = Ax+ b and

f̃(x) = Ãx+ b̃, we see that (f̃ ◦f)(x) = ÃAx+(Ãb+ b̃). Hence we can identify Isom(En)

with O(n) × Rn, endowed with the multiplication (Ã, b̃) · (A, b) = (ÃA,Ab + b̃), which
is evidently smooth. Thus we obtain a Lie group and the claim on the dimension is
obvious. �

Notice that this in particular implies that isometries of En preserve the structure as
an affine space, i.e. they map affine lines to affine lines and so on. This is not clear in
advance but follows from our discussion below.

The extension of these ideas to general Riemannian manifolds needs some funda-
mental concepts of Riemannian geometry, in particular existence and uniqueness of the
Levi-Civita connection. We discuss this only very briefly here, much more will be done
later. On a Riemannian manifold (M, g), one obtains a canonical bilinear operator
∇ : X(M) × X(M) → X(M). This is written as (ξ, η) 7→ ∇ξη and can be thought of
as defining a “directional derivative” of η in direction ξ. In particular, on En, the Levi-
Civita connection is just the directional derivative of vector fields viewed as Rn-valued
functions.

The Levi-Civita connection in turn leads to geodesics, which form a family of canon-
ical curves on M . Given a point x ∈ M and a tangent vector X ∈ TxM , there is a
unique curve c : I → M in that family such that c(0) = x and c′(0) = X. Part of the
uniqueness here is that I is taken to be a maximal interval containing zero. On En, this
simply gives the affine lines (parametrized with constant speed).

One way to phrase uniqueness of the Levi-Civita connection is that for any isometry
f : M → M of (M, g) and vector fields ξ, η ∈ X(M), one obtains f ∗(∇ξη) = ∇f∗ξf

∗η.
This in turn implies that for any geodesic c for g, also f ◦c is a geodesic. This shows that
an isometry of En has to map straight lines to straight lines and it leads to a general
result on isometries of Riemannian manifolds:

Theorem 1.2. Let (M, g) be a connected Riemannian manifold. Then any isometry
of M is uniquely determined by its value and its tangent map in a single point x ∈ M .
So if f, f̃ ∈ Isom(M) have the property that f(x) = f̃(x) =: y and Txf = Txf̃ : TxM →
TyM , then f = f̃ .

Proof. Suppose that f, f̃ ∈ Isom(M) are arbitrary, and consider the subset N ⊂M

defined by N := {x ∈ M : f(x) = f̃(x), Txf = Txf̃}. Since f and Tf are continuous,
N is evidently closed in M . On the other hand, suppose that x ∈ N . Then there is
an open neighborhood U of x in M such that for each point y ∈ U there is a geodesic
c : I →M such that c(0) = x and c(1) = y. But then f ◦c is a geodesic for g with initial

point f(x) and initial direction Txf(c′(0)). But since x ∈ N , we obtain f̃(x) = f(x) and

Txf̃(c′(0)) = Txf(c′(0)), f̃ ◦ c also is a geodesic with the same initial point and initial

direction as f◦c. Hence f̃◦c = f◦c and in particular f(y) = (f◦c)(1) = (f̃◦c)(1) = f̃(y).
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Thus we conclude that f |U = f̃ |U and since U is open, this implies that Tyf = Tyf̃ for
all y ∈ U . Hence U ⊂ N and thus N is open so if it is non-empty, it has to equal M by
connectedness. �

This says that for isometries of M there are at most n + n(n−1)
2

= n(n+1)
2

“degrees
of freedom”, which gives us a bound on the “dimension” (in a naive sense) of the
isometry group. There actually is a general result that says that the isometry group
of a Riemannian manifold (M, g) always is a Lie group that acts smoothly on M and

then Theorem 1.2 says that the dimension of this Lie group is at most n(n+1)
2

. The
Lie algebra of the isometry group is formed by all complete Killing vector fields on M .
Here a Killing vector field ξ is a vector field such that that

(
0
2

)
-tensor field defined by

(η, ζ) 7→ g(∇ηξ, ζ) is symmetric. This property is equivalent to the fact that any local
flow of ξ is an isometry. Again, we will say more about that (in a much more general
setting) later.

The next crucial ingredient in the study of Riemannian manifolds is also obtained
via the Levi-Civita connection, namely the curvature. The defining properties of the
connection imply that the expression

R(ξ, η)(ζ) := ∇ξ∇ηζ −∇η∇ξζ −∇[ξ,η]ζ,

is linear over smooth functions in all three variables. Thus this defines a
(

1
3

)
-tensor

field R called the Riemann curvature tensor. This evidently defines a local invariant
of a Riemannian manifold (M, g) since the value of R in x ∈ M is determined by the
restriction of g to any open neighborhood U of x in M . Explicit coordinate formulae
for R show that indeed only only needs to know the values and the first and second
partial derivatives in x of the components of g in some coordinate system to determine
the value of R in x.

This readily shows that local coordinates cannot be adapted too well to a Riemann-
ian metric, so one cannot find local coordinates in which a Riemannian metric looks
like some model. The best adaption of this type is provided by so-called (Riemannian)
normal coordinates centered at a point x ∈ M . But these are well adapted only along
geodesics through x.

The curvature also imposes additional restrictions on isometries. From the compat-
ibility of isometries with the Levi-Civita connection observed above it readily follows
that f ∗R = R for any isometry f ∈ Isom(M, g). Most easily, this shows that for
points x, y ∈M such that R(x) = 0 and R(y) 6= 0, there cannot be any isometry f with
f(x) = y. But of course a much finer analysis is possible. If an isometry f with f(x) = y
exists, the trilinear maps R(x) : (TxM)3 → TxM and R(y) : (TyM)3 → TyM have to be
related to each other via the orthogonal linear isomorphism Txf : TxM → TyM . This
is a problem that can be studied using linear algebra and there are obstructions coming
from concepts like rank. Things become a bit complicated since the Riemann curvature
has relatively complicated symmetries, simplifications are obtained by decomposing R
into parts (scalar curvature, Ricci curvature and Weyl curvature) and analyzing these
parts separately. Of course, one can then go beyond a point-wise study to see that
“complicated curvature” obstructs the existence of many isometries.

It can actually be shown that the maximal possible dimension of the isometry group
Isom(M) is only attained if (M, g) has constant sectional curvature, which actually
means that locally (M, g) is isometric to either En, Sn or hyperbolic space of dimension
n. Moreover, generic Riemannian metrics in dimension at least 3 do not admit any local
isometries.
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1.3. Almost symplectic structures. These structures are a skew-symmetric ana-
log of Riemannian metrics, so instead of inner products we consider skew-symmetric
bilinear forms on tangent spaces. It is well known from linear algebra that a skew sym-
metric matrix has to have even rank. This easily implies that on a vector space of odd
dimension, any skew-symmetric bilinear form is degenerate. In turn, one proves that
one any real vector space of even dimension, there is a unique non-degenerate, skew-
symmetric bilinear form up to isomorphism. Since skew symmetric

(
0
2

)
-tensor fields are

just two-forms, we arrive at the following definition.

Definition 1.3. Let M be a smooth manifold of even dimension. Then an almost
symplectic form on M is a two-form ω ∈ Ω2(M) such that for each x ∈M , the bilinear
map ω(x) : TxM × TxM → R is non-degenerate. A symplectic form on M is an almost
symplectic form ω such that dω = 0. One calls (M,ω) an (almost) symplectic manifold.
A symplectomorphism of such a structure then is a diffeomorphism f : M → M such
that f ∗ω = ω.

Observe that by non-degeneracy, for an almost symplectic form ω, ω(x) can be
viewed as defining a linear isomorphism TxM → T ∗xM . The point-wise inverses fit
together to define a

(
2
0

)
-tensor field ω−1, compare with Section 3.8 of [AnaMF]. There

is an induced isomorphism X(M)→ Ω1(M) that sends ξ ∈ X(M) to iξω ∈ Ω1(M), with
inverse similarly described via ω−1. Given an almost symplectic form, one may thus,
as in Riemannian geometry, identify

(
`
k

)
-tensor fields with

(
`′

k′

)
-tensor fields provided

that k + ` = k′ + `′. Still, such structures show completely different behavior than
Riemannian metrics.

Let us start by looking at the model example that is similar to Euclidean space. So
we fix a skew symmetric bilinear map b : V × V → R, where V := R2n and view this
as a two-form ω on the manifold V via the isomorphism TV ∼= V × V . (Similarly to
Euclidean space, one could use affine space of dimension 2n here.) For a diffeomorphism
f : V → V , the condition to be a symplectomorphism of course is that for all x, v, w ∈ V ,
we get b(Df(x)(v), Df(x)(w)) = b(v, w) and differentiating this in x in direction z, we
get

(1.3) 0 = b(D2f(x)(z, v), Df(x)(w)) + b(Df(x)(v), D2f(x)(z, w)).

But because of skew symmetry of b, this now tells us that the trilinear map Φ : V 3 → R
defined by Φ(z, v, w) := b(D2f(x)(z, v), Df(x)(w)) is symmetric both in the pair (z, v)
and in the pair (v, w). But this just means that Φ has to be totally symmetric, so it
leaves a lot of freedom for possible values forD2f(x) given a fixed value ofDf(x). Indeed
one can differentiate equation (1.3) further to obtain restrictions on higher derivatives
of f . But it turns out that even if we fix Dif for i ≤ k, there always is some freedom
for the choice of Dk+1f . This indicates that the situation is very different from the
Riemannian case.

Indeed, we can show that symplectomorphisms can occur in infinite dimensional
families and get some additional information by passing to a general construction which
also provides a a nice interpretation of our model example. Let N be any smooth
manifold of dimension n and put M := T ∗N the cotangent bundle of N , which has
dimension 2n. Then there is a smooth projection π : M → N which is a submersion.
Now a point y ∈M is a linear map λ : Tπ(y)N → R. Hence given ξ ∈ TyM , we can define
α(y)(ξ) := λ(Tyπ · ξ) and this defines the so-called tautological one-form α ∈ Ω1(M).
Now choose local coordinates on U ⊂ N which are traditionally denoted by qi, and
consider the associated coordinate one-forms dqi. Mapping an element in π−1(U) to its
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coefficients with respect to the dqi defines smooth functions pi : π−1(U) → R. Now it
is also traditional to suppress the pullback along π and just view the qi as functions
defined on π−1(U). Together with the pi, they then are the coordinate functions of a
local chart for T ∗N defined on π−1(U). In the same way, one suppresses the pullback
and considers the dqi as one-forms on π−1(U). Then by construction, the coordinate
expression of α is simply given by α =

∑
i pidq

i and thus ω := −dα =
∑

i dq
i∧dpi. Now

one immediately verifies that this has non-degenerate values, while dω = 0 is obvious
from the construction, so ω defines a symplectic form on M = T ∗N .

In particular, doing this for N := Rn, we get M = T ∗N = Rn×Rn∗ ∼= R2n and then
TM = M ×Rn×Rn∗. Starting from the global coordinates qi on Rn, one easily verifies
that ω actually comes from the constant skew symmetric bilinear form b on Rn × Rn∗

defined by b((v, λ), (w, µ)) := λ(w)− µ(v). Hence our model example from above is the
simplest example of the canonical symplectic form on a cotangent bundle.

The “universal” construction of the symplectic structure on cotangent bundles has
an important consequence. Recall that for a local diffeomorphism f : N → P , there is
an induced map T ∗f : T ∗N → T ∗P . For a point x ∈ N and linear map λ : TxN → R one
defines T ∗f(λ) := λ ◦ (Txf)−1 : Tf(x)P → R. This readily implies that π ◦ T ∗f = f ◦ π,
and smoothness of the tangent maps of local inverses to f easily implies that T ∗f :
T ∗N → T ∗P is smooth. Indeed, applying the same construction to local inverses of f ,
one obtains local inverses to T ∗f , so T ∗f is a local diffeomorphism. Now let α ∈ Ω1(T ∗P )
be the tautological one form and take x ∈ N and λ ∈ T ∗N and Xλ ∈ TλT ∗N . Then by
definition we get

((T ∗f)∗α)(λ)(Xλ) = α(T ∗f(λ))(Tλ(T
∗f) ·Xλ) = T ∗f(λ)(T (π ◦ Tλ(T ∗f)) ·Xλ).

But then π ◦ T ∗f = f ◦ π implies that Tπ ◦ T (T ∗f) = Tf ◦ π and hence this equals
T ∗f(λ)(Txf(Tλπ ·Xλ)) = λ(Tλπ ·Xλ). Thus we see that, for any local diffeomorphism
f : N → P , T ∗f pulls back the tautological one-form on T ∗P to the tautological
one-form on T ∗N . Hence we obtain the following results

Proposition 1.3. (1) For any smooth manifold N and any diffeomorphism f :
N → N the induced map T ∗f : T ∗N → T ∗N is a symplectomorphism. Hence groups of
symplectomorphisms can be infinite dimensional.

(2) For any smooth manifold N the symplectic manifold T ∗N is locally isomorphic
to the model example T ∗Rn of symplectic manifolds with n = dim(N).

Proof. (1) For a diffeomorphism f , T ∗f−1 by construction is inverse to T ∗f , so
T ∗f is a diffeomorphism. From above, we know that for the tautological one-form α
on T ∗N , we get (T ∗f)∗α = α. Since ω = −dα, (T ∗f)∗ω = ω readily follows from
compatibility of the exterior derivative with pullbacks.

(2) Given a manifold N and x ∈ N , there of course is a local chart (U, u) for N
with x ∈ U and u(U) = Rn. Then the open subset π−1(U) ⊂ T ∗N can be naturally
identified with T ∗U and from above we know that T ∗(u−1) induces an isomorphism from
the model space T ∗Rn to T ∗U . �

There actually is an improvement to part (2) that is well known under the name
Darboux theorem, see Theorem 22.13 in [Lee]: Given any symplectic manifold (M,ω)
and a point x ∈ M , there is a local chart U for M that contains x with coordinate
functions qi and pi such that ω|U =

∑
i dq

i∧dpi. Hence locally any symplectic structure
on a smooth manifold of dimension 2n is isomorphic to the model structure on T ∗Rn.
So in contrast to Riemannian metrics, there is a nice way to adapt local coordinates to
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a symplectic structure and in particular, symplectic structures cannot have any local
invariants like curvature.

The situation is different for almost symplectic structures, since for an almost sym-
plectic form ω on M , the exterior derivative dω ∈ Ω3(M) defines a local invariant. So
in a way the vanishing of the fundamental local invariant of an almost symplectic form
is part of the definition of a symplectic form. In that sense, one might be tempted to
compare symplectic structures to flat Riemannian metrics, i.e. metrics with vanishing
Riemann curvature tensor. While those do admit canonical coordinates (defined by
local isometries to En), the situation is still fundamentally different in view of the sizes
of the automorphism groups for the two examples.

Structures on a vector space and matrix groups

In both the examples discussed in Sections 1.2 and 1.3 we have defined some structure
on a manifold by endowing each tangent space with some kind of additional data. This
is exactly the general idea of a G-structure. We will next discuss what kind of additional
data are appropriate for this as well as a large number of examples. Basically this is an
issue of linear algebra, but as we shall see soon, we are naturally led to matrix groups
here.

1.4. Examples. (1) An example of an additional structure on a manifold known
from analysis on manifolds is an orientation. This comes from the concept of an ori-
entation on a vector space V of dimension n ≥ 1. Recall that to two ordered bases
B1 and B2 of V one canonically associates a matrix A ∈ GL(n,R) that collects the
coefficients needed to write the elements of B2 as linear combinations of the elements of
B1. Calling the two ordered bases equivalent if det(A) > 0, the set of all bases of V gets
split into two equivalence classes, and an orientation on V is given by selecting one of
these classes. So an orientation comes automatically with a (large) class of distinguished
ordered bases for V .

(2) There are several further examples which admit an immediate description in
terms of a class of distinguished ordered bases. For example, on an n-dimensional space
V , we can consider, for some fixed 0 < k < n, a distinguished k-dimensional subspace
W ⊂ V . Associated to this is the class of all ordered bases for V for which the first k
elements form a basis for W . This generalizes to so-called flags, i.e. sequences of W1 ⊂
W2 ⊂ · · · ⊂ Wj ⊂ V with dim(Wi) = ki for fixed numbers j and 0 < k1 < · · · < kj < n.

Instead of just fixing one subspace W ⊂ V , we can also use a decomposition V =
W1 ⊕ W2 with dim(W1) = k for some fixed k. The corresponding ordered bases are
exactly those which are the union of a basis for W1 and a basis for W2. Of course, also
this generalizes to more than two summands.

(3) From analysis on manifolds you also know the concept of a volume form on a
manifold M of dimension n as a form ν ∈ Ωn(M) such that ν(x) 6= 0 for all x ∈M . The
corresponding concept for a vector space V of dimension n simply is a nonzero element
of ΛnV ∗, i.e. a non-zero alternating n-linear map α : V n → R. Similarly to an inner
product or a non-degenerate skew symmetric bilinear map, such a map is unique up
to isomorphism. This follows readily from the facts that dim(ΛnV ∗) = 1 and that for
f ∈ GL(V ) one gets α ◦ fn = det(f)α, where det(f) can be obtained from any matrix
representation of f .

Observe also that a non-zero element α ∈ ΛnV ∗ determines an orientation on V .
For an ordered basis v1, . . . , vn of V , one has α(v1, . . . , vn) 6= 0 and one defines the basis
to be positively oriented if α(v1, . . . , vn) > 0 and negatively oriented otherwise.
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(4) A nice example of a structure on a vector space is “considering an even dimen-
sional real vector space as a complex vector space”. So let V be a real vector space of
dimension 2n. Then we define a complex structure on V as a linear map J : V → V such
that J ◦ J = − id. Observe that the latter condition implies that det(J)2 = (−1)dim(V ),
so such maps can only exist in even dimensions. Given J , one immediately verifies that
(a+ib)v := av+bJ(v) defines a map C×V → V which together with the given addition
makes V into a complex vector space. This of course implies that V admits a complex
basis making it isomorphic to Cn. This in turn shows that for two such maps J and J̃
on V , there is f ∈ GL(V ) such that J̃ = f ◦ J ◦ f−1, so again there is a unique complex
structure up to isomorphism.

In fact, this example is similar to (3) and to an inner product on V . Indeed, we can
view J as an element of L(V, V ) ∼= V ∗ ⊗ V and hence as a tensor of some fixed “type”
on V .

(5) There are several generalizations of the ideas in (2) and (4). For example,
we can try to “view” a vector space of dimension mn as a tensor product of an n-
dimensional and an m-dimensional space. Again, this can be easily described in terms
of distinguished bases. For V1 ⊗ V2, these are just the bases consisting of the tensor
products of the elements of bases of the two spaces V1 and V2. Similarly, one can work
with L(V1, V2) ∼= V ∗1 ⊗V2, which leads to bases consisting of maps of rank one. Similarly
one can “view” spaces of appropriate dimensions as symmetric or exterior powers of
some smaller dimensional space, which again can be described in terms of an obvious
class of bases.

(6) The examples from Sections 1.2 and 1.3 of course correspond to fixing an inner
product on a vector space respectively a non-degenerate skew symmetric bilinear form
on an even dimensional vector space. The significant differences between these two
examples indicate that a general bilinear form on a vector space should not fall into the
“structures on vector spaces” that we use. The problem here is that such bilinear forms
fall into different classes, i.e. there are invariants that allow us to distinguish bilinear
forms of different type. Indeed, if b : V × V → R is a bilinear form, we can decompose
it as b = bs + ba, where bs is symmetric and ba is skew symmetric. Then both bs and
ba have a well defined rank and bs in addition has a well defined signature, and these
certainly are invariants of b. These just give finitely many possible types, but in general
the situation gets much worse. Assume for example that bs is an inner product on V .
Then there is a unique linear map f : V → V such that ba(v, w) = bs(f(v), w) for all
v, w ∈ V and by construction f is skew symmetric with respect to bs. This means that,
passing to the complexification, f will be diagonalizable and the eigenvalues that occur
are continuously varying invariants of b. So there are infinitely many different types of
bilinear forms.

Observe that bilinear forms on V are in bijective correspondence with linear maps
V → V ∗ (or V ∗ → V ) and non-degenerate bilinear forms correspond to linear iso-
morphisms here. So also prescribing a linear isomorphism V → V ∗ will not define a
structure on V in our sense, since there are different types of such isomorphisms.

1.5. Structures and matrix groups. To arrive at the general definition of what
we mean by a structure on a vector space, it is easier to first think about the “space
of all structures of fixed type”. A basic requirement here is that we can “transport”
structures via linear isomorphisms between vector spaces. In particular, the set of all
structures of some fixed type on a space V should be endowed with an action of the
group GL(V ) of linear isomorphisms V → V . Assuming that the structure is “unique
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up to isomorphism” then exactly means that this action is transitive. Fixing one of the
structures, one obtains an isotropy group G ⊂ GL(V ) and acting on that fixed structure
defines a bijection from the homogeneous space GL(V )/G onto our “set of structures”.

The group GL(V ) is an open subset in the vector space L(V, V ) and thus inherits
a natural topology, which induces a quotient topology on GL(V )/G. This will be
important, since we will want to talk about structures on tangent spaces depending
continuously (or even smoothly) on the base point. Now for GL(V )/G to be Hausdorff,
we obviously need G ⊂ GL(V ) to be a closed subgroup. By [LieGrp][Theorem 1.11],
this implies that G is a Lie subgroup of the Lie group GL(V ) and thus a Lie group.
Identifying V with Rn with n = dim(V ), GL(V ) gets identified with the group GL(n,R)
of invertible n × n-matrices. Thus closed subgroups of GL(V ) are commonly called
matrix groups. Moreover, [LieGrp][Theorem 1.16] shows that GL(V )/G is canonically
a smooth manifold, and the natural left action of GL(V ) on GL(V )/G is smooth.

Thus we arrive at the point of view that a type of structures on a vector space V
is described by a homogeneous space of GL(V ) or, after choosing one of the structures
and thus a base-point in the homogeneous space, by a closed subgroup of GL(V ).
The dependence on the base point is easy to understand using general facts about
group actions: For two points in an orbit of a group action, it is well known that the
corresponding isotropy groups are conjugate, so a different choice of base point replaces
G by a conjugate subgroup of GL(V ).

Example 1.5. It is easy to recast the examples we have discussed before in this
language.

(0) The natural action of GL(V ) on bilinear forms on V is given by

(f · b)(v, w) := b(f−1(v), f−1(w))

for a bilinear form b : V × V → R and v, w ∈ V . Linear algebra shows that this action
is transitive on the subset of symmetric bilinear forms that are positive definite and on
the subset of skew symmetric bilinear forms which are non-degenerate. In the first case,
the stabilizer of b is just the orthogonal group O(b) ⊂ GL(V ), which is clearly closed.
In particular, for the model example (Rn, 〈 , 〉), we simply get O(n) ⊂ GL(n,R) and
the resulting interpretation of GL(n,R)/O(n) as the space of all inner products on Rn.

If b is non-degenerate and skew symmetric (and hence dim(V ) is even) the stabilizer,
which again is obviously closed, is commonly called the symplectic group determined
by b and denoted by Sp(b) ⊂ GL(V ). For the model case of R2n one obtains a group
called Sp(2n,R) ⊂ GL(2n,R) and the corresponding homogeneous space of all non-
degenerate, skew symmetric bilinear forms on R2n.

(1) The action of f ∈ GL(V ) on orientations maps the orientation represented by an
ordered basis v1, . . . , vn to the orientation determined by f(v1), . . . , f(vn). This is easily
seen to be well defined and the stabilizer of either of the two possible orientations is the
subgroup GL+(V ) ⊂ GL(V ) consisting of all f such that det(f) > 0. The homogeneous
space GL(V )/GL+(V ) can be identifies with the two-point sect {±1} with f acting by
multiplication with the sign of det(f).

(2) For a vector space V and k < n := dim(V ) let Gr(k, V ) be the set of k-
dimensional subspaces of V . To obtain an action of GL(V ) on Gr(k, V ), we can either
proceed via distinguished bases similarly as in (1). More easily, we just put f ·W :=
f(W ), the image of W under f , and then linear algebra shows that this action is
transitive. For the model example Rk ⊂ Rn the stabilizer is formed by the invertible

matrices with block form

(
A B
0 C

)
with blocks of sizes k and n−k. This clearly is closed
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and the diagonal blocks A and C have to be invertible. This realizes Gr(k,Rn) as a
homogeneous space and thus as a smooth manifold. For more general flags as discussed
in Example (2) in Section 1.4, on obtains an analogous description via matrices that are
block-upper-triangular for finer block decompositions. This leads to realizations of the
so called flag manifolds, i.e. the spaces of flags of some fixed type in Rn, as homogeneous
spaces of GL(n,R).

(3) For multilinear alternating forms, the action of f ∈ GL(V ) is again given by
(f · α)(v1, . . . , vn) := α(f−1(v1), . . . , f−1(vn)). Linear Algebra then shows that f · α =
det(f−1)α, so the stabilizer of any non-zero α is the subgroup SL(V ) ⊂ GL(V ). In
particular, the homogeneous space GL(V )/SL(V ) can be identified with the space of
non-zero n-linear alternating maps V n → R. The fact that a choice of any non-zero
map α determines an orientation on V as observed in Section 1.4 is reflected in this
picture by the fact that SL(V ) ⊂ GL+(V ).

(4) The natural action of f ∈ GL(V ) on L(V, V ) is given by f · h := f ◦ h ◦ f−1,
which shows that the stabilizer of h simply is formed by those f ∈ GL(V ) which
satisfy f ◦ h = h ◦ f . Of course, this action has many orbits (determined essentially
by the real version of Jordan normal forms), but as discussed in Section 1.4 above,
the maps J such that J2 = − idV (which exist only if dim(V ) is even) form a single
orbit. To obtain a model example, we take Cn viewed as the real vector space R2n

with J(z) = iz. Then A ∈ GL(2n,R) commutes with J if and only if A is complex
linear and thus lies in GL(n,C). In matrices, this means that decomposing the real

2n × 2n-matrix A into blocks of size 2 × 2, any such block is of the form

(
u −v
v u

)
.

Hence GL(n,C) ⊂ GL(2n,R) is a closed subgroup and the corresponding homogeneous
space can be identified with the space of all complex structures on R2n.

(5) In the situations discussed in Example (5) of Section 1.4 the easiest way is to
directly describe the corresponding subgroup. Let us first do this in the situation of
linear maps, and thus consider the space L(V,W ) for finite dimensional vector spaces V
and W . To (f, g) ∈ GL(V )×GL(W ) one associates a linear map L(V,W )→ L(V,W )
by h 7→ g ◦ h ◦ f−1. Clearly (f−1, g−1) induces an inverse to this map, so we actually
obtain a homomorphism GL(V )×GL(W )→ GL(L(V,W )). It turns out that image of
this homomorphism is a closed subgroup G ⊂ GL(L(V,W )), so it can be viewed as an
isotropy subgroup in the above sense:

The key to this is an alternative characterization of the image. This is based on the
subset C ⊂ L(V,W ) consisting of all linear maps of rank 1. Linear algebra immediately
implies that for (f, g) ∈ G and h ∈ C we get g◦h◦f−1 ∈ C. Conversely, one shows that a
map F ∈ GL(L(V,W )) that has the property that F (h) ∈ C for any h ∈ C must actually
be contained in G. Passing to matrices, rank one can be characterized by vanishing of
the determinants of all 2×2-minors of a matrix, so C ⊂ L(V,W ) is a closed subset. But
then continuity of the evaluation map GL(L(V,W ))× L(V,W ) → L(V,W ) that sends
(F, h) to F (h) shows that for fixed h ∈ C the set {F ∈ GL(L(V,W )) : F (h) ∈ C} is
closed, too. Since G is the intersection of these sets over all h ∈ C, it is a closed subset
of GL(L(V,W )).

Similar arguments apply to V ⊗W , where to (f, g) ∈ GL(V ) × GL(W ), one asso-
ciates the map f ⊗ g defined by (f ⊗ g)(v ⊗ w) := f(v) ⊗ g(w). Again, this defines a
homomorphism GL(V ) × GL(W ) → GL(V ⊗W ) whose image G is the relevant sub-
group in this case. The proof that G is closed is similar as before, here it is based on
the subset C := {v ⊗ w : v ∈ V,w ∈ W} ⊂ V ⊗W of decomposable tensors.
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1.6. G-structures on vector spaces. We can take these ideas even further and
define a type of structure on vector spaces (of a fixed dimension n) by fixing a subgroup
G0 ⊂ GL(V0) for a vector space V0 with dim(V0) = n. The idea is that we interpret
this a having a “model structure” on V0 which is preserved by a linear isomorphism
f : V0 → V0 if and only if f ∈ G0. The general principles from Section 1.5 then imply
that we should be able to realize any structure of that type on an n-dimensional vector
space V by a linear isomorphism ϕ : V0 → V . Of course, this linear isomorphism should
not be unique, for example, for any f ∈ G0, ϕ ◦ f : V0 → V should induce the same
structure on V . This however is the only freedom we should allow: If ψ : V0 → V is
another linear isomorphism, then f := ϕ−1 ◦ ψ : V0 → V0 is a linear isomorphism and
if ψ induces the same structure on V as ϕ, the this linear isomorphism should preserve
the model structure and hence lie in G0. But this shows that ψ = ϕ◦f for some f ∈ G0.
This motivates the following definition:

Definition 1.6. Let G0 ⊂ GL(V0) be a closed subgroup and put n := dim(V0).
Then a G0–structure on an n-dimensional vector space V is given by a set F ⊂ L(V0, V )
of linear isomorphisms ϕ : V0 → V such that for one (or equivalently any) ϕ0 ∈ F the
map G0 → F defined by f 7→ ϕ0 ◦ f is bijective.

The class F in this definition can be identified with G0 after the choice of a base-
point. Observe, however, that F does not carry a natural group structure. This should
be compared to the notion of an affine space modelled on a vector space. The most
natural point of view here is that we have got a right action F × G0 → F , which is
transitive and free, i.e. each point has trivial isotropy group. Such an object is sometimes
called a principal homogeneous space of G0. The connection of this point of view to
what we did in Section 1.5 is easy: Given a G0–structure F on V , we can take ϕ ∈ F .
Then f 7→ ϕ ◦ f ◦ϕ−1 defines an isomorphism ϕ∗ : GL(V0)→ GL(V ) of Lie groups and
hence G := ϕ∗(G0) is a closed subgroup of GL(V ). Evidently, replacing ϕ by ϕ ◦ g for
g ∈ G0 does not change the resulting subgroup G, so it depends only on F .

The concept of an “underlying structure” or a “weaker structure” has a nice in-
terpretation in this approach. Recall from Examples 1.4 and 1.5 that the choice of a
non-zero element α ∈ ΛnV ∗ for an n-dimensional vector space V also defines an orienta-
tion on V and that this is reflected in the isotropy groups via SL(V ) ⊂ GL+(V ). Now
suppose in general that we have closed subgroups G0 ⊂ G̃0 ⊂ GL(V0) with dim(V0) = n
and that F is a G0-structure on an n-dimensional vector space V . Then we define a
set F̃ of linear automorphisms V0 → V as F̃ := {ϕ ◦ f̃ : ϕ ∈ F , f̃ ∈ G̃0}. Using that
G0 ⊂ G̃0, one immediately verifies that this indeed defines a G̃0-structure on V , which
we can view as the G̃0-structure underlying the G0-structure F .

This occurs rather frequently, say in the fact that viewing a complex linear auto-
morphism of Cn as a real linear automorphism of R2n, it always has positive determi-
nant. Alternatively, GL(n,C) is connected, so it has to be contained in GL+(2n,R) ⊂
GL(2n,R). Hence also a complex structure on a real vector space V of dimension 2n
defines an orientation on V . Similarly, this applies to a symplectic structure, and so on.

Our definition of a G0–structure nicely connects to the point of view of distinguished
(ordered) bases that we have met already. To have this for G0–structures with G0 ⊂
GL(V0), we only need one fixed basis B for V0 that is compatible with our model
structure. This will usually be implemented in such a way that V0 is a space that has
a “standard basis” (for example Rn or Rk ⊗ R`) and the group G0 is chosen in such
a way that this standard basis is compatible with the model structure. For a linear
isomorphism ϕ : V0 → V the images of our basis vectors form a basis f(B) of V . Hence
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for a G0–structure F on V , the corresponding set of distinguished basis is then the set
of all ϕ(B) for ϕ ∈ F .

The different points of view introduced here fit together very nicely. For example,
an inner product b on an n-dimensional vector space V defines an O(n)-structure by

F := {ϕ ∈ L(Rn, V ) : ∀x, y ∈ Rn : b(ϕ(x), ϕ(y)) = 〈x, y〉}.
Observe that is suffices to check the condition in the definition of F for all pairs of
elements of a basis of Rn. Hence ϕ ∈ F if and only if ϕ maps the standard basis of Rn

to a basis which is orthonormal for b, and the distinguished bases obtained from F are
exactly the orthonormal bases. Conversely, given an O(n)-structure F on V , we can
take ϕ ∈ F and define an inner product on V by b(v, w) := 〈ϕ−1(v), ϕ−1(w)〉. Since any
other element of F is of the form ϕ ◦ f for f ∈ O(n), they all lead to the same inner
product on V .



CHAPTER 2

Structures on manifolds

Having an appropriate notion of a structure on a vector space, we can now follow
our program of defining a corresponding structure on a manifold via putting a structure
on each tangent space. This should be done in such a way that the structure depends
smoothly on the base point. It will be relatively easy to set this up via an alternative
description of the tangent bundle via the so-called linear frame bundle. To do this,
we first have to introduce the language of fiber bundles, which is fundamental in many
areas of differential geometry.

Bundles

2.1. Fiber bundles. Recall that the tangent bundle TM of an n-dimensional man-
ifold locally “looks like” a product of the manifold with the vector space Rn. General-
izing this idea leads to the general concept of a fiber bundle.

Definition 2.1. (1) Let M and S be smooth manifolds. A fiber bundle over M
with standard fiber S is given by a smooth manifold E (the total space of the bundle)
and a smooth map p : E →M (the bundle projection) such that for each x ∈M there is
an open subset U ⊂M with x ∈ U and a diffeomorphism ϕ : p−1(U)→ U×S such that
pr1 ◦ϕ = p. For a point x ∈M , the fiber of E over x is the subset Ex := p−1({x}) ⊂ E.

Such a diffeomorphism ϕ is called a fiber bundle chart for E.
(2) A section of a fiber bundle p : E → M is a smooth map s : M → E such that

p ◦ s = idM . A local section of p : E → M defined on an open subset U ⊂ M is a
smooth map s : U → E such that p ◦ s = idU .

(3) A morphism between two fiber bundles p : E → M and p̃ : Ẽ → M̃ is a
smooth map F : E → Ẽ, which maps fibers to fibers. This means that there is a map
f : M → M̃ (the base map of F ) such that p̃◦F = f ◦p, so F (Ex) ⊂ Ẽf(x). A morphism

F : E → Ẽ is called an isomorphism of fiber bundles if there is a morphism G : Ẽ → E
such that G ◦ F = idE and F ◦G = idẼ.

Observe that any fiber bundle p : E →M does admit local smooth sections. Indeed
for a fiber bundle chart ϕ : p−1(U) → U × S and any smooth function f : U → S,
s(x) := ϕ−1(x, f(x)) is a local smooth section defined on U . It is even true that for any
x ∈M and any y ∈ Ex, there is a local section s such that s(x) = y. Taking this section
and differentiating the equation p ◦ s = id in x, we conclude that Typ : TyE → TxM is
surjective, so p is a surjective submersion. This in turn implies that each of the fibers
Ex ⊂ E is a smooth submanifold of E that is diffeomorphic to S via the restriction of any
fiber bundle chart. Moreover, for a morphism F : E → Ẽ with base map f : M → M̃ ,
p̃ ◦ F = f ◦ p shows that f ◦ p is smooth which implies smoothness of f . In particular,
both an isomorphism of fiber bundles and its base map are diffeomorphisms.

Observe that at the current stage there is no need to impose a compatibility condition
between fiber bundle charts, this is already being taken care of by the requirement
that any fiber bundle chart is a diffeomorphism. There is an obvious analog of the a
chart change, however, which is usually referred to as transition functions : Suppose

13
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that ϕα : p−1(Uα) : Uα × S and ϕβ : p−1(Uβ) → Uβ × S are fiber bundle charts
for p : E → M such that Uαβ = Uα ∩ Uβ 6= ∅. Then both ϕα and ϕβ restrict to
diffeomorphism p−1(Uαβ) → Uαβ × S and ϕα ◦ ϕ−1

β : Uαβ × S → Uαβ × S must be of
the form (x, z) 7→ (x, ϕαβ(x, z)) for a smooth function ϕαβ : Uαβ × S → S which has
the property that for each x ∈ Uαβ, the map z 7→ ϕαβ(x, z) is a diffeomorphism S → S.
We will soon require these transition functions to have a special form to define special
classes of fiber bundles.

Example 2.1. (1) For arbitrary manifolds M and S, pr1 : M × S → M is a fiber
bundle with standard fiber S. A fiber bundle p : E → M is called trivial if it is
isomorphic to such a product bundle. By definition, any fiber bundle therefore is locally
trivial and therefore fiber bundle charts are also called local trivializations.

(2) For a smooth manifold M of dimension n, the tangent bundle p : TM →M is a
fiber bundle with fiber Rn. Indeed, for a local chart (U, u) on M , Tu : p−1(U)→ u(U)×
Rn is a diffeomorphism with pr1 ◦Tu = u◦p. Thus (u−1× idRn)◦Tu : p−1(U)→ U×Rn

is a vector bundle chart. Observe that the transition functions between two such fiber
bundle charts have the form (x, v) 7→ (x, (Txuα ◦ (Txuβ)−1)(v)), so these are linear in
the second variable.

If G is a Lie group, the usual left trivialization TG → G × g shows that the fiber
bundle TG is trivial. However, the hairy ball theorem shows that TS2 cannot be
isomorphic to S2 × R2, so tangent bundles are non-trivial in general.

(3) Let G be a Lie group, H ⊂ G a closed subgroup and G/H the corresponding
homogeneous space. Then we claim that the canonical projection p : G → G/H is
a smooth fiber bundle with fiber H. Indeed, in the standard proof that G/H is a
smooth manifold (see e.g. Theorem 1.16 in [LieGrp]), one actually constructs an open
neighborhood U of eH in G/H and a smooth map σ : U → G such that (x, h) 7→ σ(x)h
is a diffeomorphism U × H → p−1(U) and p(σ(x)h) = x. Hence its inverse is a fiber
bundle chart around eH. For g ∈ G, let `g : G/H → G/H be the diffeomorphism
defined by `g(g̃H) = gg̃H. Then one puts Ug := `g(U) and defines σg : Ug → G
by σg(y) = gσ(`g−1(y)), which in the same way leads to a fiber bundle chart around
gH. Observe that for y ∈ Ug ∩ Ug̃, we obtain σg(y)H = σg̃(y)H and thus ψ(y) :=
σg̃(y)−1σg(y) ∈ H. Of course, this defines a smooth function ψ : Ug ∩Ug̃ → H such that
σg(y)h = σg̃(y)(ψ(y)h). Hence the transition function between the two corresponding
fiber bundle chart has the form (y, h) 7→ (y, ψ(y)h) for a smooth function ψ with values
in H.

(4) There are various constructions with fiber bundles. For example if pi : Ei →Mi

is a fiber bundle with typical fiber Si for i = 1, 2, then we can consider p1 × p2 :
E1 × E2 → M1 ×M2. One immediately verifies that fiber bundle charts of the factors
can be combined to fiber bundle charts on the product, so this is a fiber bundle with
typical fiber S1×S2. For bundles over the same base, there is a simple variation of this
construction. Given pi : Ei → M , we define the fibered product E1 ×M E2 ⊂ E1 × E2

as the set {(u1, u2) : p1(u1) = p2(u2)}. Putting p(u1, u2) := p1(u1) = p2(u2) we obtain a
map p : E1×ME2 →M . Now we can take local fiber bundle charts for the factors defined
over the same open subset U ⊂M , i.e. ϕ1 : p−1

1 (U)→ U×S1 and ϕ2 : p−1
2 (U)→ U×S2

and the product chart which maps (p1×p2)−1(U) to U×U×S1×S2. Now by construction
(p1× p2)−1(U)∩ (E1×M E2) = p−1(U) and ϕ1×ϕ2 restricts to a bijection from p−1(U)
onto the subset of U ×U ×S1×S2 consisting of all points of the form (x, x, z1, z2) with
x ∈ U and zi ∈ Si. This can be used to construct submanifold charts, so E1×M E2 is a
smooth submanifold in E1 ×E2 and the restriction of ϕ1 × ϕ2 to this can be viewed as
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a fiber bundle chart (forgetting the redundant component). Thus p : E1 ×M E2 → M
is a smooth fiber bundle with typical fiber S1 × S2.

2.2. Constructing fiber bundles via atlases. Defining manifolds, one usually
starts with a topological space and then defines charts to be homeomorphisms. Alter-
natively, it is also possible to also define the topology via charts, see Lemma 1.6 of
[AnaMF]. A similar approach works for fiber bundles:

Lemma 2.2. For smooth manifolds M and S, let E be a set and p : E → M a set
map. Suppose that there is an open covering {Uα : α ∈ I} of M together with bijective
maps ϕα : p−1(Uα)→ Uα×S such that pr1 ◦ϕα = p|p−1(Uα). Suppose further that for each

α, β ∈ I such that Uαβ := Uα ∩ Uβ 6= ∅ the map (ϕα ◦ ϕ−1
β )|Uαβ×S : Uαβ × S → Uαβ × S

is a diffeomorphism.
Then E can be uniquely made into a smooth manifold in such a way that {(Uα, ϕα)}

is a fiber bundle atlas.

Sketch of proof. Starting from a fixed atlas A for M , we can consider the inter-
sections of the domains of the charts in A with the sets Uα and then pass to a countable
subcovering of M . Since fiber bundle charts can clearly be restricted to open subsets of
their domains, we may assume that we start from a countable atlas {(Vi, vi)} for M and
from fiber bundle charts ϕi : p−1(Vi) → Vi × S such that each Vi is contained in some
Uα and ϕi is the restriction of ϕα to p−1(Vi) ⊂ p−1(Uα). Observe that by construction
this implies that also ϕi1 ◦ (ϕi2)

−1 is a diffeomorphism from (Vi1 ∩ Vi2)× S to itself.
Next, let {(Wj, wj)} be a countable atlas for S and define U(i,j) := ϕ−1

i (Vi ×Wj) ⊂
E and u(i,j) := (vi × wj) ◦ ϕi|U(i,j)

. By construction each u(i,j) is a bijection from

U(i,j) onto the open subset vi(Vi) × wj(Wj) of RN , where N = dim(M) + dim(S).
Assuming that we have indices such that U(i,j) ∩ U(i′,j′) 6= ∅, we must have Vii′ =
Vi ∩ Vi′ 6= ∅ and the intersection is contained in p−1(Vii′). Indeed, in there it coincides
with ϕ−1

i (Vii′ ×Wj) ∩ ϕ−1
i′ (Vii′ ×Wj′). But ϕi maps this intersection bijectively onto

(Vii′ ×Wj)∩ (ϕi ◦ (ϕi′)
−1)(Vii′ ∩Wj′). This is certainly open in Vii′ × S, so we conclude

that u(i,j)(U(i,j) ∩ U(i′,j′)) is open in RN . But then it follows from the construction that
u(i′,j′) ◦ (u(i,j))

−1 defines a smooth map from this open subset to RN .
Now we can proceed as in the proof of Lemma 1.6 of [AnaMF] to obtain a topology

on E by declaring each u(i,j) to be a homeomorphism. Since we start for a countable
family of u(i,j), this topology is second countable, and one easily verifies directly that
it is Hausdorff. Then E can be uniquely made into a smooth manifold such that
{(U(i,j), u(i,j))} is a smooth atlas for E. Having verified this, we immediately conclude
that p : E → M is smooth and that each ϕi is a diffeomorphism. But since the ϕi are
restrictions of the initial maps ϕα, we conclude that also each ϕα is a diffeomorphism,
which completes the proof. �

2.3. Vector bundles. We can now impose restrictions on transition functions to
define special classes of fiber bundles. In principle, one does this by first defining
atlases, then equivalence of atlases and use equivalence classes of atlases in the definition.
However, for the examples of primary importance for us (vector bundles and principal
fiber bundles) there is a nice notion of morphism, which automatically takes care of
equivalence.

Definition 2.3. (1) Let p : E → M be a fiber bundle whose standard fiber is a
finite dimensional K-vector space V , where K is R or C. A vector bundle atlas for E is
a family (Uα, ϕα) of fiber bundle charts for E such that M = ∪αUα and for each pair of
indices α, β such that Uαβ 6= ∅, the chart change ϕα ◦ (ϕβ)−1 : Uαβ × V → Uαβ × V has
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the form (x, v) 7→ (x, ϕαβ(x, v)), where ϕαβ : Uαβ × V → V is K-linear in the second
variable.

(2) A vector bundle (for K = R) respectively a complex vector bundle (for K = C) is
a fiber bundle p : E →M as in (1) endowed with an equivalence class of vector bundle
atlases (in the obvious sense).

Let p : E →M be a vector bundle with standard fiber V . Then for each x ∈M we
can consider the fiber Ex := p−1({x}) ⊂ E. Then for any chart (Uα, ϕα) with x ∈ Uα
the second component of the restriction ϕα|Ex defines a bijection Ex → V . We can make
Ex into a vector space isomorphic to V by declaring this to be a linear isomorphism and
the result is independent of the choice of the chart in our atlas by definition. Observe
that for an open subset U ⊂ M and a vector bundle p : E → M with fiber V , we can
consider E|U := p−1(U)→ U . Starting form a vector bundle atlas {(Uα, ϕα)} for E, we
form (U ∩ Uα, ϕα|p−1(U∩Uα)) and one immediately verifies that this canonically makes
E|U into a vector bundle over U .

The vector space structure on the fibers of a vector bundle p : E → M also allows
us to add sections and multiply them by smooth functions, with both operations being
defined point-wise. Locally, any vector bundle has many sections, since in the domain of
a chart (Uα, ϕα) there is an isomorphism Γ(E|Uα) ∼= C∞(Uα, V ) which sends a section
σ : Uα → p−1(Uα) to the second component of ϕα ◦ σ. Multiplying a local section
σ : U → E by a bump function f with support contained in U , we can extend fσ by
0 to a section defined on all of M . More generally, we can glue local sections using
partitions of unity, so any vector bundle has many global sections.

For two vector bundles p : E →M and p̃ : Ẽ → M̃ , consider a morphism F : E → Ẽ
of fiber bundles with base map f : M → M̃ . Then for each x ∈M , F restricts to a map
Ex → Ẽf(x) and we call F a vector bundle homomorphism if all these restrictions are
linear maps. An isomorphism of vector bundles is a homomorphism of vector bundles
that admits an inverse homomorphism. Evidently, the base map of such an isomorphism
is a diffeomorphism.

The simplest vector bundles with fiber V are products, i.e. pr1 : M × V → M for
any manifold M , with the (M, id) as a vector bundle atlas. A vector bundle p : E →M
is called trivial if it is isomorphic to M × V . A vector bundle chart for p : E → M is
then a pair (U,ϕ), where U ⊂M is open and ϕ is an isomorphism E|U → U × V is an
isomorphism of vector bundles.

The following result is typical for how one works with vector bundles.

Proposition 2.3. Let p : E → M and p̃ : Ẽ → M̃ be vector bundles and let
F : E → Ẽ be a homomorphism of vector bundles with base map f . Suppose that f is a
diffeomorphism and that for each x ∈ M , the restriction F |Ex : Ex → Ẽf(x) is a linear
isomorphism. Then F is an isomorphism of vector bundles.

Proof. Take any w ∈ Ẽ and put y := p̃(w). Then by assumption, there is a
unique element v ∈ Ef−1(y) such that F (v) = w and this is the only element of E that

gets mapped to w by F . Putting G(w) := v defines a map G : Ẽ → E such that
p ◦ G = f−1 ◦ p̃ and such that G|Ẽy is inverse to F |Ef−1(y)

and thus is linear. Hence it

only remains to show that G is smooth in order to complete the proof. This can be
done locally, so let us fix y ∈ M̃ and vector bundle charts (U,ϕ) for E with f−1(y) ∈ U
and (Ũ , ϕ̃) for Ẽ with y ∈ Ũ . Passing to appropriate open subsets, we may assume that
f restricts to a diffeomorphism U → Ũ .

Since both bundles have the same fiber dimension, we can fix linear isomorphisms
between their standard fibers and Rn and assume that they both have standard fiber Rn.
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Then ϕ̃ ◦ F ◦ ϕ−1 : U × Rn → Ũ × Rn must be of the form (x, v) 7→ (f(x),Φ(x, v)), for
a smooth map Φ : U × Rn → Rn which is linear in the second variable. Defining
Ψ : U → Mn(R) by Ψ(x)v := Φ(x, v), we obtain a smooth function Ψ which by
assumption has values in GL(n,R). But then also (y, w) 7→ (f−1(y),Ψ(f−1(y))−1w)
defines a smooth map Ũ×Rn → U×Rn and by construction, this has to equal ϕ◦G◦ϕ̃−1.
This shows that G is smooth on a neighborhood of y and this completes the proof. �

We have actually verified in Example 2.1 (2) that for any smooth manifold M , the
tangent bundle TM is a vector bundle. Similarly, the cotangent bundle and all tensor
bundles are vector bundles over M . For a smooth map f : M → N , the tangent map
Tf : TM → TN is a vector bundle homomorphism with base map f and similarly for
induced maps on tensor bundles.

Observe that for vector bundles E → M and Ẽ → M with standard fibers V and
Ṽ over the same manifold M , the fibered product E ×M Ẽ by construction is again
a vector bundle with standard fiber V × Ṽ . Since this product is commonly written
as V ⊕ Ṽ , one writes E ⊕ Ẽ for this fibered product and calls it the Whitney sum of
the vector bundles E and Ẽ. Of course, this extends to more than two factors without
problems.

There is a large number of similar constructions for vector bundles over a fixed base
manifold. Loosely speaking, any functorial construction for finite dimensional vector
spaces extends to vector bundles. We only discuss this briefly here, since we will only
need it in a specific situation for which a simpler description of these constructions is
available. For example, given a vector bundle p : E → M we consider the disjoint
union E∗ := tx∈M(Ex)

∗ of dual spaces to the fibers of E which comes with a projection
q : E∗ → M . A vector bundle chart ϕ : p−1(U) → U × Rn for E then gives rise to a
bijection ψ : q−1(U) → U × Rn∗ characterized by ψ−1(x, λ)(w) = λ(v), where w ∈ Ex
and ϕ(w) = (x, v). Using Lemma 2.2, one easily shows that q : E∗ → M is a vector
bundle, called the dual vector bundle to E. Similarly we can work with tensor powers
of the fibers for some k ∈ N and put ⊗kE := tx∈M ⊗k Ex. Again, vector bundle charts
for E can be used to construct bijections to U ×⊗kRn and using Lemma 2.2 one shows
that ⊗kE →M is a vector bundle. This is the kth tensor power of E and the symmetric
power SkE and the alternating power ΛkE are obtained similarly.

For two vector bundles E and F over M , one defines E ⊗ F := tx∈MEx ⊗ Fx. In
a similar way as above, one then uses vector bundle charts for E and F to construct
bijections which can be used to apply Lemma 2.2 to make E⊗F into a vector bundle over
M . Analogously, this works for L(E,F ) := tx∈ML(Ex, Fx), and sections of this bundle
are easily seen to be in bijective correspondence with vector bundle homomorphism
E → F with base map idM in an evident way. Finally, natural isomorphism between
different constructions for vector spaces carry over to vector bundles. For example,
⊗k(E∗) ∼= (⊗kE)∗, (E ⊗ F )∗ ∼= E∗ ⊗ F ∗, L(E,F ) ∼= E∗ ⊗ F ∼= L(F ∗, E∗), and so on.

2.4. Principal fiber bundles. The second class of special fiber bundles that we
will look at is less intuitive than vector bundles, but turns out to be very flexible.
Although these bundles have standard fibers that are Lie groups, it is not the group
structure that matters but rather the structure of a principal homogeneous space that
we have met in Section 1.6.

Definition 2.4. (1) Let p : P → M be a fiber bundle, whose standard fiber is
a Lie group G. A principal bundle atlas for P is a collection (Uα, ϕα) of fiber bundle
charts for P such that M = ∪αUα and for each pair of indices α, β such that Uαβ 6= ∅,
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the chart change ϕα ◦ (ϕβ)−1 : Uαβ ×G→ Uαβ ×G has the form (x, g) 7→ (x, ϕαβ(x) · g)
for a smooth function ϕαβ : Uαβ → G with the dot denoting multiplication in G.

(2) A principal fiber bundle with structure group G (or a principal G-bundle) is a
fiber bundle p : P → M as in (1) endowed with an equivalence class of vector bundle
atlases (in the obvious sense).

Let us observe right away that the fiber Px of a principal G-bundle is diffeomorphic
to G but cannot be made into a Lie group in a canonical way. This is because left
translations in a Lie group are not group homomorphism, so multiplication in a chart
does not define a chart independent operation. However, one can make the fibers into
principal homogeneous spaces for G in a nice way:

Lemma 2.4. Let p : P →M be a principal G-bundle and let g be the Lie algebra of
G. Then we have

(1) There is a unique smooth right action r : P ×G→ P of G on P which is induced
by multiplication from the right in principal bundle charts. This action is free and its
orbits are the fibers Px of P .

(2) There exists a smooth map τ : P ×M P → G which is characterized by the fact
that for u, ũ ∈ P with p(u) = p(ũ), we get ũ = r(u, τ(u, ũ)).

(3) For any X ∈ g, ζX(u) := d
dt
|t=0r(u, exp(tX)) ∈ TuP defines a smooth vector field

ζX ∈ X(P ). For each u ∈ P , the map X 7→ ζX(u) defines a linear isomorphism from g
onto the vertical subspace VuP := ker(Tup) ⊂ TuP .

Proof. (1) Given u ∈ Px and g ∈ G, choose a principal bundle chart (Uα, ϕα) with
x ∈ Uα. Define r(u, g) := ϕ−1

α (x, hg), where ϕα(u) = (x, h) ∈ Uα × G. This evidently
defines a smooth map p−1(Uα)×G→ p−1(Uα). Since left and right translations in a Lie
group commute, we conclude that the definition does not depend on the choice of the
principal bundle chart containing x. In particular, the locally defined maps fit together
to define a smooth map r : P ×G→ P , and one immediately verifies that this is a right
action.

From the construction it is also obvious that the orbit u · G := {r(u, g) : g ∈ G} is
exactly the fiber Px. To prove freeness of the action, we have to show that if r(u, g) = u
for one u ∈ P , then g = e, but again this is obvious from the construction.

(2) We have just seen that for u and ũ with p(u) = p(ũ), there is a unique element
g ∈ G such that ũ = r(u, g). Thus there is a unique map τ as claimed and we only
have to prove that this is smooth. This is a local question, so given x ∈ M choose a
principal bundle chart (U,ϕ) for P with x ∈ U . From the construction in Example (4)
of Section 2.1, we see that the induced bundle chart on P ×M P is defined on the set
of pairs (u, ũ) such that x := p(u) = p(ũ) ∈ U and such a pair gets mapped to (x, g, g̃)
where ϕ(u) = (x, g) and ϕ(ũ) = (x, g̃). But then by construction τ(u, ũ) = g−1g̃ and
since multiplication and inversion in G are smooth, also τ is smooth.

(3) Smoothness of the map r from (1) implies smoothness of its tangent map Tr :
TP × TG → TP . Now both the zero vector field on P and the constant map P →
g = TeG that sends each u ∈ P to X are smooth. Hence we obtain a smooth map
P → TP by sending u to T(u,e)r(0u, X), and since this lies in Tr(u,e)P = TuP , it actually
defines a vector field. But since the curve c(t) := (u, exp(tX)) satisfies c(0) = (u, e) and
c′(0) = (0, X), we see that T(u,e)r(0u, X) = ζX(u).

From the construction in (1) it is clear that g 7→ r(u, g) defines a diffeomorphism
from G onto the fiber Px, where x = p(u). By construction the tangent map of this
diffeomorphism is X 7→ ζX(u), so this defines an injection g → TuP . By construction,
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the image is contained in VuP and since dim(P ) = dim(M) + dim(G) we conclude that
it has to equal VuP . �

The action r from part (1) is called the principal right action of G on P . If there
is no risk of confusion, we will sometimes denote the principal right action simply by a
dot, i.e. write u ·g for r(u, g). The vector field ζX from part (2) is called the fundamental
vector field generated by X.

Example 2.4. (1) For a smooth manifold M and a Lie group G there is the trivial
principal bundle pr1 : M ×G→M , for which the principal right action is just multipli-
cation from the right in the second component. This also shows that for the fundamental
vector field ζX generated by X ∈ g, we get ζX(x, g) = (0, LX(g)) in the identification
T (M ×G) ∼= TM × TG, where LX is the left-invariant vector field generated by X.

(2) Let G be a Lie Group, H ⊂ G a closed subgroup, and p : G → G/H the fiber
bundle from Example (3) in Section 2.1. Then the atlas constructed there evidently is
a principal bundle atlas making p : G → G/H into a principal H-bundle. Of course,
the principal action G×H → G is just the restriction of the multiplication map. As in
(1), this also shows that the fundamental vector fields coincides with the left-invariant
vector fields generated by elements of h ⊂ g.

2.5. Morphisms of principal bundles. Similarly to the case of vector bundles,
the principal right action allows us to define a notion of morphism of principal fiber
bundles without having to refer to charts. The basis for this is that on a group G,
the maps commuting with multiplications from the right are exactly multiplications
from the left. Indeed, associativity says the multiplications from the left commute
with multiplications from the right. Conversely, if f : G → G has the property that
f(gh) = f(g)h for all g, h, then of course we get f(g) = f(e)g, so f coincides with left
multiplication by f(e).

Hence the basic requirement on a morphism of principal bundles is equivariancy with
respect to the principal right action. This makes sense on several levels of generality, the
most general version with an arbitrary homomorphism is used only rarely, but several
special cases are of interest.

Definition 2.5. (1) Let α : G→ H be a homomorphism of Lie groups, p : P →M
a principal G-bundle and p̃ : P̃ → M̃ a principal H-bundle. Then a morphism of
principal bundles over α is a fiber bundle morphism F : P → P̃ such that for each
u ∈ P and g ∈ G, we get F (u · g) = F (u) · α(g).

In case that G = H, a principal bundle morphism is a principal bundle morphism
over idG.

(2) Let G be a Lie group H ⊂ G a closed subgroup and p : P → M a principal
G-bundle. Then a reduction of P to the structure group H is given by a principal H-
bundle p̃ : P̃ → M together with a principal bundle morphism F : P̃ → P over the
inclusion i : H → G with base map idM . In this case, P is also called an extension to
the structure group G of P̃ .

(3) Let p : P →M be a principal G-bundle. Then a gauge transformation of P is a
principal fiber bundle morphism F : P → P with base map idM .

Lemma 2.5. (1) Let F : P → P̃ be a principal bundle morphism between two prin-
cipal G-bundles whose base map f is a diffeomorphism. Then F is an isomorphism of
principal fiber bundles, i.e. F is a diffeomorphism and F−1 is a morphism of princi-
pal bundles, too. In particular, any gauge transformation of a principal bundle is an
isomorphism.
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(2) Let F : P̃ → P be a reduction of structure group to H of a principal G-bundle.
Then F (P̃ ) ⊂ P is a closed submanifold and F is an embedding.

(3) A principal bundle p : P → M admits a smooth section defined on an open
subset U ⊂M if and only if it is trivial over U i.e. p|p−1(U) : p−1(U)→ U is isomorphic
to U ×G as a principal bundle.

(4) Let p : P → M and p̃ : P̃ → M̃ be principal bundles with structure groups G
and G̃ and fix a homomorphism α : G → G̃. Let F : P → P̃ be a set map which is
equivariant over α, i.e. such that F (r(u, g)) = r(F (u), α(g)), and such that p̃◦F = f ◦p
for some smooth map f : M → M̃ . Suppose that for each x ∈ M , there is an open
neighborhood U of x in M and a local smooth section σ : U → P such that F ◦σ : U → P̃
is smooth. Then F is a principal bundle homomorphism over α

Proof. (1) By definition, we have F (u · g) = F (u) · g. Now we know that g 7→ u · g
defines a bijection from G onto the fiber Px where x = p(u) and similarly for P̃f(x). Thus

we see that the restriction of F to Px is a bijection onto P̃f(x). Together with bijectivity

of f this implies that F is bijective, so there is and inverse function F−1 : P̃ → P .
Now p̃ ◦ F = f ◦ p readily implies p ◦ F−1 = f−1 ◦ p̃ and equivariancy of F implies
equivariancy of F−1. Thus it suffices to show that F−1 is smooth in order to complete
the proof of (1). But this is a local problem, so we may take principal bundle charts
(U,ϕ) for P and (Ũ , ϕ̃) for P̃ and assume that f restricts to a diffeomorphism U → Ũ .
Then Φ := ϕ̃ ◦ F ◦ ϕ−1 : U × G → Ũ × G is smooth and defining α(x) to be the
second component of Φ(x, e), we obtain a smooth map α : U → G. By construction
and equivariancy, we see that Φ(x, g) = (f(x), α(x)g). But this readily shows that
Φ−1(y, h) = (f−1(y), ν(α(f−1(y)))h), where ν is the inversion in G. So Φ−1 is evidently
smooth, and F−1|p−1(f(U)) = ϕ−1 ◦ Φ−1 ◦ ϕ̃, so this is smooth, too.

(2) Here equivariancy of F evidently implies that the restriction of F to each fiber P̃x
is injective and hence F is injective. Locally around a point x ∈ M̃ , we can take principal
bundle charts (U, ϕ̃) for P̃ and (U,ϕ) for P defined on the same open set U ⊂ M with
x ∈ U . Then Φ := ϕ ◦ F ◦ ϕ̃−1 : U × H → U × G has the form Φ(x, h) = (x, α(x)h)
for a smooth map α : U → G as in (1). This is obviously an immersion, so also F is an
immersion and it suffices to verify that F (P̃ ) ⊂ P is a submanifold to conclude the proof.
But the map (x, g) 7→ ϕ−1(x, ν(α(x))g) clearly defines a diffeomorphism U×G→ p−1(U)
which restricts to a diffeomorphism U × H → F (p̃−1(U)) by construction. Since H is
a submanifold of G, we can use this to construct a submanifold chart for F (P̃ ) ⊂ P
around each point in F (P̃x).

(3) Observe first that by definition p|p−1(U) : p−1(U) → U is a principal G-bundle.
Given a section σ : U → p−1(U), we define F : U × G → p−1(U) by F (x, g) :=
r(σ(x), g). By construction this is a fiber bundle morphism with base map idU and
clearly, it is G-equivariant, so it is an isomorphism by (1). (Alternatively, F−1 is given
by u 7→ (p(u), τ(σ(p(u)), u)), where τ is the map from Lemma 2.4.) Conversely, given
an isomorphism F : U × G → p−1(U), the map x 7→ F (x, e) clearly defines a smooth
section of p−1(U)→ U .

(4) We only have to prove that F is smooth and since this is a local question, it
suffices to prove smoothness on p−1(U) for an open subset U ⊂ M for which there is a
section σ such that F ◦σ is smooth. Taking the isomorphism ϕ : U ×G→ p−1(U) from
(3), i.e. ϕ(x, g) = r(σ(x), g), we conclude that (F ◦ ϕ)(x, g) = r((F ◦ σ)(x), α(g)) and
the right hand side is smooth by assumption. Since ϕ is a diffeomorphism, smoothness
of F ◦ ϕ implies smoothness of F |p−1(U). �
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The linear frame bundle and structures on manifolds

Having the necessary background at hand, we can discuss the linear frame bundle
of a manifold and this quickly leads to the concept of a G-structure.

2.6. The linear frame bundle. Let M be a smooth manifold of dimension n.
Then we will construct a canonical principal bundle p : PM →M with structure group
GL(n,R). This can actually be viewed as a variation of the construction of the tangent
bundle. Given a point x ∈ M , we define PxM to be the set of linear isomorphisms
v = vx : Rn → TxM . As a set, we then define PM to be the disjoint union of the sets
PxM , which immediately gives as a canonical map p : PM →M that sends each PxM
to x. Now take a chart (Uα, uα) for M and define a map ϕα : p−1(Uα)→ Uα×GL(n,R)
by sending vx : Rn → TxM to (x, Txu ◦ vx), where we use the standard identification
Txu(U) ∼= Rn. Since Txu is a linear isomorphism for each x ∈ U , the construction
readily implies that ϕα is bijective and of course pr1 ◦ ϕα = p.

For a second chart (Uβ, uβ) and x ∈ Uαβ consider ϕα ◦ (ϕβ)−1, which maps Uαβ ×
GL(n,R) to itself. By construction, this maps (x,A) to ϕα((Txuβ)−1 ◦ A) = Txuα ◦
(Txuβ)−1 ◦ A. But now Txuα ◦ (Txuβ)−1 = Duαβ(x), where uαβ : uβ(Uαβ)→ uα(Uαβ) is
the chart-change diffeomorphism for the two charts. This show that the chart change
has the form (x,A) 7→ (x,Duαβ(x)A) so smoothness of Duαβ : Uαβ → GL(n,R) implies
that ϕα ◦ (ϕβ)−1 is smooth. Starting from an atlas for M , we can invoke Lemma 2.2
to conclude that p : PM → M is a smooth manifolds and the (Uα, ϕα) form a fiber
bundle atlas. But then the form of the chart changes says that this is a principal bundle
atlas so p : PM →M is a principal GL(n,R) bundle as claimed. Clearly an equivalent
atlas for M leads to an equivalent principal bundle atlas, so the structure on PM is
canonical.

Note that the principal right action of GL(n,R) on PM admits a very simple de-
scription: If u ∈ PxM and ϕα(u) = (x,B) for one of the charts constructed above,
then u = (Txuα)−1 ◦ B : Rn → TxM . Now by definition for A ∈ GL(n,R), we get
r(u,A) = (ϕα)−1(x,BA) = u ◦A, so the principal right action is just composition from
the right. Observe that we could have started from any n-dimensional vector space V
(using charts for M with values in V ) to get PM as a principal GL(V )-bundle with an
analogous description of the principal right action.

The name “frame bundle” is derived from a natural interpretation of local sections
of p : PM → M . Let U ⊂ M be open and let σ : U → PM be a smooth section.
Then for each x ∈ U , σ(x) is a linear isomorphism Rn → TxM so taking the standard
basis {e1, . . . , en} for Rn, we obtain a map ξi : U → TM by putting ξi(x) = σ(x)(ei)
for i = 1, . . . n. By construction, for each x ∈ M the vectors ξ1(x), . . . , ξn(x) form
a basis of TxM . We claim that the ξi are smooth and hence form a local frame for
TM defined on U . This is a local question, so we can work in the principal bundle
chart (Uα, ϕα) derived from a chart (Uα, uα) as above and assume that Uα ⊂ U . Then
the second component of ϕα ◦ σ is a smooth map Uα → GL(n,R), which we write as
x 7→ A(x) = (aij(x)). (We know that this matrix is invertible in each point, but this is
not important here.) But then σ(x) = Txu

−1
α ◦A(x) which readily shows that on Uα, we

can write ξj as
∑

i aij
∂
∂uiα

, which is evidently smooth. The same line of argument shows

that conversely, a local frame for TM over U determines a local section σ : U → PM ,
so local sections of PM →M are equivalent to local frames for TM .

The construction of the frame bundle easily leads to a the existence of a canonical
differential form with values in a vector space, called the soldering form. Here a V -valued
k-form on M simply associates to each x ∈ M a k-linear alternating map (TxM)k →
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V . This has to be smooth in the usual sense that plugging in k-vector fields, one
obtains a smooth V -valued function. The space of V -valued k-forms on M is denoted
by Ωk(M,V ). Observe that such forms can be pulled back along smooth maps in the
same way as ordinary forms. Using this, we now formulate

Proposition 2.6. Let M be a smooth manifold of dimension n and p : PM →M
its linear frame bundle. For A ∈ GL(n,R) let rA : PM → PM be the principal
right action by A. Then there is a canonical Rn-valued one-form θ ∈ Ω1(PM,Rn)
characterized by Tup · ξ = u(θ(u)(ξ)) for u ∈ PM and ξ ∈ TuPM . This form has the
following properties

• For any u ∈ PM , ker(θ(u)) = VuPM ⊂ TuPM (“θ is strictly horizontal”)
• For any A ∈ GL(n,R) and u ∈ PM we get ((rA)∗θ)(u) = A−1◦θ(u) : TuPM →
Rn (“θ is GL(n,R)-equivariant”).

Proof. By definition, a point u ∈ PM is a linear isomorphism u : Rn → Tp(u)M and
for ξ ∈ TuPM we get Tup · ξ ∈ Tp(u)M . Thus we can define θ(u)(ξ) := u−1(Tup · ξ). This
satisfies Tup ·ξ = u(θ(u)(ξ)) and is evidently characterized by this property. Since u−1 is
a linear isomorphism, we see that ker(θ(u)) = ker(Tup). Finally, since p ◦ rA = p we get
Tr(u,A)p◦TurA = Tup and since r(u,A) = (u◦A) we conclude that θ(r(u,A))(Tur

A ·ξ) =
A−1 ◦ u−1(Tup · ξ). Thus all claimed properties are satisfied and we only have to prove
that this defines a smooth Rn-valued form on PM .

To verify smoothness, it suffices to show that one gets smooth functions after insert-
ing the coordinate vector fields for some local charts. We can do this for charts obtained
via local fiber bundle charts ϕα : p−1(Uα) → Uα × GL(n,R) from product charts for
the image. The coordinate vector fields for the second factor simply produce the zero
function after insertion into θ. More specifically, we can use the principal bundle charts
obtained from charts (Uα, uα) for M . Then applying Tp to the corresponding coordinate
fields on PM , one simply obtains the coordinate vector fields ∂

∂uiα
on Uα. But for these

charts, u ∈ PM corresponds to Tuuα ◦u ∈ GL(n,R). This easily implies that u−1 maps
∂
∂uiα

to the ith column of the inverse of the matrix that forms the second component of

ϕα(u). Since this evidently depends smoothly on u, this completes the proof. �

Suppose now that we view M as modelled on an n-dimensional vector space V and
hence PM as a principal bundle with structure group GL(V ). Then the construction in
the proposition of course gives rise to a soldering form θ ∈ Ω1(PM,V ) which is strictly
horizontal and GL(V )-equivariant in an obvious sense.

2.7. G-structures on manifolds. Having the picture of the frame bundle at hand,
it is now clear how to carry over the notion of G-structures on a vector space as developed
in Section 1.6 to the individual tangent spaces of a manifold. This would lead to a
definition as a subset of PM , but there are several ways to equivalently rephrase this,
which are less closely tied to the frame bundle. On has to choose one of these equivalent
possibilities as a definition, and we choose a version that is a special instance of a general
concept for principal bundles.

Definition 2.7. Let V be a vector space, put n = dim(V ) and let G ⊂ GL(V ) be
a closed subgroup. For a smooth manifold M of dimension n, let us view M as being
modelled on V and hence PM as a principal GL(V )-bundle. Then a G-structure on M
is a reduction P → PM of the linear frame bundle to the structure group G.

To get to the equivalent descriptions mentioned above, we observe that on the one
hand that by Lemma 2.5 a reduction of structure group is an embedding, so we can
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view P as a submanifold of PM . This leads to the picture of putting a G-structure in
the sense of Section 1.6 on each tangent space of M in a way depending smoothly on
the point. On the other hand, we can pull back the soldering form on PM to a form
on P which has analogous properties. It then turns out that prescribing such a form is
equivalent to the principal bundle map defining a reduction. This leads to the picture
that a G-structure on M is an abstract principal bundle together with an analog of the
soldering form.

Theorem 2.7. A G-structure F : P → PM corresponding to G ⊂ GL(V ) can be
equivalently described in either of the two following ways.

(1) As a subset Q ⊂ PM such that for each x ∈ M the following conditions are
satisfied

• Qx := Q ∩ PxM 6= ∅ and for one or equivalently any u ∈ Qx the map G→ Qx

defined by A 7→ r(u,A) is bijective.
• There is an open neighborhood U of x ∈M and a smooth section σ : U → PM

such that σ has values in Q.

(2) An abstract principal G-bundle π : P → M endowed with a form θ̃ ∈ Ω1(P, V )
which is strictly horizontal and G-equivariant in the sense of Proposition 2.6.

Proof. (1) Having given F : P → PM , we define Q := F (P ) ⊂ PM , which
immediately implies that the required property of Qx is satisfied for each x. Moreover
since for a local section τ of P , F ◦ τ is a local smooth section of PM , the second
property is satisfied, too.

Conversely, suppose we have given Q ⊂ PM with the two listed properties. Given
U and σ : U → PM with values in Q, we know from the proof of Lemma 2.5 that
(x,A) 7→ r(σ(x), A) is the inverse of a fiber bundle chart for PM . But by the first
property, this restricts to a bijection U×G→ Q∩p−1(U). This can be used to construct
submanifold charts for Q and to obtain principal bundle charts for p|Q : Q→M , so this
is a principal G-bundle. But then the inclusion Q ↪→ PM evidently defines a reduction
of structure group and hence a G-structure on M .

(2) Having given F : P → PM , we define θ̃ := F ∗θ ∈ Ω1(P, V ). For ũ ∈ P and

ξ ∈ Tũξ, we get TF (ũ)p◦TũF = Tũπ. This immediately shows that ker(θ̃(ũ)) = ker(Tũπ),

so θ̃ is strictly horizontal. On the other hand, for A ∈ G, we get F ◦ rA = rA ◦ F and
thus (rA)∗F ∗θ = F ∗(rA)∗θ. By equivariancy of θ, this sends ξ ∈ TũP to

A−1(θ(F (ũ))(TũF · ξ)) = A−1(θ̃(ũ)(ξ)),

so θ̃ is equivariant, too.
Conversely, given a strictly horizontal, equivariant one form θ̃ ∈ Ω1(P, V ), we claim

that there is a unique homomorphism F : P → PM of principal bundles such that
θ̃ = F ∗θ. Indeed, for a point ũ ∈ Px the map θ̃(ũ) : TũP → V by assumption has kernel
ker(Tũπ). Hence it is surjective and there is a unique linear isomorphism F (ũ) : V →
TxM such that θ̃(ũ) = F (ũ)−1 ◦ Tũπ. Thus we have defined a map F : P → PM such

that p◦F = π. Moreover, (rA)∗θ̃(ũ) = A−1 ◦ θ̃(ũ) together with π◦rA = π easily implies
that F (r(ũ, A)) = F (ũ) ◦ A, so F satisfies the assumptions of part (4) of Lemma 2.5.

Now take a local smooth section σ of P defined on U ⊂ M and consider F ◦ σ,
which is a section of PM . On the other hand, σ∗θ̃ ∈ Ω1(U, V ) by construction has the
property that its value in each point y ∈ U is a linear isomorphism TyM → V . Pulling
back the constant functions determined by a basis of V , we obtain a smooth frame of
TM defined over U . This in turn gives rise to a smooth local section of PM defined
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over U . Going through the construction, one easily concludes that the resulting section
has the same value as F ◦ σ in each point y ∈ U , so F is smooth by Lemma 2.5. Since
Tp ◦ TF = Tπ we also conclude that F ∗θ = θ̃ by construction. �

Remark 2.7. The description in part (2) of Theorem 2.7 allows for a generalization
of the notion of a G-structure that is important in several applications. An extreme
version of this would be to call any principal fiber bundle endowed with a strictly hor-
izontal, equivariant Rn-valued one-form over an n-dimensional manifold a G-structure.
This would be rather misleading however, as we shall see later on. An important class
of examples arises, however, if one allows G to be a covering of a closed subgroup of
GL(V ). Otherwise put, one requires that there is a homomorphism ϕ : G → GL(V )
such that the derivative ϕ′ is injective and such that ϕ(G) ⊂ GL(V ) is closed. The most
important example of this are so-called spin structures. The point here is that the group
SO(n) is not simply connected and the universal covering is the spin group Spin(n).
This comes with a surjective homomorphism Spin(n) → SO(n) whose kernel is iso-
morphic to Z2. A spin structure can then be defined via a principal Spin(n)-bundle
P → M endowed with a strictly horizontal, equivariant Rn-valued form. As in the
proof of part (2) of Theorem 2.7 this defines a homomorphism P → PM whose image
satisfies the conditions of part (1) of Theorem 2.7 for the group SO(n) ⊂ GL(n,R).
Hence a spin-structure has an underlying SO(n)-structure which, as we shall see soon,
corresponds to a Riemannian metric and an orientation.

We will only mention this more general concept from time to time and not study
it systematically in the course. With appropriate small changes, most of the theory
extends rather easily to this more general setting.

2.8. Morphisms. To discuss morphisms of G-structures, we first look at the case
of the linear frame bundle. Suppose that M and M̃ are manifolds of dimension n and
that f : M → M̃ is a local diffeomorphism. Then there is an obvious idea how to
lift f to a map Pf : PM → PM̃ by sending a linear isomorphism u : Rn → TxM to
Txf ◦ u : Rn → Tf(x)M̃ . This has nice properties:

Proposition 2.8. The map Pf defined above is a principal bundle homomorphism
with base map f such that (Pf)∗θ = θ, where we denote the soldering forms on both
bundles by the same letter. It is uniquely characterized by these properties.

Proof. By definition, Pf is equivariant for the principal right actions and maps
PxM to Pf(x)M̃ . Now let U ⊂M be open such that f(U) ⊂ M̃ is open, f |U : U → f(U)
is a diffeomorphism and there is a local section σ : U → P . This corresponds to a local
frame {ξ1, . . . , ξn} for TM defined on U . For each i, ξ̃i := Tf ◦ξi◦(f |U)−1 : f(U)→ TM̃
is a smooth vector field on M̃ , and these together form a smooth local frame for TM̃
defined on f(U). By construction, for the corresponding local section σ̃ : f(U)→ PM̃ ,
we obtain σ̃◦f = Pf ◦σ on U . Thus Pf ◦σ is smooth, so smoothness of Pf follows from
Lemma 2.5 and we have verified all properties of a principal bundle homomorphism.

Let F : PM → PM̃ be a principal bundle homomorphism with base map f . Then

(2.1) (F ∗θ)(u)(ξ) = θ(F (u))(TuF · ξ) = F (u)−1((Txf ◦ Tup)(ξ)).
This shows that (F ∗θ)(u) = θ(u) if and only if F (u)−1 ◦ Txf = u−1 which clearly is
equivalent to F (u) = Txf ◦ u. This shows that (Pf)∗θ = θ as well as uniqueness. �

This has several nice consequences. On the one hand, it directly leads to the def-
inition of a morphism of G-structures. In the picture of part (1) of Theorem 2.7, we
have Q ⊂ PM and Q̃ ⊂ PM̃ and a local diffeomorphism f : M → M̃ is a morphism of
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G-structures if and only if Pf(Q) ⊂ Q̃. Observe that this definition also makes sense if
f is only defined on a neighborhood of x, so there is a concept of local morphisms.

It is easy to see that in the picture of reductions, this is equivalent to a homomor-
phism F : P → P̃ of principal bundles with base map f such that the diagram

P −−−→ PM

F

y yPf
P̃ −−−→ PM̃

commutes. Evidently, there is at most one homomorphism F with that property and
f is a morphism if F exists. It is also easy to rephrase this in the picture of part
(3) of Theorem 2.7. Here f is a morphism if and only if there is a principal bundle
homomorphism F : P → P̃ with base map f , which is compatible with the given V -
valued one-forms on the bundles. An obvious analog of formula (2.1) shows that there is
at most one such F . In this form, the concept of a morphism also extends to the more
general setting of a covering of a closed subgroup of GL(V ) as discussed in Remark
2.7. However, in this case a morphism F of G-structures is not necessarily determined
uniquely by its base map f . Hover, the relation to the principal bundle homomorphisms
Pf on the linear frame bundles still persists.

Second, we obtain a concept of pullback of G-structures along local diffeomorphisms.
Again, this is most easily described in the picture of part (1) of Theorem 2.7. Given
Q̃ ⊂ PM̃ and a local diffeomorphism f : M → M̃ , then for a point x ∈ M , we put
Qx := {u : Rn → TxM : Txf ◦ u ∈ Q̃f(x)}. Since Txf is a linear isomorphism, the
resulting subset Q ⊂ PM evidently satisfies the first condition in part (1) of Theorem
2.7. For the second condition, we can choose an open neighborhood U of x in M
such that f(U) ⊂ M̃ is open, f |U : U → f(U) is a diffeomorphism and there is local
smooth section σ̃ : f(U) → PM̃ that has values in Q̃. Then we obtain an appropriate
smooth section σ : U → PM with values in Q via P(f |U)−1 ◦ σ̃ ◦ f . Hence Q defines
a G-structure on M , which we also denote by f ∗Q̃. Clearly, the construction can be
rephrased by saying that Q is the unique structure for which f becomes a morphism of
G-structures.

To describe this construction in the picture of part (2) of Theorem 2.7, we need yet
another general construction of bundle theory. Suppose that p : E → N is any fiber
bundle and f : M → N is any smooth map. Then one defines f ∗E := {(x, y) ∈M×E :
f(x) = p(y)} and denotes by f ∗p : f ∗E →M and p∗f : f ∗E → E the restriction of the
projections on the product M × E. Then one easily proves that f ∗E is a submanifold
of M × E and hence the maps f ∗p and p∗f are smooth. Having this at hand, consider
a fiber bundle chart ϕ : p−1(U) → U × S for E and let ϕ2 : p−1(U) → S be its second
component. Then V := f−1(U) ⊂ M is open and (p∗f)−1(V ) = (f ∗p)−1(p−1(U)) and
one readily concludes that mapping (x, y) ∈ (p∗f)−1(V ) to (x, ϕ2(y)) is a fiber bundle
chart, too. Hence f ∗E → M is a fiber bundle with the same standard fiber S as
E. Looking at the chart changes, one readily concludes that any pullback of a vector
bundle is again a vector bundle and any pullback of a principal G-bundle is a principal
G-bundle.

Now in the setting of part (2) of Theorem 2.7, assume that we have given a principal

G-bundle p̃ : P̃ → M̃ and a strictly horizontal, equivariant one-form θ̃ ∈ Ω1(P̃ ,Rn).
Then for a local diffeomorphism f : M → M̃ , we consider the principal G-bundle
P := f ∗P̃ →M , whose projection we denote by p and the map F := p∗f : P → P̃ . By
construction, this is a principal bundle homomorphism with base map f , and we can
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consider F ∗θ̃ ∈ Ω1(P,Rn). One easily verifies that this is again strictly horizontal and G-

equivariant (which needs that f is a local diffeomorphism), and hence (p : P →M,F ∗θ̃)
is a G-structure.

Example 2.8. Let us quickly convince ourselves that the concepts we have devel-
oped here lead to the expected results in some of the examples we have discussed so
far.

(1) Take G = O(n) ⊂ GL(n,R) and a smooth manifold M of dimension n. Given
an O(n)-structure Q ⊂ PM and a point x ∈ M , we can take any u ∈ Qx to define an
inner product gx on TxM by gx(X, Y ) := 〈u−1(X), u−1(Y )〉. Any other element of Qx

is of the form u ◦A for A ∈ O(n) and hence leads to the same inner product gx. Taking
these, we obtain a function g that associates to each x and element gx ∈ ⊗2T ∗xM which is
symmetric. By definition there is an open neighborhood U of x in M and a local smooth
section σ : U → PM with values in U . From the construction in Section 2.6, we see
that the corresponding local frame {ξi} for TM has the property that {ξ1(y), . . . , ξn(y)}
is orthonormal for each y ∈ U . But given ξ, η ∈ X(M), we find smooth functions fi and
gi such that ξ|U =

∑
fiξi and η|U =

∑
gjξj and hence g(ξ, η)|U =

∑
i figi, so g defines

a Riemannian metric on M .
Conversely, given a Riemannian metric g on M , one defines Q ⊂ PM by putting Qx

the subset of those u : Rn → TxM which are orthogonal with respect to 〈 , 〉 and gx.
From Theorem 2.7, it easily follows that this indeed is an O(n)-structure. From this
description it is also obvious that given (M, g), (M̃, g̃) and a local diffeomorphism f :
M → M̃ , the condition that Pf(Qx) ⊂ Qf(x) is equivalent to the fact that Txf : TxM →
Tf(x)M̃ is orthogonal with respect to the inner products gx and g̃f(x). Thus morphisms
of O(n)-structures are exactly isometries in the sense of Riemannian geometry. The
construction also readily shows that the pullback of O(n)-structures corresponds to the
usual pullback of Riemannian metrics.

In the same way, one verifies that for G = Sp(2m,R) ⊂ GL(2m,R), G-structures are
exactly almost symplectic structures and morphisms are exactly local diffeomorphisms
that are compatible with the two-forms defining the structure.

(2) Let G ⊂ GL(n,R) be the stabilizer of the subspace Rk ⊂ Rn as in Example (2)
of Section 1.5. Given a G-structure Q ⊂ PM , a point x ∈ M and u ∈ Qx, one defines
a k-dimensional linear subspace Ex := u(Rk) ⊂ TxM . This is immediately seen to be
independent of u. Moreover, local smooth sections of PM with values in Q give rise to
local frames for TM for which the values of the first k elements in any point y form a
basis of Ey. This shows that the spaces Ex fit together to define a smooth distribution
E ⊂ TM of rank k.

Conversely, given a smooth distribution E ⊂ TM of rank k, one defines Q ⊂ PM
by defining Qx to be the set of those linear isomorphisms u : Rn → TxM which map
Rk to Ex. This immediately implies that Q ⊂ PM satisfies the first condition in
part (1) of Theorem 2.7, so it remains to construct appropriate smooth local frames
to show that the distribution E determines a G-structure. But it is easy to see that
a local frame for E can be extended (possibly on a smaller subset) to a local frame
of TM , which provides exactly the kind of frames we need. A morphism between the
G-structures corresponding to E ⊂ TM and Ẽ ⊂ TM̃ by construction exactly is a local
diffeomorphism f : M → M̃ such that for each x ∈ M , we get Txf(Ex) = Ẽx. Finally,
the pullback of the G-structure corresponding to Ẽ ⊂ TM̃ along a local diffeomorphism
f : M → M̃ is determined by the distribution E characterized by Ex = {X ∈ TxM :
Txf(X) ∈ Ẽf(x)}.
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(3) Put G := GL(m,C) ⊂ GL(2m,R) as in Example (4) of Section 1.5. Then for
a G-structure Q ⊂ PM , a point x ∈ M and u ∈ Qx, we define Jx : TxM → TxM by
Jx(X) = u(iu−1(X)). Any other element of Qx is of the form u ◦A for a complex linear
map A, so this is independent of the choice of u and by construction Jx ◦ Jx = − idTxM .
Putting these together, we have defined a map J that associates to each x ∈ M an
element of L(TxM,TxM) ∼= T ∗xM ⊗ TxM . The explicit description of G as a matrix
group in Example (4) of Section 1.5 is based on a basis for R2m ∼= Cm of the form
{v1, iv1, . . . , vm, ivm} for a complex basis {vj} of Cm. Hence for a local smooth section
σ of PM with values in Q the values of the corresponding local frame for TM have
the form {ξ1(y), Jy(ξ1(y)), . . . , ξm(y), Jy(ξm(y))} for some vector fields ξ1, . . . , ξm on M .
In this frame, J is given by a simple constant matrix, which shows that J is a smooth(

1
1

)
-tensor field on M .
Conversely, consider an almost complex structure on M , i.e. a tensor field J ∈ T 1

1 (M)
such that for each x ∈ M and viewing Jx as a linear map TxM → TxM , we get
Jx ◦ Jx = − idTxM . Then as observed Example (4) of Section 1.5, this makes TxM into
a complex vector space and we define Qx as the set of complex linear isomorphisms
Cm → TxM , which sits inside the fiber PxM of all real linear isomorphisms between
these two spaces. One immediately verifies that this satisfies the first condition in
Theorem 2.7, so we have to construct appropriate local frames in order to see that we
have defined a G-structure. Given x ∈M , consider the complex vector space (TxM,Jx),
choose a complex basis {X1, . . . , Xm} for this space and extend these tangent vectors
to local vector fields ξ1, . . . , ξm defined on some open neighborhood U of x in M . Then
also J(ξ1), . . . , J(ξm) are smooth local vector fields defined on the same neighborhood.
Since the values at x of ξ1, J(ξ1), . . . , ξm, J(ξm) are linearly independent these fields
form a local frame on a (possibly smaller) neighborhood of x in M , which provides a
local frame of the required form. Hence we see that GL(m,C)-structures on manifolds
of dimension 2m are equivalent to almost complex structures.

The construction also shows that morphisms between the structures corresponding to
(M,J) and (M̃, J̃) are exactly those local diffeomorphism f : M → M̃ whose derivatives
are all complex linear in the sense that for each x ∈M we get Txf ◦Jx = J̃x ◦TxM . The
pullback of the structure corresponding to (M̃, J̃) by a local diffeomorphism f : M → M̃
is readily seen to correspond to Jx := (Txf)−1 ◦ J̃f(x) ◦ Txf , which exactly says that

J = f ∗J̃ for the pullback of
(

1
1

)
-tensor fields.

2.9. Associated bundles. The construction of the linear frame bundle suggests
a simple possibility to recover the tangent bundle. Indeed, there is a natural map
q : PM × Rn → TM which sends an isomorphism u : Rn → TxM and a vector
v ∈ Rn to u(v) ∈ TxM . One easily verifies that q is smooth and by construction it is
compatible with the obvious projections to M on both sides and surjective. It is also
easy to characterize when two pairs (u, v) and (ũ, ṽ) have the same image in TM . This
clearly is possible only if p(u) = p(ũ), and then there is a unique element A ∈ GL(n,R)
such that ũ = r(u,A) = u ◦ A. Then u(v) = ũ(ṽ) = u(Aṽ) if and only if ṽ = A−1v.
Expressed in a more fancy way, (u, v)·A := (r(u,A), A−1v) is immediately seen to define
a smooth right action of GL(n,R) on PM × Rn and two elements in this space have
the same image in TM if and only if they lie in one orbit of this action.

The congenial fact about this is that one can work in a similar way with vector
spaces that are obtained from Rn and TxM by some functorial construction. A linear
isomorphism u : Rn → TxM induces a linear isomorphism Rn∗ → (TxM)∗ that sends
λ : Rn → R to λ◦u−1 : TxM → R. This induces a similar surjection PM×Rn∗ → T ∗M
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and (u, λ) and (ũ = u ◦ A, λ̃) have the same image under this if λ̃ = λ ◦ A = A−1 · λ
for the natural action of GL(n,R) on Rn∗. This extends analogously to tensor bundles
and symmetric and exterior powers. All these are special cases of the construction of
associated bundles that we describe in general next.

Let p : P → M be a principal G bundle and let S be a smooth manifold that is
endowed with a left G-action, which we will denote by a dot. Then we can form the
product P × S which is a fiber bundle over M with fiber G × S. Then (u, y) · g :=
(r(u, g), g−1 · y) defines a smooth right action of G on P × S. Now we consider the set
of orbits of this action, i.e. the set of equivalence classes of the equivalence relation ∼
defined by (u, y) ∼ (ũ, ỹ) iff there is a g ∈ G such that (ũ, ỹ) = (u, y) · g. We denote
this by P ×G S or by P [S] and we write q : P × S → P ×G S for the obvious map
that sends each pair to its equivalence class. Note that q(u, v) = q(ũ, ṽ) implies that
ũ = r(u, g) for some g ∈ G and hence p(u) = p(ũ). Thus we obtain a natural map
π : P ×GS →M characterized by π ◦q = p◦pr1. An important special case is an action
of G on a finite dimensional vector space V the comes from a representation of G on V ,
i.e. from a smooth homomorphism G→ GL(V ).

Lemma 2.9. In the setting described above, the set P ×G S can be canonically made
into a smooth manifold and we get:

(1) π : P ×G S → M is a smooth fiber bundle with typical fiber S. In the case of a
representation of G on V , π : P ×G V →M is a vector bundle with typical fiber V .

(2) q : P × S → P ×G S is a principal G-bundle.
(3) There is a smooth map τS : P ×M (P ×G S)→ S which is uniquely characterized

by the fact that for u ∈ P and z ∈ P ×G S with p(u) = π(z) we get z = q(u, τS(u, z)).

Proof. (1) Take a principal bundle chart (Uα, ϕα) for P , so ϕα : p−1(Uα)→ Uα×G.
Take u ∈ p−1(Uα), write ϕα(u) = (x, g) and consider the map p−1(Uα)×S → Uα×S that
sends (u, y) to (x, g ·y). Then ϕα(r(u, h)) = (x, gh), which shows that (r(u, h), h−1 ·y) is
also sent to (x, g · y). Hence this induces well defined map ψα : π−1(Uα)→ Uα× S such
that ψα(q(u, y)) = (x, g ·y), which shows that ψα is surjective. On the other hand a pair
(ũ, ỹ) can be mapped to (x, g · y) only if x = p(ũ) = p(u) and hence there is an element
h ∈ G such that ũ = r(u, h) and thus ϕα(ũ) = (x, gh). But then gh · ỹ = g · y implies
ỹ = h−1 · y and hence (ũ, ỹ) = (u, y) · h. Hence ψα : π−1(Uα)→ Uα × S is bijective.

Taking a compatible principal bundle chart (Uβ, ϕβ) such that Uαβ 6= ∅, we obtain
a smooth function ϕαβ : Uαβ → G such that (ϕα ◦ ϕ−1

β )(x, g) = (x, ϕαβ(x)g). This

readily implies that (ψα ◦ ψ−1
β )(x, y) = (x, ϕαβ(x) · y), where we use the left action of G

on S in the second component. This shows that starting from a principal atlas for P ,
we obtain a family (Uα, ψα) that satisfies the assumptions of Lemma 2.2. Thus we can
make P ×G S canonically into a manifold in such a way that (Uα, ψα) is a fiber bundle
atlas. In case that we start from a representation of G on V , the chart changes of this
atlas by construction are linear in each point, so we obtain a vector bundle atlas.

(2) The construction in (1) says that On p−1(Uα) × S, we get ψα ◦ q = (idUα ×`) ◦
(ϕα × idS), where ` : G× S → S is the left action, so q is smooth. Moreover p−1(Uα)×
S = q−1(π−1(Uα)) and we define τα(u, y) := (q(u, y), g) where ϕα(u) = (x, g). One
immediately verifies that this defines a diffeomorphism τα : p−1(Uα)×S → π−1(Uα)×G
and that these fit together to define a principal bundle atlas for q : P × S → P ×G S.

(3) The construction in (1) shows that for u ∈ P with p(u) = x the map y 7→ q(u, y)
defines a bijection from S onto the fiber of P ×G S over x. This shows that τS is
uniquely defined by the required property, and we only have to verify smoothness. But
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now for u, ũ ∈ Px put ϕα(u) = (x, g) and ϕα(ũ) = (x, g̃). Then for y ∈ S we get
ψα(q(ũ, y)) = (x, g̃ · y). But now ũ = r(u, g−1g̃) and hence q(ũ, y) = q(u, g−1g̃ · y). The
induced chart on P ×M (P ×G S) sends (u, q(ũ, y)) to (x, g, g̃ · y). Hence in this chart,
τS is given by (x, h, z) 7→ h−1 · z and this is obviously smooth. �

In the setting of vector bundles that are associated to a fixed principal bundle,
the constructions discussed in the end of Section 2.3 become much easier, since they
can be obtained from constructions with the inducing representations. Suppose that
E = P ×G V for a principal G-bundle p : P → M and a representation V of G. Then
we have the dual representation V ∗ to V which is characterized by g · λ(v) := λ(g−1 · v)
and it is easy to see that P ×G V ∗ can be naturally identified with the dual bundle E∗

as described in Section 2.3. Similarly, there are representations ⊗kV , SkV , and ΛkV
which induce the bundles ⊗kE, SkE, and ΛkE, respectively.

Given a second associated bundle F = P ×G W for a representation of G on W ,
we get representations on V ⊗W characterized by g · (v ⊗ w) = (g · v) ⊗ (g · w) and
on L(V,W ) given by (g · f)(v) := g · (f(g−1 · v)). Passing to associated bundles, these
exactly give the bundles E ⊗ F and L(E,F ) as discussed in Section 2.3.

2.10. Sections of associated bundles. The construction of an associated bundle
directly leads to a description of sections of such a bundle in terms of functions that
satisfy an equivariancy condition.

Proposition 2.10. Let p : P → M be a principal G-bundle, S a smooth manifold
endowed with a left G-action and π : P ×G S →M the corresponding associated bundle.
Then there is a natural isomorphism between the space Γ(P ×G S) of smooth sections
and the space C∞(P, S)G of smooth functions f : P → S that are equivariant in the
sense that for any u ∈ P and g ∈ G, we get f(r(u, g)) = g−1 · f(u). Explicitly, this
correspondence is characterized by s(x) = q(u, f(u)) for any u ∈ Px.

In that case that the action of G comes from a finite dimensional representation of G
on V , this isomorphism is linear for the obvious (point-wise) operations on both spaces.

Proof. Given a smooth section s ∈ Γ(P ×G S), u 7→ (u, s(p(u))) defines a smooth
map P → P × (P ×G S) which by construction has values in P ×M (P ×G S). Hence
f(u) := τS(u, s(p(u))), where τS is the function from part (3) of Lemma 2.9 defines
a smooth map f : P → S. The characterizing property of τS then shows that
s(p(u)) = q(u, f(u)) for each u ∈ P . By construction, this means that q(u, f(u)) =
q(r(u, g), f(r(u, g))) = q(u, g · f(r(u, g))) and this implies g · f(r(u, g)) = f(u) and
hence the required equivariancy condition. It is also clear from the construction that
in the case of an associated vector bundle, the map s 7→ f is linear for the point-wise
structure on C∞(P, V ).

Conversely, given f ∈ C∞(P, S)G, we define s̃(u) := q(u, f(u)) to obtain a smooth
map s̃ : P → P ×GS and by construction π ◦ s̃ = p. As above, equivariancy of f implies
s̃(r(u, g)) = s̃(u) for any g ∈ G. Hence s̃(u) only depends on p(u) ∈ M , so there is a
map s : M → P ×GS such that s̃ = s◦p. Since p is a surjective submersion, s is smooth
and by construction π ◦ s ◦ p = p and hence π ◦ s = idM and hence s is a smooth section
of P ×G S. This construction evidently is inverse to the one above, so this completes
the proof. �

As a first application of these ideas (in an unexpected setting), we can describe
G-structures on a fixed manifold M as sections of an associated bundle.

Corollary 2.10. Fix a closed subgroup G ⊂ GL(V ) for a vector space V of di-
mension n and consider the corresponding homogeneous space GL(V )/G. Then for any
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smooth manifold M of dimension n, G-structures on M are in bijective correspondence
with smooth sections of the fiber bundle π : E := PM ×GL(V ) (GL(V )/G)→M .

Proof. Let o := eG be the base point of the homogeneous space GL(V )/G, and
consider the map q : PM × (GL(V )/G) → E. Given a G-structure Q ⊂ PM and a
point x ∈M , take an open neighborhood U of x in M such that there exists a smooth
section σ : U → PM with values in Q. Putting s(y) := q(σ(y), o) defines a smooth map
s : U → E such that π ◦ s = idU , so we obtain a local smooth section of E. Suppose
that σ̂ : U → PM is another local section. Then for each y ∈ U , there is an element
A ∈ G such that σ̂(y) = r(σ(y), A), which shows that q(σ̂(y), o) = q(σ(y), A · o) = s(y).
Thus all local sections of Q defined on U give rise to the same local section of E. But
this also shows that for a covering {Ui : i ∈ I} of M by such subsets the resulting local
sections of E agree on the intersection of their domains and hence they piece together
to a global smooth section s of E.

Conversely, given a smooth section s : M → E, Proposition 2.10 gives us a smooth
function f : PM → GL(V )/G such that f(r(u,A)) = A−1 · f(u) for all u ∈ PM
and A ∈ GL(V ). Now we put Q := f−1(o) ⊂ PM and verify that this satisfies the
conditions of part (1) of Theorem 2.7. Given x ∈M and u ∈ PxM there is an element
A ∈ GL(V ) such that f(u) = A · o and then r(u,A) ∈ Qx by equivariancy of F so
Qx 6= ∅. Equivariancy of f also readily implies that for u ∈ Qx we get r(u,A) ∈ Qx if
and only if A ∈ G, so the first condition is satisfied. To verify the second condition, take
u ∈ Qx and a local section σ̃ of PM defined on a neighborhood of x such that σ̃(x) = u.
Then f ◦ σ̃ is a smooth map to GL(V )/G that maps x to o. Since the projection
GL(V )→ GL(V )/G admits local smooth sections, we find an open neighborhood U of
x in M and a smooth function A : U → GL(V ) such that f(σ̃(y)) = A(y) · o for any
y ∈ U . But then σ(y) := r(σ̃(y), A(y)) defines a smooth section U → PM with values
in Q and this completes the proof. �

Remark 2.10. Any fiber bundle admits local smooth sections but global smooth
sections do not exist in general (see part (3) of Lemma 2.5). Hence we conclude that
locally G-structures exist on any manifold (of the “right” dimension) but globally, the
question of existence of sections is interesting. Indeed, Corollary 2.10 offers a systematic
approach to the study of existence of G-structures. There is a part of algebraic topology
called obstruction theory, which studies obstructions to existence of global sections of
fiber bundles in terms of cohomology.

The actual behavior may be quite different, even for closely related structures. For
example, it is well known that any manifold admits a Riemannian metric. From the
topological point of view, this is due to the fact that GL(n,R)/O(n) can be iden-
tified with the space of positive definite (n × n)-matrices, which is convex and thus
contractible. In contrast, if one looks for Lorentzian metrics, i.e. pseudo-Riemannian
metrics of signature (n− 1, 1), it is known that such a metric exists on a smooth mani-
fold M of dimension n if and only if there is a nowhere vanishing vector field on M . So
for example such metrics do not exist on spheres of even dimension. Indeed, it turns
out that existence of a nowhere vanishing vector field on M is equivalent to the fact
that the Euler characteristic of M is zero.

To extend the classification of G-structures to the more general setting of a covering
G̃→ G ⊂ GL(V ) discussed in Remark 2.7, an additional step is needed. Starting from
a principal G-bundle P →M one can study the questions of existence and classification
of extensions of P to the structure group G̃. Here an extension is a principal G̃-bundle
P̃ →M endowed with a homomorphism P̃ → P over the given homomorphism G̃→ G
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with base map idM . Again, algebraic topology offers tools to study this questions, for
the situation for spin structures is well understood in terms of so-called Stiefel-Whitney
classes.

2.11. Associated bundles and morphisms. It is not surprising, that associated
bundles have good functorial properties in both arguments. Suppose that F : P → P̃ is
a principal bundle morphism over a homomorphism ϕ : G→ H with base map f . Then
for a space S with a left action of H, we can define a left action of G via g ·y := ϕ(g) ·y.
Then F × idS : P × S → P̃ × S has the property that F ((u, y) · g) = F (u, y) · ϕ(g), so
there is a map F [S] : P ×G S → P̃ ×H S such that F [S] ◦ q = q ◦ (F × idS). Since q is a
surjective submersion, F [S] is smooth and thus a morphism of fiber bundles with base
map f . In case that we start from a representation of H on V , the above procedure
leads to a representation of G, and F [V ] will be a homomorphism of vector bundles.
Moreover, by construction F [V ] restricts to a linear isomorphism in each fiber of P×GV .
In particular, if F is a reduction of structure group (so f = idM), we just obtain the
restriction of the representation of H on V to the subgroup G and by Proposition 2.3,
we see that P ×G V ∼= P̃ ×H V . In this situation, we will identify the associated bundles
without further mentioning.

Similarly, assume that we have given a principal G-bundle P , two manifolds S and
S̃ endowed with left actions of G and a G-equivariant smooth map α : S → S̃, i.e.
α(g · y) = g · α(y) for all g ∈ G and y ∈ S. Then also idP ×α : P × S → P × S̃ is G-
equivariant, so there is a map P [α] : P ×GS → P ×G S̃ such that P [α]◦q = q◦(idP ×α).
As above, P [α] is smooth and thus a morphism of fiber bundles with base-map idM .
Hence there is an induced map Γ(P ×G S) → Γ(P ×G S̃), which can be described
very easily in the language of Proposition 2.10. For s ∈ Γ(P ×G S) corresponding to
an equivariant function f : P → S, the induced section P [α] ◦ s simply corresponds to
α◦f : P → S̃. Of course we can apply this in particular to a homomorphism α : V → Ṽ
between two representations of V and obtain a homomorphism P [α] : P×GV → P×G Ṽ
of vector bundles.

Observe that in the setting of associated vector bundles, these observations provide
a simple proof for the fact that natural isomorphisms between constructions for vector
spaces extend to the corresponding constructions for vector bundles. For example, given
any representation of a Lie group G on V , the representations ⊗k(V ∗) and (⊗kV )∗ are
naturally isomorphic. Now this isomorphism induces an isomorphism between associ-
ated bundles, so ⊗k(E∗) ∼= (⊗kE)∗ where E = P ×GV . Likewise, for a second represen-
tation of G on W , we get (V ⊗W )∗ ∼= V ∗⊗W ∗ and L(V,W ) ∼= V ∗⊗W ∼= L(W ∗, V ∗) of
representations. Putting F := P ×GW , the induced isomorphisms between associated
bundles show that (E ⊗ F )∗ ∼= E∗ ⊗ F ∗ and L(E,F ) ∼= E∗ ⊗ F ∼= L(F ∗, E∗).

These simple observations have tremendous consequences for our perspective on G-
structures. First, we get a relation between representation theory of the group G and
the geometry of G-structures. Suppose that F : P → PM is the reduction of structure
group defining a G-structure on M . Then any representation of G on a vector space
V gives rise to an associated vector bundle P ×G V , and we call these the natural
vector bundles for the G-structure. The inclusion of G into GL(n,R) gives rise to a
representation on Rn, which in turn gives rise to representations on Rn∗, all tensor
products ⊗kRn∗ ⊗ ⊗`Rn and the exterior powers ΛkRn∗ that are again restrictions of
representations of GL(n,R). Hence we conclude that we can realize TM , T ∗M , all
tensor bundles and all bundles of differential forms as such natural bundles.
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But it may happen, that there are more homomorphisms between representations of
G than between the underlying representations of GL(n,R). As an example, for G :=
O(n), mapping v ∈ Rn to 〈v, 〉 defines an isomorphism Rn → Rn∗ of representations
of O(n). Hence this induces an isomorphism between the corresponding associated
bundles, which are TM and T ∗M , respectively. So a choice of O(n)-structure gives
rise to an isomorphism TM → T ∗M , which is certainly not available without a choice.
To describe this explicitly, take x ∈ M and u ∈ Qx. Then X ∈ TxM corresponds to
u−1(X) ∈ Rn, which then should be mapped to the functional 〈u−1(X), 〉 on Rn. The
induced functional on TxM , then maps Y to 〈u−1(X), u−1(Y )〉, which equals gx(X, Y )
since u ∈ Qx. This also shows that the result is independent of the choice of u, so we
have recovered the isomorphism TM → T ∗M induced by a Riemannian metric. This
of course works similarly for all types of tensor bundles.

A slightly different situation occurs for the representation S2Rn∗ that induces the
bundle of symmetric

(
0
2

)
-tensor fields. This is irreducible as a representation of GL(n,R)

but as a representation of O(n) it splits as R⊕S2
0Rn∗ into trace part and trace-free part.

Correspondingly, there are homomorphisms R → S2Rn∗, t 7→ t〈 , 〉 and S2Rn∗ → R
given by b 7→

∑
i b(vi, vi) where {vi} is any orthonormal basis of Rn. Now the associated

bundle corresponding to S2
0Rn∗ comes with an inclusion into S2T ∗M so it defines a

subbundle that is commonly denoted by S2
0T
∗M , but one has to note that this depends

on a choice of O(n)-structure respectively a Riemannian metric. Then the bundle
S2T ∗M can be identified with the Whitney sum of M × R and S2

0T
∗M . So here one

obtains a new natural bundle, which is not available without the G-structure.
The occurrence of additional natural bundles also happens in the generalization of

the notion of G-structures discussed in Remark 2.7. For a covering G̃→ G of a closed
subgroup of GL(V ), the group G̃ may have more representations than the group G,
which lead to natural bundles. Indeed, a major reason for the interest in spin structures
as discussed in Remark 2.7 is that there are representations of the Lie algebra so(n) that
integrate to the simply connected group Spin(n) with Lie algebra so(n) but not to the
group SO(n). Given a spin structure, one may use these so-called spin representations
to form associated bundles that are known as spinor bundles. The Dirac operator that
is a cornerstone of spin geometry actually acts on sections of appropriate spinor bundles.

Second, functoriality in the other variable shows that morphisms of G-structures
nicely act on all natural bundles as defined above. As we have seen in Section 2.8
a morphism f always comes as the base maps of principal bundle homomorphism.
Taking a natural bundle corresponding to a left action of G on S one thus obtains a
homomorphism of fiber bundles with base map f . In the case of natural vector bundles,
these always are vector bundle homomorphisms and hence we get an induced action of
the morphism on sections of the induced vector bundle.

2.12. The standard flat G-structure on Rn. In the discussion of Riemannian
metrics in Section 1.2, we started from Euclidean space En. The corresponding O(n)-
structure on Rn (or on an affine space of dimension n) has an analog for any closed
subgroup G ⊂ GL(n,R). Indeed, the trivialization of TRn ∼= Rn × Rn gives rise to a
trivialization of PRn ∼= Rn × GL(n,R). The inverse of this trivialization maps (x,A)
to the linear isomorphism A : Rn → Rn ∼= TxRn. Of course, Rn × G ⊂ Rn × GL(n,R)
defines a G-structure on Rn, which is called the standard (flat) G-structure. Similarly to
the case of Euclidean motions discussed in Proposition 1.2, we see that that maps of the
form f(x) = Ax+ b with A ∈ G and b ∈ Rn form a Lie group, which is diffeomorphic to
G×Rn. In group theory terms, this is a semi-direct product, so we write it as GnRn.
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Note that for G = GL(n,R) one exactly obtains the group of affine motions of Rn in
that way, so we will refer to the elements of GnRn as G-motions.

Given a G-motion of the form f(x) = Ax + b, we of course have Df(x) = A for
all x ∈ Rn. Consequently, defining F : Rn × G → Rn × G as F (x,B) := (f(x), AB),
we see that F coincides with the restriction of Pf to our G-structure. Hence any
G-motion is an automorphism of the standard flat G-structure on Rn. The proof of
Proposition 1.2 actually shows that in the case that G = O(n), these are the only
isometries and hence the only automorphisms of the G-structure in question. Now
we can rephrase the computation from that proof in Lie theoretic terms and then it
can be applied to any closed subgroup G ⊂ GL(n,R). Recall that for a Lie group
G and a smooth function ϕ : M → G from some manifold M to G, there is the
left logarithmic derivative δϕ ∈ Ω1(M, g), see Section 2.8 of [LieGrp]. By definition
δϕ(x)(X) = Tϕ(x)λϕ(x)−1(Txϕ(X)), so one just transports the value of the tangent map
to the origin by the appropriate left translation. In particular, for M = Rn, we can
interpret δϕ as a smooth map δϕ : M → L(Rn, g) and since g ⊂ L(Rn,Rn), we can
interpret the target space as a subspace of the space ⊗2Rn∗ ⊗ Rn of bilinear maps
Rn × Rn → Rn. Now we first meet an algebraic object that will be crucial for the
further development.

Definition 2.12. Let g ⊂ gl(n,R) be a Lie subalgebra. Then the first prolongation
g(1) of g is the intersection of L(Rn, g) with the subspace of symmetric bilinear maps
Rn × Rn → Rn. So explicitly, a linear map α : Rn → g ⊂ L(Rn,Rn) lies in g(1) if and
only if α(v)(w) = α(w)(v) for any v, w ∈ Rn.

Theorem 2.12. Let G ⊂ GL(n,R) be a closed subgroup and consider the standard
flat G-structure on Rn. Then for any automorphism F of this structure with base map
f , the derivative Df can be viewed as a smooth function Rn → G and then δ(Df) :
Rn → L(Rn, g) has values in the subspace g(1). In particular, if g(1) = {0}, then the
automorphism of the standard flat g-structure on Rn are exactly the G-motions.

Proof. By definition, an automorphism F : Rn×G→ Rn×G must be of the form
F (x,A) = (f(x), Df(x)A) so in particular we must have Df(x) ∈ G for any x ∈ Rn.
Putting ϕ = Df : Rn → G, we by definition get Txϕ(v) = Teλϕ(x)(δϕ(x)(v)). Since
we are working in a matrix group, we can view δϕ(x)(v) as an n × n-matrix and left
translations are linear, so Txϕ(v) is just the matrix product ϕ(x) · (δϕ(x)(v)). Now
the second derivative D2f(x)(v, w) is simply given by evaluating Txϕ(v) on w ∈ Rn, so
putting things together, we get

(2.2) D2f(x)(v, w) = Df(x)((δDf)(x)(v)(w))

Now Df(x) is a linear isomorphism, so symmetry of the second derivative readily implies
that δDf(x) ∈ g(1) ⊂ L(Rn, g).

Assuming that g(1) = {0} we conclude that D2f(x) = 0 for any x ∈ Rn and hence
Df(x) = A for all x ∈ Rn and some fixed A ∈ G. Putting b = f(0) ∈ Rn one concludes
that f(x) = Ax+ b as in the proof of Proposition 1.2. �

In the case that g = o(n), we can easily see that the computation in the proof of
Proposition 1.2 actually shows that o(n)(1) = {0}. Indeed, given a linear map α : Rn →
gl(n,R) consider the trilinear map Φ : (Rn)3 → R defined by Φ(u, v, w) := 〈α(u)(v), w〉.
Then α has values in o(n) iff α(u) is skew symmetric for any u, i.e. iff Φ(u, v, w) =
−Φ(u,w, v). But then α lies in o(n)(1) iff in addition Φ(u, v, w) = Φ(v, u, w). In the
proof of Proposition 1.2 we have shown that these symmetries imply that Φ = 0 and
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hence α = 0. Observe that this argument also shows that g(1) = {0} for any Lie
subalgebra g ⊂ o(n).

Similarly, the computation in Section 1.3 shows that for the Lie algebra sp(n,R) ⊂
gl(n,R) determined by a non-degenerate, skew symmetric bilinear form b (with n even),
the first prolongation sp(n,R)(1) is non-zero. In fact one easily verifies that sending
A ∈ sp(n,R) to the bilinear map (v, w) 7→ b(Av,w) defines a linear isomorphism to
S2Rn∗ and then the first prolongation is isomorphic to S3Rn∗ ⊂ Rn∗ ⊗ S2Rn∗.

What we are doing here admits a nice interpretation in terms of PDEs. Indeed, we
can consider Df(x) ∈ G ⊂ GL(n,R) as a (non-linear) first order PDE on a smooth
function f : U → Rn for any open subset U ⊂ Rn. Theorem 2.12 then identifies
fundamental differential consequences of this equation that lead to restrictions on pos-
sible solutions. If g(1) 6= {0} then one can go ahead and study restrictions on higher
derivatives in a similar fashion and this leads to notions of higher prolongations of a Lie
subalgebra g ⊂ gl(n,R). Indeed, an analysis of this type is available for rather large
classes of PDE replacing Lie subalgebras of gl(n,R) by so called tableaux, which are
subspaces of L(Rn,Rm) for general n and m. An introduction to these ideas can be
found in the book [Ivey-Landsberg].



CHAPTER 3

Connections

As discussed in Section 1.2, a fundamental ingredient for Riemannian geometry is
the Levi-Civita connection. This defines a notion of directional derivative for vector
fields which is compatible with the Riemannian metric in an appropriate sense and
uniquely determined by this property and torsion-freeness. It turns out that the Levi-
Civita connection and similar objects can be obtained from data on a principal bundle.
This will lead to the fundamental result that any G-structure on a manifold admits
connections that are compatible in an appropriate sense. The question of whether
one may select one of these connections by some natural condition turns out to be of
algebraic nature and is closely related to the first prolongation of the Lie algebra g of
G discussed in Section 2.12.

Principal and induced connections

There are different versions of the concept of a connection. The notion that relates
to Riemannian geometry and is easier to understand intuitively is a linear connection on
a vector bundle. On the other hand, there is the concept of principal connections, which
is less intuitive but turns out to be more versatile and technically useful. This then leads
to a linear connection on any associated bundle and indeed, the concept is suggested
by the description of sections of a vector bundle associated to a principal bundle in
Proposition 2.10. Since we will only be interested in linear connections obtained in
that way, we are rather sketchy on how to obtain concepts and results directly in the
language of linear connections.

3.1. Linear connections. Let p : E → M be a vector bundle on a smooth
manifold M . Then one defines a linear connection on E as a bilinear operator ∇ :
X(M)×Γ(E)→ Γ(E) written as (ξ, s) 7→ ∇ξs such that for any f ∈ C∞(M,R), we get
∇fξs = f∇ξs and ∇ξ(fs) = ξ(f)s+ f∇ξs. As usual, linearity over smooth functions in
the first entry implies that for a point x ∈ M , the value ∇ξs(x) ∈ Ex depends only on
ξ(x). The Leibniz rule in the second variable easily implies that, in a local trivialization,
∇ξs(x) ∈ Ex depends on the values and first derivatives of the functions describing s
in the point x. So this is exactly what one would expect from an abstract version of a
directional derivative.

It is easy to see that locally there are linear connections on any vector bundle E.
Given a local frame {si} defined on U ⊂M , any local smooth section of E over U can
be written as

∑
i fisi for smooth functions fi : U → R. Then one can simply define

∇ξs :=
∑

i ξ(fi)si. Using a vector bundle atlas for E and a subordinate partition of
unity, one can glue such local connections to a global connection on E, compare with the
second proof of Theorem 1.9 in [Riem]. Moreover, for two linear connections ∇ and ∇̂
on E, define A : X(M)×Γ(E)→ Γ(E) by A(ξ, s) := ∇̂ξs−∇ξs. Then by definition, this
expression is linear over smooth functions in both arguments. If E = TM , this shows
that A is a

(
1
2

)
-tensor field. In general the same proof as for Lemma 3.3 in [AnaMF]

shows that A(ξ, s)(x) only depends on ξ(x) and s(x). Hence A defines a vector bundle

35
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homomorphism T ∗M ⊗ E → E with base map idM , or, equivalently, a section of the
vector bundle T ∗M⊗L(E,E). Hence the structure of the space of all linear connections
on E is rather simple.

Parallel to the Riemann curvature tensor, one defines the curvature of a general
linear connection. Given a linear connection ∇ on a vector bundle E, one considers the
trilinear map R : X(M)× X(M)× Γ(E)→ Γ(E) defined by

(3.1) R(ξ, η)(s) := ∇ξ∇ηs−∇η∇ξs−∇[ξ,η]s.

By definition, this is skew symmetric in ξ and η. Moreover, a direct computation shows
that R is linear over smooth functions in all arguments, so as above, we conclude that
it defines a section of Λ2T ∗M ⊗ L(E,E). In the case that E = TM this means that R
is a

(
1
3

)
-tensor field which is skew symmetric in the first two entries.

In the case of linear connections on the tangent bundle TM of a smooth manifold
M , there is an additional invariant which will be of crucial importance in what follows.
We define the torsion of a linear connection ∇ on TM as a bilinear operation X(M)×
X(M)→ X(M) by

(3.2) T (ξ, η) := ∇ξη −∇ηξ − [ξ, η].

Again, this is skew symmetric and by definition and standard properties of the Lie
bracket it is bilinear over smooth functions. Hence T defines a skew-symmetric

(
1
2

)
-

tensor field, i.e. a section of the vector bundle Λ2T ∗M ⊗ TM .

To formulate analogs of compatibility of the Levi-Civita connection with the Rie-
mannian metric, one has to extend linear connections to bundles obtained by construc-
tions. This is based on the same naturality principles as the extension of the Levi-Civita
connection to tensor fields, see Section 2.7 of [Riem]. Let E → M be a vector bun-
dle, ∇E a linear connection on E and E∗ → M the dual bundle to E. Given sections
ϕ ∈ Γ(E∗) and s ∈ Γ(E), we can form ϕ(s) ∈ C∞(M,R) via the point-wise dual pairing.
For a vector field ξ ∈ X(M) one then defines

(3.3) (∇E∗

ξ ϕ)(s) := ξ · ϕ(s)− ϕ(∇E
ξ s).

More precisely, one first fixes ξ and ϕ and views the right hand side as an operator
Γ(E)→ C∞(M,R). By definition, this is linear over C∞(M,R) (in s) and hence defines
a section of E∗ that one denotes by ∇E∗

ξ ϕ. Since the right hand side is clearly linear over

smooth functions in ξ, we see that ∇E∗
fξ ϕ = f∇E∗

ξ ϕ. On the other hand, the definition

readily implies that ∇E∗

ξ (fϕ) = ξ(f)ϕ+ f∇E∗

ξ ϕ. Hence we have indeed defined a linear
connection on E∗.

Next for two vector bundles E and F over M with linear connections ∇E and ∇F

consider the tensor product E ⊗ F . Given sections s1 ∈ Γ(E) and s2 ∈ Γ(F ), one can
form the point-wise tensor product s1 ⊗ s2 ∈ Γ(E ⊗ F ). Then one easily proves that
there is a unique linear connection ∇E⊗F on E ⊗ F , such that for each ξ ∈ X(M) and
s1, s2 as above, one gets

(3.4) ∇E⊗F
ξ (s1 ⊗ s2) = (∇E

ξ s1)⊗ s2 + s1 ⊗∇F
ξ s2.

Of course, this then extends to tensor products of more than two factors. In particular,
for a vector bundle E with linear connection ∇E, one obtains connections on all the
bundles ⊗kE ⊗ ⊗`E∗. It is easy to see that these preserve symmetry properties of
tensors, so this also works with symmetric and alternating powers. It is then usual to
simply denote all these connections by ∇. In particular, a linear connection on TM in
this way gives rise to linear connections on all tensor bundles, so one can for example
form the covariant derivative of the torsion of the connection. To form a covariant
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derivative of the curvature of a linear connection ∇ on a vector bundle E, one however
needs additional input, namely an auxiliary linear connection on TM .

3.2. Towards principal connections. As mentioned already, the motivation for
the concept of a principal connection comes from the description of sections of an
associated vector bundle in Proposition 2.10. For a principal G-bundle p : P → M , a
representation of G on V and the corresponding associated vector bundle E := P ×G V
this shows that Γ(E) ∼= C∞(P, V )G. Now smooth functions P → V can be differentiated
in the direction of vector fields on P without problems. It is also easy to make sure
that such a derivative is again equivariant. Given g ∈ G, let us denote by rg : P → P
the principal right action by g. A vector field ξ̃ ∈ X(P ), is then called G-invariant if

(rg)∗ξ̃ = ξ̃ for any g ∈ G. Evidently, G-invariant vector fields form a linear subspace of
X(P ) which we denote by X(P )G.

For ξ̃ ∈ X(P )G we get ξ̃ ∼rg ξ̃ and hence ξ̃(f ◦ rg) = ξ̃(f) ◦ rg for any f ∈ C∞(P, V )
and any g ∈ G, see Proposition 2.2 of [AnaMF]. For f ∈ C∞(P, V )G, we get f ◦
rg = `g−1 ◦ f , where `g−1 : V → V denotes the action of g−1 coming from the given

representation. Since this is a linear map, we conclude that ξ̃(`g−1 ◦ f) = `g−1 ◦ ξ̃(f),

so we conclude that ξ̃(f) : P → V , is G-equivariant, too. Thus the derivative of a G-
equivariant function in direction of a G-invariant vector field is G-equivariant. Observe
further that for ξ̃ ∈ X(P )G and a point u ∈ P , we get ξ̃(rg(u)) = Tur

g(ξ̃(u)). Now

p◦ rg = p implies Trg(u)p◦Turg = Tup and hence Trg(u)p · ξ̃(rg(u)) = Tup · ξ̃(u). Since the

points rg(u) exhaust the fiber of P through u, this means that ξ̃ is projectable. Hence

there is a unique vector field ξ ∈ X(M) such that ξ̃ ∼p ξ and thus ξ(p(u)) = Tup(ξ̃(u))
for all u ∈ P .

Now recall that for u ∈ P , we have the vertical subspace VuP ⊂ TuP and elements
in there can be uniquely written as values of fundamental vector fields ζX(u) for X ∈ g,
see Lemma 2.4. By definition, ζX(u) = d

dt
|t=0r

exp(tX)(u), so for f ∈ C∞(M,V )G we
obtain

(3.5) (ζX · f)(u) = d
dt
|t=0f(rexp(tX)(u)) = d

dt
|t=0 exp(−tX) · (f(u)) = −X · (f(u)),

where in the right hand side we use the infinitesimal action of X ∈ g on f(u) ∈
V . Hence the derivatives of equivariant functions in vertical directions are completely
determined by equivariancy. Observe finally, that for any linear subspace W ⊂ TuP
which is complementary to VuP , the linear map Tup restricts to a linear isomorphism
W → Tp(u)M .

These considerations now motivate the definition of a principal connection as a
distribution on P with specific properties:

Definition 3.2. Let p : P →M be a principal G-bundle.
(1) A principal connection on P is a smooth distribution H ⊂ TP of rank n :=

dim(M) which is complementary to the vertical subbundle and G-invariant, i.e. Hu ∩
VuP = {0} and Hrg(u) = Tur

g(Hu) for any u ∈ P and g ∈ G.
(2) One refers to H as a the horizontal distribution of the principal connection.

A tangent vector X ∈ TuP is called horizontal (with respect to the given principal

connection) if X ∈ Hu. Similarly, a vector field ξ̃ ∈ X(P ) is called horizontal if ξ̃(u) ∈
Hu for all u ∈ P .

Having these preparations at hand, it is rather easy to see that a principal connection
gives rise to a linear connection on any associated vector bundle.
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Theorem 3.2. Let p : P → M be a principal G-bundle and let H ⊂ TP be a
principal connection on P . Then we have

(1) Take a point x ∈M and a tangent vector X ∈ TxM . Then for each point u ∈ P
with p(u) = x there is a unique tangent vector Xh ∈ Hu ⊂ TuP such that Tup ·Xh = X.

(2) For a smooth vector field ξ ∈ X(M) the construction in (1) gives rise to a vector
field ξh ∈ X(P ) which is horizontal and G-invariant.

(3) Let V be a representation of G and E := P ×G V → M the corresponding
associated vector bundle. Given a vector field ξ ∈ X(M), consider ξh ∈ X(P ) as in (2).
For a section s ∈ Γ(E) corresponding to f ∈ C∞(P, V )G, we have ξh(f) ∈ C∞(P, V )G

and denoting the corresponding section by ∇ξs defines a linear connection ∇ on E.

Proof. By definition dim(Hu) = dim(TxM) and since Hu ∩ VuP = {0}, the re-
striction of Tup to Hu is injective. Thus it has to be a linear isomorphism and (1)
follows.

(2) By (1), ξh(u) ∈ Hu is uniquely determined by Tup(ξ
h(u)) = ξ(p(u)). Moreover,

equivariancy of H implies that Tur
g(ξh(u)) ∈ Hrg(u) ⊂ Trg(u)P and of course Trg(u)p

maps this tangent vector to ξ(p(u)). Hence we conclude that ξh(rg(u)) = Tur
g(ξh(u))

and since ξh is horizontal by construction, we only have to show that ξh is smooth in
order to complete the proof of (2).

This is a local question, so we may restrict to an open subset W ⊂ P . Since
H is a smooth distribution, we may choose W in such a way that there is a local
frame {η̃i : i = 1 . . . n} for H defined on W . In addition, we may assume that there
is a principal bundle chart (U,ϕ) for P such that W ⊂ p−1(U). This means that
ϕ : p−1(U) → U × G is a diffeomorphism with first component p, so Tϕ : Tp−1(U) →
TU × TG is a diffeomorphism with first component Tp. Now we define ξ̃ ∈ X(p−1(U))

as ξ̃(y) := (Tyϕ)−1(ξ(p(y)), 0). Clearly this is a local vector field on p−1(U) such that

Tp ◦ ξ̃ = ξ ◦ p, so it is a lift of ξ.
Now choosing a basis {Xα} for g, the vector fields ζXα form a global frame for V P ,

so together with the η̃i, their restrictions to W form a local frame for TP defined on
W . Hence there are smooth functions ai, bα : W → R such that

(3.6) ξ̃|W =
∑

i aiη̃i +
∑

α bαζXα |W .
Hence also

∑
i aiη̃i is a smooth vector field on W , which by construction is horizon-

tal. Since the second sum in (3.6) has values in the kernel of Tp, we conclude that

Typ(
∑

i aiη̃i) = Typ(ξ̃(y)) = ξ(p(y)). But this shows that we must have
∑

i aiη̃i = ξh|W ,
which completes the argument.

(3) In (2) we have seen that ξh ∈ X(P )G, so we already know that for f ∈ C∞(P, V )G,
we also have ξh(f) ∈ C∞(P, V )G and hence the operator ∇ is well defined. Now let
a ∈ C∞(M,R) be a smooth function. Then for ξ ∈ X(M) of course (a ◦ p)ξh ∈ X(P )
has values in H and is a lift of aξ, so we must have (aξ)h = (a ◦ p)ξh. Using this
to differentiate f ∈ C∞(P, V )G, we obtain (a ◦ p)ξh(f), which clearly corresponds to
a∇ξs, where f corresponds to s. Thus we conclude that ∇aξs = a∇ξs. Likewise, as
corresponds to (a ◦ p)f : P → V and applying ξh to this, we obtain

(ξh(a ◦ p))f + (a ◦ p)ξh(f).

Since ξh is a lift of ξ, the first summand coincides with (ξ(a) ◦ p)f , so our expression
corresponds to ξ(a)s+ a∇ξs, which is exactly what we need to complete the proof. �

The tangent vector Xh in (1) is called the horizontal lift of X and the vector field
ξh in (2) is called the horizontal lift of ξ. The linear connection ∇ on P ×G V obtained
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in (3) is referred to as the induced connection obtained from the principal connection
H.

3.3. Connection forms. While the description of a principal connections in terms
of a horizontal distribution gives a very satisfactory explanation for the existence of
induced linear connections, it is not so easy to handle technically. There is a simpler
equivalent description of a principal connection, which is easier to handle technically
and is often used as the definition of a principal connection in the literature. The route
towards this description is visible to some extent from the proof of Theorem 3.2.

In linear algebra terms, a linear subspace Hu ⊂ TuP such that TuP = Hu ⊕ VuP
can be equivalently encoded into the projection Πu : TuP → VuP onto the second
component. By definition X ∈ TuP can be uniquely written as X1 +X2 with X1 ∈ Hu

and X2 ∈ TuP , and Πu(X) := X2. Of course, the linear map Πu satisfies Πu ◦Πu = Πu

and im(Πu) = VuP and it is characterized by these two properties. Moreover, ker(Πu) =
Hu and given a projection onto VuP , one obtains a complementary subspace Hu via this
definition. The projections Πu fit together to define Π : TP → TP (or TP → V P ). As

in the proof of Theorem 3.2, one readily shows that for ξ̃ ∈ X(P ) we get Π(ξ̃) ∈ X(P ),
so Π is a vector bundle homomorphism and can also be interpreted as a

(
1
1

)
-tensor field.

As a second step, we can now use the fact that the vertical subbundle V P is trivial-
ized via fundamental vector fields. This means that for a tangent vector X ∈ TuP and a
vertical projection Π as above, there is a unique element A ∈ g such that Πu(X) = ζA(u).
Sending X to A defines a linear map TuP → g which by construction has the property
that it maps ζA(u) to A for any A ∈ g. Hence we can interpret this construction as
associating to each u ∈ P a linear map γ(u) : TuP → g, so if this is smooth, then it
defines a g-valued one-form γ ∈ Ω1(M, g); see Section 2.7 of [LieGrp] for information
on differential forms with values in a vector space. Now we need a few more notions to
proceed.

Definition 3.3. Let p : P → M be a principal G bundle and let W be a finite
dimensional vector space.

(1) A W -valued differential form ϕ ∈ Ωk(M,W ) is called horizontal if for any point
u ∈ P and tangent vectors X1, . . . , Xk ∈ TuP , we get ω(u)(X1, . . . , Xk) = 0 provided
that one of the Xi lies in VuP ⊂ TuP .

(2) If W is a representation of G, then ϕ ∈ Ωk(M,W ) is called G-equivariant if for
any g ∈ G, u ∈ P and X1, . . . , Xk ∈ TuP , we get

(3.7) ((rg)∗ϕ)(u)(X1, . . . , Xk) = g−1 · (ϕ(u)(X1, . . . , Xk))

(3) A principal connection form on P is a g-valued one-form γ ∈ Ω1(P, g) which
is G-equivariant (for the adjoint representation of G on g) and has the property that
γ(u)(ζA(u)) = A for any u ∈ P and A ∈ g.

Observe that in this terminology, the soldering form θ ∈ Ω1(PM,Rn) from Propo-
sition 2.6 is horizontal and equivariant for the standard representation of GL(n,R) on

Rn. The same holds for the forms θ̃ from Theorem 2.7 for the standard representation
of a closed subgroup of GL(n,R) on Rn.

Theorem 3.3. Let p : P →M be a principal G-bundle.
(1) There is a principal connection form γ on P .
(2) There is a bijective correspondence between principal connection forms γ ∈

Ω1(P, g) and principal connections H ⊂ TP , which is characterized by Hu = ker(γ(u)).
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(3) If γ is a principal connection form on P and ψ ∈ Ω1(P, g) is horizontal and
G-equivariant, then γ + ψ is a principal connection form, too. Conversely, if γ and γ̂
are principal connection forms than γ̂ − γ ∈ Ω1(P, g) is horizontal and G-equivariant.

Proof. (1) Let ϕ : p−1(U) → U × G be a principal bundle chart for P . Let ω be
the left Maurer-Cartan form on G, so ω(g)(X) = Tgλg−1(X) ∈ TeG = g an consider
γ := (pr2 ◦ϕ)∗ω ∈ Ω1(p−1(U), g). By definition, (pr2 ◦ϕ) ◦ rg = ρg ◦ (pr2 ◦ϕ), where ρg

denotes right translation by g in G. Hence (rg)∗γ = (pr2 ◦ϕ)∗(ρg)∗ω and the definition of
ω easily implies that (ρg)∗ω = Ad(g−1)◦ω, see Proposition 2.7 in [LieGrp]. This shows
that (rg)∗γ = Ad(g−1) ◦ γ, so γ is equivariant. For g = exp(tA), we can differentiating
the equation (pr2 ◦ϕ) ◦ rexp(tA) = ρexp(tA) ◦ (pr2 ◦ϕ) with respect to t at t = 0 to see that
Tu(pr2 ◦ϕ)(ζA(u)) = LA(pr2 ◦ϕ(u)), the left invariant vector field generated by A. This
is mapped to A by ω, so γ(ζA(u)) = A follows and hence γ is a connection form on
p−1(U).

Now we take a principal bundle atlas (Uα, ϕα) for P and a partition {fi : i ∈ N}
of unity subordinate to the open covering {Uα} of M . For each i ∈ N choose an index
α(i) such that supp(fi) ⊂ Uα(i) and a principal connection form γi on p−1(Uα(i)). Then
(fi ◦ p)γi can be extended by 0 to an element of Ω1(P, g) and we put γ :=

∑
i(fi ◦ p)γi.

This is a well defined g-valued one-form on P . Since each fi◦p is constant along the fibers
of P , equivariancy of the forms γi implies equivariancy of γ. Moreover γ(u)(ζA(u)) =∑

i fi(p(u))A = A for each u ∈ P and each A ∈ g.

(2) Given a principal connection form γ, we know that each γ(u) : TuP → g is
surjective, so Hu := ker(γ(u)) has dimension dim(P ) − dim(G) = dim(M). Moreover,
one immediately verifies that for a smooth function ψ : P → g, u 7→ ζψ(u)(u) is smooth

and hence defines a vector field on P . This implies that for any vector field ξ̃ ∈ X(P ),

u 7→ ξ̃(u)− ζγ(ξ̃)(u)(u) ∈ Hu defines a vector field on P . Starting from a basis of Hu this
leads to a local frame for H in a neighborhood of u, which shows that Hu is a smooth
distribution. The fact that TuP = Hu ⊕ VuP is obvious from the construction. Finally,
for X ∈ Hu we get ((rg)∗γ)(u)(X) = γ(rg(u))(Tur

g(X)) and by equivariancy, the left
hand side vanishes. This shows that Tur

g(X) ∈ Hrg(u) and hence Tur
g(Hu) ⊂ Hu·g and

since both spaces have the same dimension, they have to agree.
Conversely, if H ⊂ TP is a principal connection, we denote by Π the corresponding

vertical projection and define γ(u) : TuP → g by Πu(X) = ζγ(u)(X)(u) for X ∈ TuP .
Hence ker(γ(u)) = ker(Πu) = Hu and γ(u) is characterized by this property together
with γ(u)(ζA(u)) = A for all A ∈ g. We have already observed that Π is smooth, which
easily implies that γ is smooth and thus a g-valued one-form on P . Hence it remains
to verify equivariancy, i.e. that γ(rg(u))(Tur

g(X)) = Ad(g−1)(γ(u)(X)) for any u ∈ P ,
X ∈ TuP and g ∈ G. Since both sides of the equation are linear in X, it suffices to
insert elements of some basis of TuP and we can take this to consist of elements of Hu

and of VuP . But for X ∈ Hu, we have Tur
g(X) ∈ Hrg(u) and hence both sides of the

equation vanish. On the other hand, take A ∈ g and consider X = ζA(u). Now recall
that exp(tAd(g−1)(A)) = g−1 exp(tA)g and acting with this on rg(u) and differentiating
at t = 0, we get ζAd(g−1)(A)(r

g(u)). But by the property of a right action, the curve can

be written as rg(rexp(tA)(u)), so differentiating we get Tur
g(ζA(u)). But this exactly says

that ((rg)∗γ)(u)(ζA(u)) = Ad(g−1)(A) which is the required property, so the proof of
(2) is complete.

(3) Of course the sum and difference of equivariant forms is equivariant. Since γ+ψ
acts on fundamental fields in the same way as γ, we see that this is again a connection
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form. Conversely, γ and γ̂ act in the same way on fundamental vector fields and hence
on vertical tangent vectors, their difference vanishes on vertical tangent vectors. �

Observe that it is not yet clear whether there are non-zero horizontal equivariant
g-valued one-forms on a principal G-bundle P and how many such forms there are. This
will be clarified in Lemma 3.4 below.

3.4. Curvature of principal connections. The idea for the definition of the
curvature of a principal connection is rather simple. As we shall see, the curvature can
be viewed as the obstruction to integrability of the horizontal distribution. There is a
slick way to formulate this in terms of the principal connection form as follows.

Definition 3.4. Let p : P → M be a principal G-bundle and let γ ∈ Ω1(P, g)
be the connection form of a principal connection H ⊂ TP . Then the curvature form
Ω ∈ Ω2(P, g) is defined by

(3.8) Ω(u)(X, Y ) := dγ(u)(X, Y ) + [γ(u)(X), γ(u)(Y )]

for u ∈ P and X, Y ∈ TuP . Here the bracket in the right hand side is the Lie bracket
of g.

Proposition 3.4. (1) The curvature form Ω ∈ Ω2(P, g) is horizontal and G-
equivariant.

(2) For two sections ξ̃ and η̃ of H ⊂ TP and any point u ∈ P , the vertical component

of [ξ̃, η̃](u) equals ζA(u) where A = −Ω(u)(ξ̃, η̃). In particular, Ω vanishes identically if
and only if the horizontal distribution H is involutive.

Proof. (1) The fact that d commutes with pullbacks extends without problems to
forms with values in a vector space. Hence (rg)∗dγ = d((rg)∗γ) = d(Ad(g−1) ◦ γ). Since
Ad(g−1) is a linear map, the definition of d readily implies that this equals Ad(g−1)◦dγ.
For the second term, we observe that pulling back along rg gives

[((rg)∗γ)(u)(X), ((rg)∗γ)(u)(Y )] = [Ad(g−1)(γ(u)(X)),Ad(g−1)(γ(u)(Y ))]

= Ad(g−1)([γ(u)(X), γ(u)(Y )]),

so equivariancy follows.
To prove horizontality, we have to show that iζAΩ ∈ Ω1(P, g) vanishes identically

for any A ∈ g. Since any tangent vector can be extended to a G-invariant vector
field, it suffices to prove that Ω(ζA, ξ̃) = 0 for any ξ̃ ∈ X(P )G. Now since the flow

of ζA is rexp(tA) we conclude that (FlζAt )∗ξ̃ = ξ̃ and hence 0 = LζA(ξ̃) = [ζA, ξ̃]. Since

γ(ζA) = A is constant, this shows that dγ(ζA, ξ̃) = ζA · γ(ξ̃). But invariance of ξ̃ implies

that ξ̃(rg(u)) = Tur
g(ξ̃(u)) and applying γ(rg(u)) to this, we get ((rg)∗γ)(ξ̃(u)). Hence

equivariancy of γ implies that the smooth function γ(ξ̃) : P → g satisfies γ(ξ̃)(rg(u)) =

Ad(g−1)(γ(ξ̃)(u)). Applying this to g = exp(tA) and differentiating at t = 0 we conclude
that

dγ(ζA, ξ̃) = −[A, γ(ξ̃)] = −[γ(ζA), γ(ξ̃)],

and horizontality follows.

(2) Our assumptions imply that the functions γ(ξ̃) and γ(η̃) vanish identically. So

using the global formula for the exterior derivative, we conclude that Ω(ξ̃, η̃) = −γ([ξ̃, η̃])
and the claim follows. �
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To relate this to the curvature of induced linear connections, we need a generalization
of Proposition 2.10 to differential forms. For a vector bundle E → M we define an E-
valued k-form as a smooth section of the bundle ΛkT ∗M⊗E. Such a form thus associates
to each x ∈ M a k-linear, alternating map (TxM)k → Ex that depends smoothly on x
in an obvious sense. The space of all such forms will be denoted by Ωk(M,E). This
generalizes forms with values in a finite dimensional vector space V , which arise via the
trivial vector bundle M ×V →M . Note however, that for bundle valued forms, there a
priori is neither a well defined pullback nor a wedge product nor an exterior derivative.

Lemma 3.4. Let p : P → M be a principal G-bundle, V a representation of G,
denote by π : P ×G V → M the corresponding associated bundle. Then there is a
natural bijective correspondence between the space of horizontal, equivariant V -valued
k-forms on P and the space Ωk(M,P ×G V ).

Denoting by q : P × V → P ×G V the canonical map, the correspondence between
ϕ ∈ Ωk(P, V ) and α ∈ Ωk(M,P ×G V ) is characterized by

(3.9) α(p(u))(Tup(X1), . . . , Tup(Xk)) = q(u, ϕ(u)(X1, . . . , Xk))

for u ∈ P and X1, . . . , Xk ∈ TuP .

Proof. Having given α ∈ Ωk(M,P ×G V ) and a point u ∈ P , we can define a map
ϕ(u) : (TuP )k → V via (3.9). In the language of Lemma 2.9, this means that

(3.10) ϕ(u)(X1, . . . , Xk) = τV (u, α(p(u))(Tup(X1), . . . , Tup(Xk))) .

Obviously, this vanishes if one of the Xi is vertical, and replacing u by rg(u), we readily
see that ϕ(rg(u))(Tur

g(X1), . . . , Tur
g(Xk)) = g−1 · ϕ(u)(X1, . . . , Xk).

Conversely, given a horizontal, equivariant form ϕ, we observe that for X ∈ TuP
and Y ∈ Trg(u)P with Tup(X) = Trg(u)p(Y ) the difference Y − Turg(X) is vertical. This
implies that Y and Tur

g(X) lead to the same result when inserted into ϕ and using this,
we conclude that we can use (3.9) to define α(p(u)) : (TxM)k → Ex.

Hence the correspondence works out point-wise and it remains to show that smooth-
ness has the same meaning in both pictures. To prove this, we can choose some principal
connection on P and use the resulting horizontal lift for vector fields. Starting from a
smooth form ϕ, take vector fields ξ1, . . . , ξk ∈ X(M). Then (3.9) shows that the smooth
function P → V that maps u to q(u, ϕ(u)(ξh1 (u), . . . , ξhk (u))) descends to the function
α(ξ1, . . . , ξk) on M , which thus is smooth. Conversely, (3.10) shows that starting with a
smooth form α, also ϕ(ξh1 , . . . , ξ

h
k ) is smooth for arbitrary ξi ∈ X(M). But locally, there

are smooth frames for TP which consist of such horizontal lifts and of fundamental
vector fields. Since ϕ vanishes upon insertion of one of the latter, this completes the
proof. �

At this point, we need just one more observation. For a representation β : G →
GL(V ) the derivative β′ : g→ L(V, V ) is not only a homomorphism of Lie algebras but
also a homomorphism for the natural representations of G. Indeed, for g ∈ G, A ∈ g and
v ∈ V , we can compute Ad(g)(A) ·v = d

dt
|t=0 exp(tAd(g)(A)) ·v = d

dt
|t=0g exp(tA)g−1 ·v.

Since the action of g is by a linear map, this just gives g · A · g−1 · v, which is exactly
what we claimed. For the associated bundle E := P ×G V to a principal G-bundle
P , we of course get L(E,E) = P ×G L(V, V ) and hence β′ induces a vector bundle
homomorphism P ×G g → L(E,E). It is common to suppress this from the notation
and just say that a section of P ×G g gives rise to a section of L(E,E). Of course this
applies analogously to differential forms with values in these bundles.
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Theorem 3.4. Let p : P → M be a principal G-bundle, V a representation of G
and E := P ×G V the corresponding associated bundle. Consider a principal connection
form γ on P with curvature form Ω. Then the form in Ω2(M,L(E,E)) induced by the
horizontal equivariant form Ω ∈ Ω2(P, g) via Lemma 3.4 and the infinitesimal represen-
tation g→ L(V, V ) coincides with the curvature R of the induced linear connection on
E.

Proof. This is just a direct computation. Take the definition of R(ξ, η)(s) in
formula (3.1) for ξ, η ∈ X(M) and s ∈ Γ(E). Denoting by f : P → V the equivariant
function corresponding to s, we can expand this as

(3.11) ξh(ηh(f))− ηh(ξh(f))− [ξ, η]h(f) = ([ξh, ηh]− [ξ, η]h)(f).

Since ξh is a lift of ξ, we get ξh ∼p ξ and similarly for η. This implies that [ξh, ηh] ∼p [ξ, η]
so [ξh, ηh] is a lift of [ξ, η]. But this means that ([ξh, ηh]−[ξ, η]h)(u) ∈ VuP for any u ∈ P .
To compute this, we can apply γ, which of course kills [ξ, η]h and since γ(ξh) and γ(ηh)
vanish identically, we see that

γ([ξh, ηh]) = −dγ(ξh, ηh) = −Ω(ξh, ηh).

This means that the right hand side of (3.11) can be written as ζ−Ω(ξh,ηh)(f). By formula

(3.5) this sends u ∈ P to Ω(ξh, ηh)(u) · (f(u)) where the dot now indicates the action of
g on V . But by Lemma 3.4, this implies our claim. �

3.5. Torsion. To close the circle, we consider the case of a principal G-bundle
p : P → M such that the tangent bundle TM is associated to P . This means that
there is a representation of G on Rn with n = dim(M) such that P ×G Rn ∼= TM .
With the tools we have at hand, we can get a nice characterization of this situation
which generalizes the ideas from Section 2.7. Given a representation of G on Rn an
isomorphism TM → E := P ×G Rn defines a one-form α ∈ Ω1(M,E) such that α(x) :
TxM → Ex is a linear isomorphism for each x ∈ M . By Proposition 2.3 a form α with
this property conversely gives rise to an isomorphism TM → E. Lemma 3.4 shows that
Ω1(M,E) is isomorphic to the space of horizontal, equivariant, Rn-valued one-forms on
P . For such a form θ, the condition that α(p(u)) is injective is equivalent to the fact
that ker(θ(u)) = VuP , and, as in 2.7, we say that θ is strictly horizontal in this case.
Thus we can equivalently phrase the fact that TM is associated to P as the fact that we
have given a representation of G on Rn and a strictly horizontal, G-equivariant one-form
θ ∈ Ω1(P,Rn).

For a linear connection ∇ on TM , the torsion is a section of Λ2T ∗M ⊗ TM , so we
can view it as T ∈ Ω2(M,TM). Hence this corresponds to a form τ ∈ Ω2(P,Rn) which
is horizontal and G-equivariant. In case that ∇ is induced by a principal connection on
P , we can easily describe τ explicitly in terms of the connection form γ and the form
θ. It is common to refer to T and τ also as the torsion of γ and to call γ torsion-free if
this torsion vanishes identically.

Proposition 3.5. Let p : P →M be a principal G-bundle endowed with a principal
connection form γ and fix a representation of G on Rn such that there is a strictly
horizontal, G-equivariant one-form θ ∈ Ω1(P,Rn). Then the form τ describing the
torsion of the induced linear connection on TM ∼= P ×G Rn is explicitly given by

(3.12) τ(u)(X, Y ) = dθ(u)(X, Y ) + γ(u)(X) · θ(u)(Y )− γ(u)(Y ) · θ(u)(X)

for u ∈ P and X, Y ∈ TuP . Here in the right hand side the dot indicates the infinitesimal
representation of g on Rn.
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Proof. By construction, for u ∈ P and X ∈ TuP we get α(p(u))(Tup · X) =
q(u, θ(u)(X)). As we have noted already, this means that the equivariant function

P → Rn corresponding to ξ ∈ X(M) can be written as θ(ξ̃) where ξ̃ is any lift of ξ. In
particular, we may use the horizontal lift ξh of ξ with respect to the principal connection
determined by γ. Hence the equivariant function corresponding to ∇ξη can be written
as ξh ·θ(ηh) and similarly for ∇ηξ. Since [ξh, ηh] is a lift of [ξ, η] the equivariant function
corresponding to [ξ, η] equals θ([ξh, ηh]). Overall, we see that T (ξ, η) corresponds to
dθ(ξh, ηh) and thus τ(u)(X, Y ) = dθ(u)(Xh, Y h) for any u ∈ P and X, Y ∈ TuP .

Now we can write Xh = X − ζγ(u)(X)(u) and similarly for Y and use bilinearity of
dγ(u). But as in the proof of Proposition 3.4, one shows that equivariancy of θ implies
that dθ(u)(ζA(u), Y ) = −A · (θ(u)(Y )) and using this (3.12) follows immediately. �

Observe that equation (3.12) in particular shows that for fixed P and θ, τ(u) depends
only on γ(u) and not on derivatives. This is in sharp contrast to the curvature of γ,
which involves dγ and will be absolutely crucial for the further development.

For later use, we show that the construction of gluing local principal connections to
a global connection used in the proof of Theorem 3.1 is nicely compatible with torsion.

Corollary 3.5. Let p : P → M be a principal G-bundle as in Proposition 3.5.
Let {Uk : k ∈ N} be a countable covering of M , {fk : k ∈ N} a subordinate partition of
unity. For each k, let γk ∈ Ω1(p−1(Uk), g) be a principal connection form with torsion
Tk and consider the connection γ =

∑
k(fk ◦ p)γk as in the proof of Theorem 3.1. Then

the torsion T of γ is given by
∑

k fkTk.

Proof. Of course, if Tk corresponds to τk ∈ Ω2(p−1(Uk),Rn) then
∑

k fkTk corre-
sponds to

∑
(fk ◦ p)τk. Now by equation (3.12) we get

τk(u)(X, Y ) = dθ(u)(X, Y ) + γk(u)(X) · θ(u)(Y )− γk(u)(Y ) · θ(u)(X)

for each u ∈ p−1(Uk) and X, Y ∈ TuP . Multiplying both sides with fk(p(u)), the
equation then trivially extends to all u ∈ P and all X, Y ∈ TuP . Observe that in this
equation the last term can be written as −((fk ◦ p)γk)(u)(Y ) · θ(u)(X) and similarly for
the last but one term. Summing over all k, the first term in the right hand side simply
reproduces dθ(u)(X, Y ) and the claim follows from Proposition 3.5. �

Connections on G-structures

3.6. Definitions and an example. Since a G-structure on a smooth manifold M
in particular comes with a principal G-bundle p : P → M , we can consider principal
connections on this principal bundle. These are usually just referred to as connections
on a G-structure or as connections compatible with a G-structure. In particular, part
(1) of Theorem 3.3 implies that there is a principal connection on any G-structure and
the space of all such connections is described by part (3) of that theorem. Moreover, the
tangent bundle TM is just the associated bundle P×GRn corresponding to the standard
representation of G ⊂ GL(n,R), so by Theorem 3.2 any connection on a G-structure
induces a linear connection on TM . The terminology of being compatible with the
G-structure is extended to the resulting linear connections. Let us discuss what this
means in an example.

Example 3.6. Let (M, g) be a Riemannian manifold, so the corresponding O(n)-
structure is given by the orthonormal frame bundle p : P → M for g. We claim that
principal connections on P are in bijective correspondence with linear connections on
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TM which are metric for g. This can be either phrased as ∇g = 0 for the induced
connection on S2T ∗M or as the fact that for ξ, η1, η2 ∈ X(M) one always gets

(3.13) ξ(g(η1, η2)) = g(∇ξη1, η2) + g(η1,∇ξη2).

Let us start from principal connection form γ ∈ Ω1(P, o(n)) on P . Given η1, η2 ∈ X(M)
consider the associated functions f1, f2 : P → Rn. These are characterized by u(fi(u)) =
ηi(p(u)) for i = 1, 2. But this means that

g(η1, η2)(x) = gx(u(f1(u)), u(f2(u))) = 〈f1(u), f2(u)〉
for any u ∈ Px and the standard inner product 〈 , 〉 on Rn. Now take another vector
field ξ ∈ X(M) and its horizontal lift ξh ∈ X(P ) with respect to γ.

Then from Theorem 3.2, we know that the induced linear connection ∇ on TM has
the property that ∇ξηi corresponds to the function ξh · fi for i = 1, 2. On the other
hand, since ξh lifts ξ, we see that

ξ · g(η1, η2) = ξh · (g(η1, η2) ◦ p) = ξh · 〈f1, f2〉 = 〈ξh · f1, f2〉+ 〈f1, ξ
h · f2〉.

Here for the last equality, we have used bilinearity of the standard inner product. But
from above, we conclude that this exactly gives (3.13). In fact, it is even easier to
directly verify ∇g = 0. We know that S2T ∗M ∼= P ×G S2Rn∗ and hence g corresponds
to an equivariant function P → S2Rn∗ and our above observations exactly mean that
this function is constant and sends each point u ∈ P to the standard inner product.
But this immediately shows that ∇ξg = 0 for the induced connection on S2T ∗M .

So let us conversely assume that ∇ is a linear connection on TM which is metric for
g. Choose any principal connection γ̂ on P and consider the induced linear connection
∇̂ on TM . Then (ξ, η) 7→ ∇̂ξη − ∇ξη is bilinear over smooth functions, so it equals

A(ξ, η) for a tensor field A ∈ T 1
2 (M). Moreover, the fact that both ∇ and ∇̂ are metric

for g readily implies that

0 = g(A(ξ, η1), η2) + g(η1, A(ξ, η2)).

Now observe that L(TM, TM) = P ×G L(Rn,Rn) and o(n) ⊂ L(Rn,Rn) is an O(n)-
invariant subspace. Hence this gives rise to a natural subbundle o(TM) that consist of
maps that are skew symmetric with respect to gx in each point x. So our observation
just says that we can consider A as a one-form on M with values in the bundle o(TM).
But now by Lemma 3.4, A corresponds to a form ϕ ∈ Ω1(P, o(n)), which is horizontal
and G-equivariant. Moreover, by Theorem 3.3, γ := γ̂ − ϕ is a principal connection
form on P and we claim that this induces ∇.

Given ξ ∈ X(M) let us denote by ξ̂h and ξh the horizontal lifts with respect to γ̂ and

γ, respectively. Then γ(ξ̂h)(u) = −ϕ(ξ̂h)(u) and hence ξh(u) = ξ̂h(u)+ζϕ(ξ̂h)(u)(u). Now

for an equivariant function f : P → Rn, we get ζϕ(ξ̂h)(u)(u) · f = −ϕ(ξ̂h)(u)(f(u)) where

in the right hand side we apply a linear map lying in o(n) to f(u) ∈ Rn. Viewing this
as a function of u, this is G-equivariant and by construction corresponds to −A(ξ, η),
where η denotes the vector field corresponding to f . But this exactly implies that the
linear connection induced by γ acts on η as ∇̂ξη −A(ξ, η) = ∇ξη, which completes the
proof of our claim.

What one should have in mind here is that a connection on a G-structure is compat-
ible with all the natural tensor fields and bundle maps induced by the G-structure. We
will discuss this in several examples below. Here we just observe that Theorem 3.3 gives
us a precise description of the space of all connections on a G-structure p : P → M on
M . By part (1) of that theorem, there is at least one such connection, say it is given
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by γ ∈ Ω1(P, g) and all such connections are of the form γ̂ = γ +ϕ for a G-equivariant,
horizontal one-form ϕ ∈ Ω1(P, g). From Lemma 3.4 we know in turn that these forms
are in bijective correspondence with all forms in Ω1(M,P ×G g). But the latter as-
sociated bundle can be easily made explicit. By construction g is a Lie subalgebra of
gl(n,R) and it is invariant under the adjoint action of G. Hence we can view it as a
G-invariant linear subspace in L(Rn,Rn) and hence P ×G g naturally is a subbundle of
P ×G L(Rn,Rn) ∼= L(TM, TM). As in the discussion in Example 3.6 above, it is easy
to describe this subbundle explicitly in specific cases.

3.7. Intrinsic torsion. We can use the considerations about connections on G-
structures obtain a fundamental invariant for G-structures. Whether this invariant can
be non-trivial depends on the type of G-structure, so we can observe different behavior
here. For a Lie subalgebra g ⊂ gl(n,R) consider the linear map

(3.14) ∂ : Rn∗ ⊗ g→ Λ2Rn∗ ⊗ Rn ∂ϕ(v, w) := ϕ(v)(w)− ϕ(w)(v).

Here we view the left hand side as L(Rn, g) and the right hand side as skew-symmetric
bilinear maps Rn × Rn → Rn. Alternatively, since g ⊂ Rn∗ ⊗ Rn, we can view ∂ as the
restriction of the alternation Rn∗ ⊗ Rn∗ ⊗ Rn → Λ2Rn∗ ⊗ Rn to the subspace Rn∗ ⊗ g.
Observe that by definition, we get ker(∂) = g(1), the first prolongation of g from Section
2.12, and this will be important later on.

But now we start by looking at the cokernel of ∂, i.e. the quotient

(3.15) I := (Λ2Rn∗ ⊗ Rn)/ im(∂).

Observe that G naturally acts on both the domain and the source of ∂. Explicitly, the
actions are given by (A·ϕ)(v) = Ad(A)(ϕ(A−1v)) = Aϕ(A−1v)A−1 and by (A·ψ)(v, w) =
Aψ(A−1v, A−1w), respectively. But this immediately shows that ∂ is G-equivariant and
consequently ker(∂) ⊂ Rn∗ ⊗ g and im(∂) ⊂ Λ2Rn∗ ⊗ Rn are G-invariant subspaces.
In particular, I naturally carries a representation of G and hence for any G-structure
p : P → M , we can form the associated bundle IM := P ×G I. In an obvious sense,
this is a quotient bundle of Λ2T ∗M ⊗ TM , so there is is natural bundle map Π from
that bundle to IM . In particular, any form ψ ∈ Ω2(M,TM) can be naturally projected
to a section Π(ψ) ∈ Γ(IM).

Theorem 3.7. Fix a closed subgroup G ⊂ GL(n,R) with Lie algebra g and let I be
the representation of G defined in (3.15). Let p : P → M be a G-structure on M and
let γ ∈ Ω1(P, g) be a principal connection on P with torsion T ∈ Ω2(M,TM). Then

(1) The the section Ti := Π(T ) ∈ Γ(IM) is independent of the choice of γ.
(2) Ti is an invariant of the G-structure in the sense that for any morphism F :

P̃ → P of G-structures with base map f , we get (with obvious notation) f ∗Ti = T̃i.
(3) Ti vanishes identically if and only if the G-structure admits a compatible torsion-

free connection.

Proof. (1) Given γ, any other principal connection on P is of the form γ̂ = γ + ϕ
where ϕ ∈ Ω1(P, g) is horizontal and G-equivariant. Using formula (3.12) from Theorem
3.5, we conclude that the torsion τ̂ of γ̂ is given by

(3.16) τ̂(u)(X, Y ) = τ(u)(X, Y ) + ϕ(u)(X) · θ(u)(Y )− ϕ(u)(Y ) · θ(u)(X).

By Lemma 3.4, we can view ϕ as a one-form on M with values in the bundle P ×G g ⊂
L(TM, TM) and hence as a section of P ×G (Rn∗ ⊗ g). This in turn is represented
by an equivariant function h : P → Rn∗ ⊗ g and evidently the last two terms in the
right hand side of (3.16) correspond to ∂ ◦h. But this exactly means that the functions



CONNECTIONS ON G-STRUCTURES 47

corresponding to the torsions T̂ and T differ by some element in the image of ∂ and
hence Π(T̂ ) = Π(T ).

(2) Let F : P̃ → P be a morphism of G-structures, which implies that F ∗θ = θ̃.
Then it follows readily from the definitions γ̃ := F ∗γ ∈ Ω1(P̃ , g) is a principal connection
form, so this defines a connection on the G-structure P̃ . Using compatibility of pullbacks
with the exterior derivative, formula (3.12) then shows the torsion τ̃ of γ̃ is simply given
by F ∗τ . In the language of forms on M , this says that T̃ = f ∗T , which implies the
claim by part (1).

(3) Existence of a torsion-free compatible connection evidently implies vanishing
of the intrinsic torsion. Conversely, take a G-structure with vanishing intrinsic torsion.
Then it suffices to construct a compatible torsion-free connection locally, since by Corol-
lary 3.5 local torsion-free connections can be glued to a global torsion-free connection.

Assume that γ is a connection on a G-structure for which the intrinsic torsion Ti
vanishes and let h : P → Λ2Rn∗ ⊗ Rn be the equivariant function corresponding to its
torsion T . By assumption, h has values in the image of ∂. Of course, we can choose
a linear map s : im(∂) → Rn∗ ⊗ g such that ∂ ◦ s = id, but s is not G-equivariant in
general. However, let U ⊂ M be open such that there is a local section σ : U → P .
Then −s ◦ h ◦ σ : U → Rn∗ ⊗ g is smooth, and of course there exists a unique G-
equivariant smooth function ψ : p−1(U) → Rn∗ ⊗ g such that ψ ◦ σ = −s ◦ h ◦ σ and
hence ∂ ◦ ψ ◦ σ = −h ◦ σ. But since ∂ ◦ ψ and −h both are G-equivariant, this implies
that ∂ ◦ ψ = −h on all of p−1(U).

Now ψ corresponds to an element of Ω1(U, P ×G g) and hence to a form ϕ ∈
Ω1(p−1(U), g), which is horizontal and G-equivariant. Then by Theorem 3.3, γ̂ :=
γ|p−1(U) + ϕ is a principal connection on p−1(U) and then the computation in the be-
ginning of this proof shows that γ̂ is torsion-free. �

Definition 3.7. The invariant Ti constructed in the theorem is called the intrinsic
torsion of a G-structure.

3.8. Normalizing torsion. By Theorem 3.7, we can restrict our interest to com-
patible torsion-free connections in the case of G-structures with vanishing intrinsic
torsion. To move towards the question of existence of canonical connections on G-
structures, the next step is trying to find a distinguished value for the torsion in the
general case. Again by Theorem 3.7, we know that the torsions of all connections on
a G-structure have the same image in the quotient by im(∂). The natural way to pin
down one of these values is to require that it lies in a specified complement to im(∂) in
Λ2Rn∗⊗Rn. However, since we are dealing with equivariant functions and want to get a
condition that has geometric meaning, we have to restrict our attention to G-invariant
complements.

Definition 3.8. Fix a matrix group G ⊂ GL(n,R), let g be its Lie algebra and let
∂ be the map from (3.14). A normalization condition for the torsion of G-structures is a
G-invariant linear subspace N ⊂ Λ2Rn∗ ⊗Rn, which is complementary to the subspace
im(∂).

In general, invariant subspaces do not admit invariant complements, so such nor-
malization conditions need not exist for general groups G. Under certain assumptions,
for example if G is compact or semi-simple, the existence of invariant complements fol-
lows from general results on complete reducibility of representations. If a normalization
conditions exists, then it need not be unique in general. If N and N ′ are normalization
conditions, then for each v ∈ N , there is a unique element f(v) ∈ im(∂) such that
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v + f(v) ∈ N ′ and this defines a linear map f : N → im(∂). Equivariancy of N ′
then implies that for g ∈ G, we get g · v + g · f(v) ∈ N ′ and uniqueness shows that
g · f(v) = f(g · v), so f is G-equivariant. Conversely, given N and a G-equivariant
linear map f : N → im(∂), one can put N ′ := {v + f(v) : v ∈ N} to obtain another
normalization condition. So one can prove that a normalization condition is unique by
showing that there are no G-equivariant maps N → im(∂). In any case, non-uniqueness
of normalization conditions is not a big problem, since one can fix a choice of N as a
part of the ingredients for the study of G-structures for fixed G.

By definition, a normalization condition N is a representation of G. Hence we can
consider the associated bundle P ×GN and this is a subbundle of Λ2T ∗M ⊗ TM . Now
we call a principal connection on P normal (with respect to N ) iff its torsion has values
in P ×GN ⊂ Λ2T ∗M ⊗ TM . On the other hand, the restriction of the projection from
Λ2Rn∗ ⊗ Rn to its quotient by im(∂) restricts to an isomorphism of representations on
N . Consequently, P ×G N is isomorphic to IM = P ×G I, so once we have fixed N ,
we can view the intrinsic torsion of a G-structure as a section of P ×G N .

Theorem 3.8. Let G be a matrix group such that there is a normalization condition
N for the torsion of G-structures and let us fix N .

Then any G-structure p : P → M admits a normal connection. Moreover, for any
normal connection γ on P , the torsion of T of γ coincides with the intrinsic torsion Ti,
viewed as a section of P ×G N .

Proof. If we have a normal connection, then its torsion has to lie in P×GN and we
know that it has to project to the intrinsic torsion Ti in P ×G I, so the last statement
follows. Moreover, Corollary 3.5 shows that gluing local connections with torsion in
P ×G N we get a global connection with torsion in P ×G N . Hence we conclude that
it suffices to construct normal connections locally, so we take U ⊂ M open for which
there exists a local section σ : U → P of P . Let γ be a connection form on p−1(U)
and let h : P → Λ2Rn∗ ⊗ Rn be the equivariant function corresponding to the torsion
T of γ. By assumption, the target space equals N ⊕ im(∂) and correspondingly we can
write h = h1 + h2 for equivariant functions h1 with values in N and h2 with values in
im(∂). Now as in the proof of Theorem 3.7, we can construct an equivariant function
ψ : p−1(U) → Rn∗ ⊗ g such that ∂ ◦ ψ = −h2. As there, this corresponds to a form
ϕ ∈ Ω1(p−1(U), g) which is horizontal and G-equivariant and the principal connection
γ + ϕ has torsion represented by h1 and hence is normal. �

3.9. Canonical connections. We are now ready to exhibit a class of G-structures
which, similar to Riemannian metrics, admit canonical connections. As we shall see,
this has strong consequences.

Theorem 3.9. Let G ⊂ GL(n,R) be a matrix group such that there is a normaliza-
tion condition N for the torsion of G-structures and let us fix N . Assume in addition
that the first prolongation g(1) of the Lie algebra g of G is trivial.

Then for any G-structure p : P → M , there is a unique normal connection γN
on P . This connection is an invariant of the G structure, in the sense that for any
isomorphism F : P̃ → P of G-structures we obtain (in obvious notation) F ∗γN = γ̃N .
Hence also the curvature of γN is an invariant of the G-structure.

Proof. We know from Theorem 3.8 that there is a normal connection γ on P . If γ̂
is another normal connection on P , then again by Theorem 3.8, γ and γ̂ have the same
torsion. Now from Theorem 3.3, we know that γ̂ = γ + ϕ for a horizontal equivariant
form ϕ ∈ Ω1(P, g). But from the proof of Theorem 3.7, we know that τ̂ = τ implies
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that ϕ(u)(X)(Y ) = ϕ(u)(Y )(X) for all u ∈ P and X, Y ∈ TuP . But this exactly means
that the equivariant function P → Rn∗ ⊗ g corresponding to ϕ actually has values in
g(1) = {0} and uniqueness follows.

If F : P̃ → P is an isomorphism of G-structures, then F ∗γN is a principal connection
on P̃ . As we have noted in the proof of Theorem 3.7, the torsion T̃ of F ∗γN is the
pullback f ∗T , where f is the base map of F and T is the torsion of γN . In terms of
equivariant functions with values in Λ2Rn∗⊗Rn pulling back just means composing with
F , so the torsion of F ∗γN has values in N , so this connection is normal. By uniqueness,
it has to coincide with γ̃N . The definition of curvature easily implies that the curvature
of F ∗γN is F ∗Ω, where Ω is the curvature of γN , so the curvature is an invariant. �

Let us revisit the standard flat G-structure on Rn from Section 2.12 from our current
perspective. By definition, this is given by the trivial principal bundle P := Rn × G
viewed as a subbundle of the (trivial) linear frame bundle Rn×GL(n,R)→ Rn. Hence
we can identify TP ∼= TRn×TG and thus view tangent vectors at (x, g) as pairs (v,X)
with v ∈ Rn and X ∈ TgG. In this language, it follows readily from the definitions that
the canonical Rn-valued form is given by θ(x, g)(v,X) = g−1(v). On the other hand,
we can define γ ∈ Ω1(P, g) by γ(x, g)(v,X) := Tgλg−1(X), where λg : G → G denotes
left translation by g. The principal right action on P is just given by rh(x, g) = (x, gh).
Hence

((rh)∗γ)(x, g)(v,X) = γ(x, gh)(v, Tgρ
h(X)) = Ad(h−1)(γ(x, g)(v,X)),

so γ is G-equivariant. Moreover, the fundamental vector fields on P are given by
ζY (x, g) = (0, LY (g)), where LY is the left invariant vector field generated by Y ∈ g and
hence γ(ζY ) = Y . Thus γ defines a principal connection on P for which the horizontal
subspace consists of the vectors of the form (v, 0).

Now we can easily compute that both the torsion and the curvature of γ vanish
identically. We can either go through the constructions and verify that the induced
linear connection on TRn is simply given by taking directional derivatives of vector fields
viewed as Rn-valued functions. Alternatively, we can observe that the forms Ω from
Definition 3.4 and τ from Proposition 3.5 that describe the torsion and the curvature are
horizontal. Thus it suffices to verify that they vanish upon insertion of two horizontal
lifts ∂hi = (∂i, 0) of coordinate vector fields ∂i = ∂

∂xi
on Rn. Now θ(x, g)(∂hi ) = g−1(ei)

and γ(∂hi ) = 0 and [∂hi , ∂
h
j ] = 0 and plugging these into the formulae, it follows readily

that Ω(∂hi , ∂
h
j ) = 0 and τ(∂hi , ∂

h
j ) = 0.

In particular, the intrinsic torsion of the standard flat G-structure vanishes iden-
tically. If we in addition assume that we are in our current setting that g(1) = {0},
we see that independent of the choice of normalization condition we have 0 ∈ N and
hence γ = γN . Hence in this case, also the second invariant we have obtained, namely
the curvature of γN vanishes identically. We can next prove in general that this locally
characterizes the standard flat G-structure on Rn.

Proposition 3.9. Let G ⊂ GL(n,R) be a matrix group such that there is a normal-
ization condition N for the torsion of G-structures and such that the first prolongation
g(1) of the Lie algebra g of G is trivial.

Then for a G-structure p : P → M both the intrinsic torsion Ti and the curvature
of γN vanish identically if and only if for each point x ∈ M has an open neighborhood
U ⊂ M such that p−1(U) → U is isomorphic (as a G-structure) to the standard flat
G-structure on an open subset of Rn.
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Proof. This is based on another interpretation of the standard flat G-structure.
Consider the group G̃ := G o Rn of G-motions and G ⊂ G̃ as the isotropy group of
0 ∈ Rn. Then we can consider the projection π : G̃ → Rn defined by π(f) := f(0)
as the trivial principal G-bundle with the principal right action given by multiplication
by elements of the subgroup G from the right. So this is just the standard principal
G-bundle π : G̃ → G̃/G. Now of course TeG̃ ∼= g ⊕ Rn as a vector space, so we can
combine the canonical Rn-valued form and the connection form to a form with values
in g̃, and we claim that this is just the left Maurer-Cartan form ω of G̃. This is easily
verified by realizing G̃ as the closed subgroup of GL(n+ 1,R) consisting of all matrices

of the form

(
A b
0 1

)
with A ∈ G and b ∈ Rn. In this picture, the action as G-motions

simply comes from acting on vectors of the form
(
v
1

)
with v ∈ Rn.

Now clearly the tangent space T(A,b)G̃ consists of all matrices of the form

(
X v
0 0

)
with X ∈ TAG and v ∈ Rn. Moreover, in a matrix group left translations are linear,
and hence coincide with their tangent maps. Since evidently (A, b)−1 = (A−1,−A−1b),
one immediately computes that ω(A, b)(X, v) = (A−1X,A−1v), which coincides with
what we obtained above. Then interpretation as a matrix group also readily shows that
the Lie bracket on g̃ is given by [(X, v), (Y,w)] = ([X, Y ], Xw − Y v). This then shows
that vanishing of the torsion and the curvature of our connection is equivalent to the
Maurer-Cartan equation 0 = dω(ξ, η) + [ω(ξ), ω(η)] for the left Maurer-Cartan form.

Now let us assume that we have given a G-structure p : P →M with canonical form
θ and normal connection γN such that both the torsion and the curvature of γN vanish
identically. Then we put ψ := γN ⊕ θ ∈ Ω1(P, g̃) and, as above, vanishing of the torsion
and curvature of γN exactly say that ψ satisfies the Maurer-Cartan equation. Now fix
a point x ∈M and a local section σ of P defined on a neighborhood of x ∈M and put
u := σ(x). By Theorem 2.9 of [LieGrp] there exists an open neighborhood V of u in
P and a unique smooth function F̃ : V → G̃ with F̃ (u) = e such that ψ = F̃ ∗ω. By
construction, both ψ and ω restrict to linear isomorphisms on each tangent space, so
each tangent map of F̃ has to be a linear isomorphism. Hence we may assume that F̃
is a diffeomorphism from V onto an open neighborhood of e in G̃.

Since the fundamental vector fields on our two bundles are characterized by their
values under ω and ψ, respectively, it follows that F̃ ∗ζA = ζA for any A ∈ g, where
we denote fundamental fields on both bundles by the same symbol. Hence the flows
of the fields are F̃ -related, and hence F̃ ◦ rexp(tX) = rexp(tX) ◦ F̃ for any X ∈ g and
sufficiently small t. Shrinking V we can assume that V ⊂ p−1(U) where σ is defined
on U and σ(U) ⊂ V . Possibly shrinking further, we can assume that y 7→ π(F̃ (σ(y)))
defines a diffeomorphism from U onto an open neighborhood W of 0 in Rn = G̃/G.
But then mapping π(F̃ (σ(y))) to F̃ (σ(y)) defines a local smooth section of G̃ → G̃/G
on W . Hence we can define a G-equivariant diffeomorphism F : p−1(U) → π−1(W )
by F (rA(σ(y))) := F̃ (σ(y))A for any y ∈ U and A ∈ G. By construction, this is G-
equivariant and from above we see that it coincides with F̃ on the neighborhood V of
σ(U).

The last observation in particular implies that F ∗ω|V = F̃ ∗ω|V = ψ|V . To conclude
the proof, it suffices to show that this holds on all of p−1(U) since then F is a morphism
of G-structures. But the representation of G̃ as a matrix group readily implies that for
A ∈ G, we get Ad(A)(X, v) = (AXA−1, Av). This shows that (rA)∗ψ = Ad(A−1) ◦ ψ,
so ψ is G-equivariant as a form with values in g̃, and we know that also ω has this
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property. Now for A ∈ G consider the open set rA(V ), observe that rA
−1

: rA(V )→ V to

conclude that F ∗ω|V = ψ|V implies that on rA(V ) we obtain (rA
−1

)∗F ∗ω = (rA
−1

)∗ψ =

Ad(A) ◦ψ. But then F ◦ rA−1
= rA

−1 ◦F shows that the left hand side can be rewritten

as F ∗((rA
−1

)∗ω) = F ∗(Ad(A) ◦ ω) = Ad(A) ◦ F ∗ω. Hence F ∗ω|rA(V ) = ψrA(V ) and since
A is arbitrary, this completes the proof. �

3.10. Consequences for morphisms. To finalize the general discussion of G-
structures admitting a canonical connection, we discuss morphisms and automorphisms
in this setting. In particular, we show that there is an analog of the dimension bound
for isometry groups of Riemannian manifolds as well as a general proof for the fact
that automorphisms form a Lie group that we sketch. All this is based on joining
the canonical form θ and the normal connection γN to a one-form ψ with values in
the Lie algebra g̃ of the group G̃ = G o Rn of G-motions that we used in the proof of
Proposition 3.9. We have already observed there that ψ is G-equivariant and noted that
ψ(u) : TuP → g̃ is a linear isomorphism for each u ∈ P . Observe that by Proposition
2.3 this implies that we can view ψ as defining an isomorphism TP →M × g̃ of vector
bundles, which strengthens the analogy to the Maurer-Cartan form used in Section 3.9.
The properties observed here are the defining properties of a Cartan connection with
model the homogeneous space G̃/G. From Section 2.8 and Theorem 3.9, we know that
under our current assumptions any morphism of G-structures preserves both θ and γN
and hence also ψ.

To prove that automorphisms form a Lie group, we need some results from the theory
of Lie transformation groups, see [Palais] or Theorem 3.1 in [Kobayashi] or Proposition
1.5.11 in [Cap-Slovak]. Suppose that N is a smooth manifold and H ⊂ Diff(N) is a
group of diffeomorphisms. Then one considers the space E of all vector fields ξ ∈ X(N)

which are complete and have the property that Flξt ∈ H for all t ∈ R. The key condition
then is that the Lie subalgebra of X(N) generated by E is finite dimensional. In practice,
one proves this by showing that there is a finite dimensional Lie subalgebra of X(N)
that contains E. Then it turns out that E itself is already a Lie subalgebra of X(N)
and one can uniquely make H into a Lie group with Lie algebra h = E. Moreover, the
inclusion of H into Diff(N) defines a smooth left action of the Lie group H on N .

Theorem 3.10. Let G ⊂ GL(n,R) be a matrix group such that there is a normal-
ization condition N for the torsion of G-structures and such that the first prolongation
g(1) of the Lie algebra g of G is trivial.

(1) Let p : P →M and p̃ : P̃ → M̃ be G-structures such that M is connected. Then
any morphism F : P → P̃ of G-structures is uniquely determined by its value in one
point u ∈ P .

(2) For any G-structure p : P →M with M connected, the group of automorphisms
is a Lie group of dimension ≤ dim(M) + dim(G). For a fixed normalization condition
N , the Lie algebra of this group can be identified with the space of all G-invariant vector
fields ξ̃ on P which have the property that Lξθ = 0 and LξγN = 0. Moreover any such
vector field is projectable to M and uniquely determined by its projection.

Proof. Fix a normalization condition N and put ψ = γN ⊕ θ and similarly for ψ̃.
(1) As we have noted above any morphism F satisfies F ∗ψ̃ = ψ and since already

F ∗θ̃ = θ̃ implies that F is a morphism of G-structures, this is an equivalent character-
ization. Now given Y ∈ g̃, there is a unique element YP ∈ X(P ) such that ψ(YP ) ≡ Y

and similar we get YP̃ ∈ X(P̃ ). But then F ∗ψ̃ = ψ readily shows that ψ(F ∗YP̃ ) ≡ Y

and hence F ∗YP̃ = YP . Hence we see that F ◦ FlYPt = Fl
YP̃
t ◦F for all Y ∈ g̃ and all t
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such that both flows are defined. Given a point u ∈ P , we conclude that there is an
open neighborhood V of u in P such that F |V is determined by F (u). By equivariancy,
the value in any point of P determines the values of F on the whole fiber of P through
this point. Hence F (u) even determines the values of F on p−1(V ) for some open neigh-
borhood V of p(u) in M . This shows that for two morphisms F1 and F2 the set A ⊂M
defined by {x ∈M : F1|Px = F2|Px} is open and closed in M , and the claim follows from
connectedness of M .

(2) The set of principal bundle automorphisms F : P → P such that F ∗ψ = ψ
evidently forms a subgroup of Diff(P ). Now let us take vector field ξ ∈ X(P ) and study

what it means that Flξt ◦rA = rA ◦ Flξt for all A ∈ G and (Flξt )
∗ψ = ψ. Differentiating

these equations with respect to t at t = 0, we readily get ξ(rA(u)) = Tur
A(ξ(u)) and

hence (rA)∗ξ = ξ and Lξψ = 0, respectively. Denoting by a the space of all vector
fields that satisfy these two conditions, naturality of the Lie bracket and the fact that
L[ξ,η] = Lξ ◦ Lη − Lη ◦ Lξ imply that a is a subalgebra of X(P ). Observe that Lξψ = 0
is equivalent to Lξθ = 0 and and LξγN = 0.

On the other hand, if ξ ∈ a is complete, then one easily verifies that the two
conditions on the flows are satisfied. Given any ξ, η ∈ X(P ), we can compute Lξψ(η) =
ξ ·ψ(η)−ψ([ξ, η]). For η = YP , the first summand vanishes, and we conclude that ξ ∈ a
implies that [ξ, YP ] = 0 for any Y ∈ g̃. This implies that (FlYPt )∗ξ = 0 wherever the flow
is defined, so ξ(FlYPt (u)) is determined by ξ(u) in this case. Together with invariance,
this shows that ξ is determined by ξ(u) on p−1(V ) for an open neighborhood V of p(u) in
M . Connectedness of M implies that any ξ ∈ a is uniquely determined by its value in a
single point u ∈ P . Hence a has dimension at most dim(P ) and Palais’ characterization
of Lie transformation groups discussed above implies that automorphisms form a Lie
group as well as the description of the Lie algebra.

For ξ ∈ a, (rA)∗ξ = ξ implies that ξ is projectable, so the Lie algebra of the
automorphism group consists of projectable vector fields. To complete the proof, it
suffices to show that an element ξ ∈ a that projects to zero has to vanish identically. If
ξ projects to zero, then by definition we get iξθ = 0 and since ξ ∈ a, we get Lξθ = 0
and hence iξdθ = 0. But by construction, ξ is a section of the vertical subbundle in
TP . Hence choosing a basis {Ai} of g, there are smooth functions ai : P → R such that
ξ =

∑
i aiζAi . But then iξdθ =

∑
i ai(iζAidθ). As we have noted in the proof of Theorem

3.5, dθ(ζAi , η) = −Ai(θ(η)). Putting η = vP for v ∈ Rn ⊂ g̃ we finally conclude that∑
i ai(u)Aiv = 0 for all v ∈ Rn. Hence 0 =

∑
i ai(u)Ai ∈ g ⊂ gl(n,R) for any u and

since the Ai form a basis, we conclude that ξ = 0. �

Recall that in the case of Riemannian metrics we used arguments based on geodesics
to prove similar results. Indeed, the arguments in the proof above can be phrased in a
similar fashion. In particular, the geodesics for the linear connection on TM induced
by a connection on a G-structure can be described as the projections of the integral
curves of the vector fields vP , with v ∈ Rn, i.e. those that are mapped to zero by γ and
to a fixed vector by θ.



CHAPTER 4

Examples

We will now discuss several fundamental examples of G-structures and study their
properties via the methods exhibited so far. We will sometimes use results from repre-
sentation theory without providing complete details.

4.1. (Pseudo-)Riemannian metrics. Let us start with the example G = O(n) ⊂
GL(n,R) which corresponds to Riemannian geometry, see Example 2.8 (1) for the equiv-
alence between a Riemannian metric g on M and an O(n)-structure p : P → M . We
have seen in Example 3.6 that connections on this G-structure exactly correspond to
those linear connections on TM that are metric for g in the usual sense. Now in this
case, the analysis of torsion is very easy: We have already observed in Section 2.12 that
for g = o(n), we get g(1) = {0}, so the map ∂ : Rn∗ ⊗ o(n) → Λ2Rn∗ ⊗ Rn defined in

(3.14) is injective. However, dim(o(n)) = n(n−1)
2

= dim(Λ2Rn∗) readily shows that ∂
maps between two spaces of the same dimension, so it has to be a linear isomorphism.

Hence there is no intrinsic torsion for O(n)-structures and N = {0} is the only
possible complement to im(∂). Hence Theorem 3.9 shows that any O(n)-structure
admits a unique torsion-free connection, which exactly is existence and uniqueness of
the Levi-Civita connection. This also shows that the Riemann curvature tensor is
a basic invariant of an O(n)-structure and Corollary 3.9 says that vanishing of the
Riemann curvature tensor is equivalent to local isometry to the flat metric on Rn.
Finally, Theorem 3.10 shows that the isometry group of any Riemannian manifold is a

Lie group (Myers-Steenrod theorem) of dimension at most n(n+1)
2

. It is not difficult to
verify that the Lie algebra of this group is formed by the complete Killing vector fields
on M .

Replacing Riemannian metrics in dimension n by pseudo-Riemannian metrics of
some fixed signature (p, q) with p + q = n, we simply have to replace O(n) by O(p, q).
But the arguments from the proof of Proposition 1.2 and from Section 2.12 extend
without any change if one replaces the standard inner product on Rn by any non-
degenerate, symmetric bilinear form. Hence the first prolongation also vanishes for
o(p, q) and since dim(o(p, q)) = dim(o(n)) also all the remaining arguments extend to
the pseudo-Riemannian case without changes.

Observe also, that things clearly extend to subgroups of O(p, q) which also have
Lie algebra o(p, q). In the definite case, this only applies to the subgroup SO(n) ⊂
O(n) which is the connected component of the identity. This corresponds to oriented
Riemannian manifolds, so the additional orientation does not lead to additional torsion
or curvature invariants. If one goes deeper into the study of invariants, the fact that
one gets a volume form rather than a volume density does cause differences, though.
In the indefinite case, the situation is slightly more complicated since for p, q 6= 0, the
group O(p, q) has four connected components and there are more subgroups with the
same Lie algebra. In particular, one always has SO(p, q) ⊂ O(p, q) which corresponds to
oriented pseudo-Riemannian manifolds and the connected component SO0(p, q) which
corresponds to a stronger notion of orientation (space- and time-orientation).

53
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Finally, let us also remark that the proof of existence of a unique torsion free con-
nections extends to the cases of groups that cover O(p, q) or its subgroups with the
same Lie algebra. So in particular, for the two-fold covering Spin(n) → SO(n), once
existence of a spin-structure is known, it follows that one the principal Spin(n)-bundle,
there is a unique principal connection with vanishing torsion. This is often called the
spin-connection.

4.2. Riemannian G-structures. Let us next consider the case that G is a closed
subgroup of O(n) (which of course implies that G is also closed in GL(n,R)). Then the
standard inner product on Rn is invariant under G, which shows that any G-structure p :
P →M in particular gives rise to a Riemannian metric on M . Hence such structures can
be viewed as refinements of Riemannian metrics and they are often called Riemannian
G-structures. Two obvious examples of such groups are SU(m) ⊂ U(m) ⊂ SO(n) for
n = 2m, but one can also use examples like distinguished subspaces or flags and combine
them with an inner product. Then by construction the Lie algebra g is a subalgebra
of o(n) and since we have discussed the case that g = o(n) already, we assume that
g ⊂ o(n) is a proper subalgebra. Since the resulting map ∂ for g is just the restriction
of the corresponding map for o(n), we conclude that ∂ : Rn∗ ⊗ g → Λ2Rn∗ ⊗ Rn is
injective (and hence g(1) = {0}).

We also conclude that the codimension of im(∂) in Λ2Rn∗⊗Rn equals n(dim(o(n))−
dim(g)). Of course, this equals the dimension of the space I from formula (3.15), so
there is room for intrinsic torsion here. As a closed subgroup of O(n), the group G is
compact, so by general results any invariant subspace in a representation of G admits an
invariant complement. This implies that for G ⊂ O(n), there always is a normalization
condition for the torsion of G-structures. Hence we are in the setting of Theorem 3.9, so
choosing N , we conclude that any Riemannian G-structure admits a unique connection
γN with torsion in N and the torsion of this connection coincides with the intrinsic
torsion of our G-structure by Theorem 3.8. Of course, also Theorems 3.9 and 3.10
apply. Similarly as in Section 3.6 one immediately shows that γN is metric for the
underlying Riemannian metric g, however it differs from the Levi-Civita connection of
g unless the intrinsic torsion Ti of the G-structure vanishes identically.

We can easily make things much more explicit: For O(n) the adjoint representation
on o(n) is simply given by conjugation and one immediately verifies that (X, Y ) 7→
− tr(XY ) = tr(XY t) defines an O(n)-invariant inner product on o(n). Now we can
restrict the adjoint representation of O(n) to G to obtain a representation of G on o(n)
for which this inner product is invariant, too. The subspace g ⊂ o(n) of course is G-
invariant, so it follows that the orthocomplement g⊥ of g in o(n) defines a G-invariant
complement to g. Since ∂ : Rn∗ ⊗ o(n) → Λ2Rn∗ ⊗ Rn is a linear isomorphism and by
construction G-equivariant, we conclude that N := ∂(Rn∗ ⊗ g⊥) defines a G-invariant
complement to ∂(Rn∗ ⊗ g) in Λ2Rn∗ ⊗ Rn. Hence we have obtained a normalization
condition for the torsion of G-structure, and we know that as a representation of G, the
space I from formula (3.15) is isomorphic to Rn∗ ⊗ g⊥.

For this choice of normalization condition, we can directly characterize the nor-
mal connection γN in terms of the tensor describing the difference to the Levi-Civita
connection. To formulate this in terms of linear connections, we first recall that for
an O(n)-structure p : P → M , the associated bundle P ×O(n) o(n) is the subbun-
dle of L(TM, TM) consisting of those endomorphisms of TM , whose value in each
point x ∈ M is skew symmetric for the inner product g(x). It is natural to denote
this bundle by o(TM). Starting with a G-structure p : P → M , we of course get
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P ×G o(n) ∼= o(TM). Thus the decomposition o(n) = g ⊕ g⊥ defines a decomposition
o(TM) = E1 ⊕ E2 as a Whitney sum. Now if we denote by g the Riemannian metric
underlying the G-structure and by ∇g its Levi-Civita connection, any linear connection
on TM can be written as ∇ξη = ∇g

ξη+A(ξ, η) for a
(

1
2

)
-tensor field A on M , see Section

3.1. From Section 3.6, we know that ∇ is metric for g if and only if Ax(ξ, ) ∈ o(TxM)
for each x ∈ M , and of course this has to be satisfied for any connection compatible
with the G-structure. But then the torsion of ∇ is given by T (ξ, η) = A(ξ, η)−A(η, ξ)
so by construction we conclude that this has values in N if and only if A(ξ, ) has values
in E2 ⊂ o(TM). So we know from our general results that there is a unique tensor A
such that the resulting connection ∇ is compatible with the G structures and such that
A(ξ, ) has values in E2 and then the resulting connection ∇ is induced by the canonical
connection γN .

This can be converted into a natural interpretation of what vanishing of the intrinsic
torsion means for a Riemannian G-structure and it leads to a general approach for
analyzing the intrinsic torsion of a Riemannian G-structure. We discuss this in a specific
example next.

4.3. Example: Almost Hermitian structures. Consider G = U(m) ⊂ SO(2m)
in dimension n = 2m. Starting with Cm ∼= R2m, the standard inner product on R2m

simply is the real part of the standard Hermitian inner product on Cm. In linear algebra
one shows that an orthogonal linear map f lies in U(m) ⊂ SO(2m) if and only if f
is complex linear. Otherwise put, U(m) is the joint stabilizer of the standard inner
product 〈 , 〉 and the linear map J(z) := iz on R2m ∼= Cm. This readily translates to
the fact that a U(m)-structure on a manifold M of dimension n = 2m is equivalent to
a pair (g, J), where g ∈ T 0

2 (M) is a Riemannian metric on M and J ∈ T 1
1 (M) is an

almost complex structure as discussed in Example 2.8 (3) such that for each x ∈ M
and X, Y ∈ TxM we get gx(Jx(X), Jx(Y )) = gx(X, Y ). This means that g is Hermitian
with respect to J and hence U(m)-structures are commonly called almost Hermitian
structures.

Similarly as in Section 3.6 one concludes that for any connection γ on a U(m)-
structure with induced linear connection(s)∇, one obtains∇g = 0 and∇J = 0, so g and
J are parallel as tensor fields. As there, our characterization of U(m) also implies that
conversely, any linear connection with these two properties is induced by a connection on
the U(m)-structure. Having observed this, we claim that a U(m)-structure p : P →M
has vanishing intrinsic torsion if and only if the Levi-Civita connection ∇g of g satisfies
∇gJ = 0. If this is the case, then ∇g is induced by a connection on P , which therefore
admits a torsion-free connection and hence has vanishing intrinsic torsion. Conversely,
if P has vanishing intrinsic torsion, then the canonical connection γN is torsion free and
since the induced connection on TM is metric, it has to coincide with the Levi-Civita
connection so ∇gJ = 0. Such structures are called Kähler structures and they are of
fundamental importance.

The general version of this statement says that a Riemannian G-structure has van-
ishing intrinsic torsion if and only if all the structures that one has to add to the Rie-
mannian metric to obtain the G-structure are preserved by the Levi-Civita connection.
Such G-structures are often called integrable. They are important since a Riemannian
metric underlies an integrable G-structure if and only if the so-called holonomy group
of g is a subgroup of G. Since there are classifications of possible holonomy groups of
Riemannian metrics this is an important ingredient for Riemannian geometry.
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Understanding the intrinsic torsion of almost Hermitian structures in detail is a more
complicated issue. It is possible to approach this via the almost complex structure J (see
the discussion in Section 4.5 below), but there is a more popular alternative approach.
This is known as the Gray-Hervella classification, see [GH76], and we briefly discuss
this from our perspective. The starting point for this approach is that for an almost
Hermitian structure (g, J) on a smooth manifold M of dimension 2m, on obtains the
so-called fundamental two-form ω ∈ Ω2(M) via ω(x)(X, Y ) := g(x)(X, J(x)(Y )) for
x ∈ M and X, Y ∈ TxM . Under a linear isomorphism TxM → Cm that sends g(x) to
the real part of the Hermitian inner product and J(x) to multiplication by i, ω(x) exactly
corresponds to the imaginary part of the Hermitian form. By construction ω(x) is non-
degenerate and Hermitian in the sense that ω(x)(J(x)(X), J(x)(Y )) = ω(x)(X, Y ).
Hence in particular, ω defines an almost symplectic structure on M .

Since ω is constructed from g and J , it follows readily that for the canonical con-
nection ∇ of the almost-Hermitian structure, we get ∇ω = 0. Denoting by ∇g the
Levi-Civita connection of g, one easily verifies that (∇g

ξω)(η, ζ) = ω(η, (∇g
ξJ)(ζ)). Thus

from above we conclude that vanishing of the intrinsic torsion of (g, J) can be equiva-
lently characterized as ∇gω = 0. But the situation is much better than that, since it
turns out that the

(
0
3

)
-tensor field ∇gω provides an equivalent encoding of the intrinsic

torsion Ti, and the Gray-Hervella approach is to study Ti via the properties of ∇gω.
Let us start with o(2m) viewed as a the space of real linear maps f : Cm → Cm

which are skew symmetric with respect to the real part 〈 , 〉 of the standard Hermitian
inner product. Of course, f lies in the subalgebra u(m) if and only if f is C-linear,
i.e. f(iz) = if(z). Now one can decompose any real linear map on Cm into a complex
linear and a conjugate linear part, given by z 7→ 1

2
(f(z) ∓ if(iz)). Since 〈 , 〉 is

Hermitian, it follows readily that for f ∈ o(2m) also z 7→ if(iz) lies in o(2m). But
this shows that V := {f ∈ o(2m) : f(iz) = −if(z)} is a linear subspace in o(2m) such
that o(2m) = u(m) ⊕ V . Moreover for X ∈ u(m) and Y ∈ V , the composition XY is
conjugate linear and thus has vanishing real trace, so V = u(m)⊥ for the inner product
on o(2m) discussed above. In particular, we conclude that the representation I of U(m)
from Section 3.7 is isomorphic to the space Cm∗ ⊗ V of real linear maps Cm → V .

Elements of the latter space can be equivalently described as as real-bilinear maps
Φ : Cm × Cm → Cm, which are conjugate linear and skew symmetric with respect to
〈 , 〉 in the second variable. Defining Ψ(X, Y, Z) := 〈Y,Φ(X,Z)〉, we obtain a trilinear
map Ψ : (Cm)3 → R which is skew symmetric in Y and Z and satisfies Ψ(X, iY, iZ) =
−Ψ(X, Y, Z). Denoting byW the space of all maps with these two properties, one easily
verifies that dim(W) = 2m dim(V ), so we conclude that W ∼= I as a representation of
U(m). Gray and Hervella then show that for m ≥ 3,W decomposes as a direct sum of 4
irreducible representationsWi of U(m) and characterize these components by equations
on the maps Ψ contained in them. Correspondingly, the intrinsic torsion of an almost
Hermitian structure in dimensions 2m ≥ 6 can be written as a sum of 4 components,
and the 16 classes referred to in the title of [GH76] correspond to the 16 possibilities
of which of these components are non-zero. In low dimensions, the decomposition into
irreducibles becomes simpler, so there are fewer possible types.

We can also make the characterization of the canonical connection from above ex-
plicit here. Of course the decomposition o(TM) = E1 ⊕ E2 of the bundle of endo-
morphisms of TM which are skew symmetric with respect to g exactly corresponds to
the fact that the endomorphisms in addition are complex linear respectively conjugate
linear with respect to J in each point. In particular writing the canonical connection
∇ as ∇ξη = ∇g

ξη + A(ξ, η), it is uniquely characterized by the fact that A(ξ, ) is skew
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symmetric with respect to g and conjugate linear with respect to J . But this provides
a relation to ∇gω as follows. By definition, we get

0 = (∇ξω)(η, ζ) = ξ · ω(η, ζ)− ω(∇ξη, ζ)− ω(η,∇ξζ).

Inserting ∇ξη = ∇g
ξη + A(ξ, η) and similarly for ∇ξζ, we conclude that

0 = (∇g
ξω)(η, ζ)− ω(A(ξ, η), ζ)− ω(η, A(ξ, ζ)).

Inserting the definition of ω and using skew-symmetry of A(ξ, ) in the first term and
then conjugate linearity, we conclude that

(∇g
ξω)(η, ζ) = g(η,−A(ξ, J(ζ)) + JA(ξ, ζ)) = −2g(η,A(ξ, J(ζ))).

But this shows that (∇g
ξω)(η, ζ) simply is an equivalent encoding of the trilinear map

Ψ associated to A and hence of the intrinsic torsion of the almost Hermitian structure
(g, J). The 16 classes defined by Gray and Hervella (including nearly Kähler, almost
Kähler and quasi-Kähler structures) are then defined by requiring specific properties of
∇gω, e.g. being symmetric in the first two arguments or totally skew symmetric and so
on.

4.4. Almost symplectic structures. Here we put n = 2m and consider G =
Sp(2m,R) ⊂ GL(n,R), the group of maps that preserve a fixed, non-degenerate, skew-
symmetric bilinear form b on R2m. The resulting G-structure clearly is equivalent to an
almost symplectic structure as defined in Section 1.3. Similarly as in Example 3.6 one
shows that a linear connection ∇ on TM is compatible with the G-structure inducing
an almost symplectic structure ω ∈ Ω2(M) if and only if ∇ω = 0.

The Lie algebra g = sp(2m,R) of G consist of all linear maps f : Rn → Rn which
are skew symmetric with respect to b. Via b, linear maps f : Rn → Rn can be identified
with bilinear forms on Rn by looking at (x, y) 7→ b(f(x), y), and a map f lies in g if and
only if the corresponding bilinear form is symmetric. Hence we obtain an isomorphism
g ∼= S2Rn∗ of representations of G. This readily implies that the kernel g(1) of the map
∂ : Rn∗ ⊗ g → Λ2Rn∗ ⊗ Rn is isomorphic to S3Rn∗ ⊂ Rn∗ ⊗ S2Rn∗. The complete
symmetrization defines a projection onto this subspace, so we see that Rn∗ ⊗ S2Rn∗ ∼=
S3Rn∗⊕W , where W is the kernel of the symmetrization. It is well know that this is the
decomposition into irreducible representations for GL(n,R). To avoid low dimensional
special phenomena, let us assume n ≥ 6 from now on.

Now using b, we can also identify Λ2Rn∗⊗Rn with Λ2Rn∗⊗Rn∗ as a representation
of G. It is well known that, as a representation of GL(n,R), the latter decomposes as
W̃⊕Λ3Rn∗, where W̃ is the kernel of the complete alternation. Again, the two summands
are irreducible as representations of GL(n,R) and it is well known that W̃ ∼= W . As
a map Rn∗ ⊗ S2Rn∗ → Λ2Rn∗ ⊗ Rn∗ the alternation in the first two entries (which
corresponds to ∂) is GL(n,R)-equivariant, so it has to map W isomorphically onto W̃ .
Hence we conclude that here im(∂) coincides with the kernel of the complete alternation.
In particular, the representation I from Section 3.7 is isomorphic to Λ3Rn∗, so the
intrinsic torsion of an almost symplectic structure can be viewed as a 3-form. Likewise,
viewing Λ3Rn∗ as a subspace of Λ2Rn∗ ⊗ Rn∗ it defines a normalization condition N
for the torsion of almost symplectic structures. However, since g(1) ∼= S3Rn∗, normal
connections are always far from being unique, they form an affine space modelled on
completely symmetric

(
0
3

)
-tensor fields on M .

Taking a compatible connection with induced linear connection ∇ on TM with
torsion T ∈ Ω2(M,TM), this leads to the following description of the intrinsic torsion
of (M,ω): We first convert the torsion T to a

(
0
3

)
-tensor field via (ξ, η, ζ) 7→ ω(T (ξ, η), ζ)
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and then the intrinsic torsion Ti is given by the complete alternation of this expression.
Since T is skew symmetric, this can be computed (up to a non-zero factor) as the sum
of the expression of over all cyclic permutations of the three arguments. This allows a
very nice interpretation as follows.

Proposition 4.4. Consider an almost symplectic structure (M,ω) on a smooth
manifold M of dimension n = 2m ≥ 6. Then the intrinsic torsion of the corresponding
G-structure is equivalently encoded as dω ∈ Ω3(M). In particular, an almost symplec-
tic structure has vanishing intrinsic torsion and thus admits a compatible torsion-free
connection if an only if it is symplectic.

Proof. Let ∇ be a linear connection on TM that is compatible with the almost
symplectic structure ω. Then

(4.1) 0 = (∇ξω)(η, ζ) = ξ(ω(η, ζ))− ω(∇ξη, ζ)− ω(η,∇ξζ).

Now we can sum this equation over all cyclic permutations of the arguments, which
adds the expressions

ζ(ω(ξ, η))− ω(∇ζξ, η)− ω(ξ,∇ζη)

η(ω(ζ, ξ))− ω(∇ηζ, ξ)− ω(ζ,∇ηξ).

Now we can for example collect the second term in the right hand side of (4.1) with the
last term in the bottom line to get

−ω(∇ξη −∇ηξ, ζ) = −ω([ξ, η], ζ)− ω(T (ξ, η), ζ)

by the definition of torsion. Collecting the Lie bracket terms with the terms in which the
values of ω are differentiated, we obtain dω(ξ, η, ζ). Hence we conclude that dω(ξ, η, ζ)
coincides with the sum of ω(T (ξ, η), ζ) over all cyclic permutations of the arguments. As
we have noted above, this sum provides an equivalent encoding of the intrinsic torsion
of the G-structure determined by ω, so the result follows. �

Torsion-free connections preserving a symplectic form are called Fedosov connec-
tions, so such connections always exist but they are far from being unique.

4.5. Almost complex structures. Here we consider Cm = R2m and the closed
subgroup G := GL(m,C) ⊂ GL(2m,R) and hence g := gl(m,C) ⊂ gl(2m,R). In
this case, we can analyze the map ∂ completely and we assume m > 1 throughout the
discussion. First, the space R2m∗ ⊗ g has real dimension 2m(2m2) = 4m3 and we can
identify it with the space of R-bilinear maps f : Cm×Cm → Cm which are complex linear
in the second variable. In this interpretation ∂f(z, w) = f(z, w)− f(w, z), so ∂f = 0 if
and only if f is symmetric. But then of course f is symmetric and complex bilinear, and
conversely, any symmetric complex bilinear map defines an element of ker(∂). Thus we
see that g(1) coincides with the space of complex bilinear symmetric maps Cm ×Cm →
Cm. This is a complex vector space of complex dimension m(1

2
m(m + 1)) and hence

for the real dimension we get dim(g(1)) = m3 + m2. This implies that im(∂) has real
dimension 3m3 −m2.

Now the image space W := Λ2R2m∗ ⊗R2m of ∂ is the space of skew symmetric, real
bilinear maps Cm × Cm → Cm and we have to understand this as a representation of
G = GL(m,C). This can be done via complex linearity properties as follows. Since
the target space Cm is complex, we can consider skew symmetric maps that are either
complex linear or conjugate linear in both arguments. Let us denote by Λ2,0 the space
of complex bilinear maps and by Λ0,2 the space of maps that are conjugate linear in
both arguments. Evidently, both spaces are G-invariant complex subspaces of W whose
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dimension can be easily determined. One can specify a map ϕ in either of the two spaces
by fixing the values ϕ(ej, ek) ∈ Cm for j 6= k and the standard basis {e1, . . . , em} for Cm.
This shows that the complex dimension of either of the two spaces equals m(1

2
m(m−1))

and hence they have real dimension m3 −m2.
Now if ϕ is either C-bilinear or conjugate linear in both arguments, then ϕ(iz, iw) =

−ϕ(z, w). Thus we are led to the idea to also consider the subspace Λ1,1 ⊂ W consisting
of all maps ϕ such that ϕ(iz, iw) = ϕ(z, w), so these are Hermitian skew symmetric
bilinear forms. Of course, this also is a G-invariant complex subspace of W . Now it is
easy to see that W = Λ2,0 ⊕Λ1,1 ⊕Λ0,2, for example by decomposing a general element
ϕ ∈ W as ϕ = ϕ2,0 + ϕ1,1 + ϕ0,2 with

ϕ2,0(z, w) : = 1
4

(ϕ(z, w)− ϕ(iz, iw)− i(ϕ(iz, w) + ϕ(z, iw)))

ϕ1,1(z, w) : = 1
2

(ϕ(z, w) + ϕ(iz, iw))

ϕ0,2(z, w) : = 1
4

(ϕ(z, w)− ϕ(iz, iw) + i(ϕ(iz, w) + ϕ(z, iw)))

and verifying that the components lie in the indicated subspaces. This in particular
implies that dim(Λ1,1) = 2m3. But now one verifies immediately that for f ∈ R2m∗⊗ g,
one gets (∂f)0,2 = 0, since f is complex linear in the second variable. Thus we conclude
that im(∂) ⊂ Λ2,0 ⊕ Λ1,1 and checking dimensions, we see that we must have equality.
This also shows that N := Λ0,2 is a normalization condition for the torsion of G-
structures. The resulting condition on the torsion can be immediately made explicit
in the language of almost complex structures. Since the torsion is an element T ∈
Ω2(M,TM) its value in a point x ∈M is a skew-symmetric real bilinear map Λ2TxM →
TxM . Now the value J(x) of the almost complex structure J on M makes TxM into a
complex vector space and so it makes sense to require that T (x) is conjugate linear in
both arguments with respect to J(x), and this is exactly the normalization condition
we obtain.

The projection ϕ 7→ ϕ0,2 can be applied point-wise on M and our above consid-
erations also tell us that the intrinsic torsion of the G-structure corresponding to an
almost complex structure J on M can be equivalently encoded in T0,2 where T is the
torsion of any compatible connection. In terms of the induced linear connection ∇
on TM , the compatibility condition implies that for J ∈ T 1

1 (M), we get ∇J = 0.

Conversely, suppose we have given two connections ∇ and ∇̂ such that ∇J = 0 and
∇̂J = 0. This means that 0 = (∇ξJ)(η) = ∇ξJη− J∇ξη and similarly for ∇̂ so writing

A(ξ, η) = ∇̂ξη −∇ξη we conclude that A(ξ, J(η)) = J(A(ξ, η)). Using this, one verifies
as in Example 3.6 that a linear connection ∇ on TM is compatible with the G-structure
if and only if ∇J = 0.

Theorem 4.5. Let J be an almost complex structure on a smooth manifold M of
even dimension 2m ≥ 4. Then there is a

(
1
2

)
-tensor field N = NJ on M such that for

ξ, η ∈ X(M) one gets

(4.2) NJ(ξ, η) = [ξ, η]− [Jξ, Jη] + J([Jξ, η] + [ξ, Jη])

and the intrinsic torsion of the G-structure determined by J is given by Ti = −1
4
N . In

particular, an almost complex structure admits a compatible torsion-free connection if
and only if N vanishes identically.

Proof. While existence of N follows from the following considerations, it is a good
exercise to verify directly that the right hand side of (4.2) is linear over C∞(M,R) in
both arguments. Indeed, replacing η by fη and taking into account that J is a tensor
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field, we see that the additional terms to fN(ξ, η) in the right hand side of (4.2) are

ξ(f)η − (Jξ)(f)Jη + J((Jξ)(f)η + ξ(f)Jη) = 0.

Since N is visibly skew symmetric, this completes the argument.
Now we know from above that we can take any linear connection ∇ on TM such

that ∇J = 0 and then compute the intrinsic torsion as Ti = T0,2, where T is the torsion
of ∇. Now take the definition of T , i.e.

T (ξ, η) = ∇ξη −∇ηξ − [ξ, η],

and we can obtain T0,2(ξ, η) as
1
4

(T (ξ, η)− T (Jξ, Jη) + J(T (Jξ, η) + T (ξ, Jη))) .

Inserting the definition of T , we can use the fact that ∇ξJη = J∇ξη and similar
expression to conclude that the terms involving ∇ do not contribute to T0,2 at all. So
the only contributions comes from taking the appropriate combinations of the negative
Lie bracket, which shows that T0,2 = −1

4
NJ as claimed. �

The tensor N defined in (4.2) is called the Nijenhuis-tensor of J . There is a beautiful
interpretation of vanishing of NJ via the so-called Newlander-Nirenberg theorem, see
[NN57]. Consider a complex manifold M of complex dimension m, i.e. a manifold
endowed with an atlas that has charts with values in open subsets of Cm such that the
chart changes are holomorphic. This exactly means that the derivatives of the chart
changes are complex linear, and hence each tangent space of M canonically inherits
the structure of a complex vector space. Since multiplication by i is a constant map
in such charts, this indeed defines an almost complex structure J on M . Looking at
complex coordinate vector fields, one immediately deduces that for such a structure the
Nijenhuis tensor automatically vanishes. Observe in particular, that this implies that J
is real analytic. The Newlander-Nirenberg theorem states that conversely any almost
complex structure which is least C2 and whose Nijenhuis tensor vanishes is obtained
from a holomorphic atlas and hence is automatically real analytic. Indeed, proving real
analyticity is the first step in the proof and is rather hard. Assuming real analyticity of
J from the outset, the proof becomes much easier.

Let us briefly mention what happens for m = 1. Multiplications by complex numbers
of modulus one on C are exactly rotations, which corresponds to U(1) ∼= SO(2). Thus
we see that GL(1,C) ⊂ GL(2,R) is generated by SO(2) and by multiples of the identity.
Thus it coincides with those linear automorphisms of R2 which are orientation preserving
and conformal, i.e. they preserve the standard inner product up to multiples. This is
the basis for the relation between complex structures and conformal structures on real
surfaces which is fundamental for the theory of Riemann surfaces. On the level of
Lie algebras, this means that gl(1,C) ⊃ o(2), so from Section 4.1 we conclude that
∂ : R2∗ ⊗ gl(1,C)→ Λ2R2∗ ⊗R2 is surjective with 2-dimensional kernel. Hence there is
no intrinsic torsion for almost complex structures in real dimension two. Thus any such
structure admits a compatible torsion-free connection, but this is not unique. Indeed,
it turns out that in dimension two any almost complex structure comes from a complex
atlas.

4.6. Distributions. Here we assume that n ≥ 3 and 2 ≤ k < n and let G be the
stabilizer of Rk ⊂ Rn, so G-structures correspond to smooth distributions of rank k
of smooth manifolds of dimension n. As in 4.5, we can completely analyze the map
∂ : Rn∗ ⊗ g → Λ2Rn∗ ⊗ Rn in this case. From the description of G it follows readily
that dim(g) = kn + (n− k)2. We can identify Rn∗ ⊗ g with the space of bilinear maps
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f : Rn × Rn → Rn which have the property that f(v, w) ∈ Rk ⊂ Rn provided that
w ∈ Rk ⊂ Rn. In this picture ∂f is just the alternation of f , so if ∂f = 0, then f is a
symmetric bilinear map Rn ×Rn → Rn which has values in Rk provided that one of its
entries lies in Rk. Conversely, any such form evidently lies in Rn∗⊗ g, so we have found
a complete description of g(1).

To determine the dimension of g(1), we observe that dim(S2Rn∗) = 1
2
n(n+1). Among

the elements of the basis of this space induced by the standard basis of Rn, there are
1
2
k(k+ 1) +k(n−k) = 1

2
(k(2n−k+ 1)) elements which only are non-zero if one of their

entries lies in Rk while the other 1
2
(n− k)(n− k + 1) elements vanish on this subspace.

Hence the above description of g(1) shows that

dim(g(1)) = 1
2
(k2(2n− k + 1) + n(n− k)(n− k + 1)).

Subtracting this from kn2 + n(n− k)2, we conclude that

(4.3) dim(im(∂)) = 1
2
(n(n− k)(n+ k − 1) + k2(k − 1)).

On the side of the torsion, we observe that for a bilinear map f as above, we certainly
get ∂f(v, w) ∈ Rk if both v and w lie in the subspace Rk. There is a simple way to form
a quotient of Λ2Rn∗⊗Rn by restricting to entries from Rk and then projecting the result
to Rn/Rk. Now observe that the group G has canonical representations on Rk and on
Rn/Rk that are induced from the two diagonal blocks an a block decomposition. Using
these representations, the map π : Λ2Rn∗ ⊗ Rn → Λ2Rk∗ ⊗ (Rn/Rk) we have described
is G-equivariant. By construction im(∂) ⊂ ker(π). But we can easily compute the
dimension of ker(π) as 1

2
(n2(n− 1)− k(k− 1)(n− k)) and one immediately verifies that

this coincides with the right hand side of (4.3). Hence we conclude that im(∂) = ker(π)
and hence the representation I from Section 3.7 can be identified with Λ2Rk∗⊗(Rn/Rk).

Translating this setup to geometry is rather easy. As we know from Section 2.8, a
G-structure p : P →M on a smooth manifold of dimension n is equivalent to a smooth
distribution E ⊂ TM of rank k. From the construction, it is clear that E = P ×G Rk,
and as usual TM = P ×G Rn. We can also form the bundle P ×G (Rn/Rk), and the
G-equivariant quotient projection Rn → Rn/Rk induces a surjective bundle map from
TM to this bundle. For each point x ∈M the kernel of the corresponding map on TxM
is Ex, so it is natural to denote P ×G (Rn/Rk) by TM/E. Indeed this is an instance of
the general notion of the quotient of a vector bundle by a smooth subbundle. Let us
denote by q : TM → TM/E the natural bundle projection.

Theorem 4.6. Let E ⊂ TM be a smooth distribution of rank k ≥ 2 on a smooth
manifold M of dimension n > k. Then there is a skew symmetric bilinear bundle map
L : E×E → TM/E such that for ξ, η ∈ Γ(E) we get Lx(ξ(x), η(x)) = q([ξ, η](x)). The
intrinsic torsion of the G-structure corresponding to E ⊂ TM is given by Ti = −L ∈
Γ(Λ2E∗ ⊗ (TM/E)). In particular, the G-structure admits a compatible torsion-free
connection if and only if the distribution E is involutive and hence integrable.

Proof. As before, it is not really necessary to to this, but one can easily verify
that L indeed defines a bundle map. We just observe that [ξ, fη] = f [ξ, η] + ξ(f)η,
but the second summand has values in E and hence its image under q vanishes. As an
operator Γ(E)× Γ(E)→ Γ(TM/E), L therefore is bilinear over smooth functions and
hence defines a bundle map. Alternatively, it can be interpreted as a smooth section of
the bundle Λ2E∗ ⊗ (TM/E).

Consider a G-structure p : P → M . In terms of equivariant functions f : P → M
sections of the corresponding distribution E ⊂ TM correspond to functions with values
in Rk ⊂ Rn. Differentiating such a function with an equivariant vector field on P , one
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again obtains a function with values in Rk. Thus for any principal connection on P ,
the induced linear connection ∇ on TM has the property that for η ∈ Γ(E) ⊂ X(M)
and ξ ∈ X(M), one has ∇ξη ∈ Γ(E). Similarly as in Section 3.6, one shows that this
characterizes the linear connections induced from principal connections on P .

Hence our above discussion implies that we can obtain the intrinsic torsion Ti of the
G-structure by projecting the torsion T of any linear connection with this property to
the bundle Λ2E∗⊗ (TM/E). So this means that we have to evaluate T on two sections
ξ, η ∈ Γ(E) and then project the result to TM/E using q. But in the standard formula
T (ξ, η) = ∇ξη−∇ηξ− [ξ, η] the first two summands by definition have values in E and
hence do not contribute to the image under q. Hence we readily conclude that Ti = −L
and since L(ξ, η) = 0 if and only if [ξ, η] ∈ Γ(E), the last statement follows. �

Let us briefly discuss the case k = 1. Calculating dimensions in the same way as
for k ≥ 2, one easily verifies that (4.3) continues to hold for k = 1. This shows that
dim(im(∂)) = 1

2
(n2(n−1)), and hence ∂ is surjective for k = 1. This means that there is

no intrinsic torsion for distributions of rank 1 (which also are automatically involutive)
and hence for each such distribution, there is a compatible torsion-free connection by
Theorem 3.7. But such connections are far from being unique. Indeed, also the formula
for dim(g(1)) from above remains correct if one naively inserts k = 1, and this gives
n+ 1

2
n2(n− 1).
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